mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
changed order so linear_solve and submatrix are first.
This commit is contained in:
parent
5bd2cba0ff
commit
1e6cf426a9
72
math.scad
72
math.scad
@ -532,6 +532,43 @@ function mean(v) = sum(v)/len(v);
|
||||
|
||||
// Section: Matrix math
|
||||
|
||||
// Function: linear_solve()
|
||||
// Usage: linear_solve(A,b)
|
||||
// Description:
|
||||
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
|
||||
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
|
||||
// If A is rank deficient or singular then linear_solve returns `undef`.
|
||||
function linear_solve(A,b) =
|
||||
let(
|
||||
dim = array_dim(A),
|
||||
m=dim[0], n=dim[1]
|
||||
)
|
||||
assert(len(b)==m,str("Incompatible matrix and vector",dim,len(b)))
|
||||
let (
|
||||
qr = m<n ? qr_factor(transpose(A)) : qr_factor(A),
|
||||
maxdim = max(n,m),
|
||||
mindim = min(n,m),
|
||||
Q = submatrix(qr[0],[0:maxdim-1], [0:mindim-1]),
|
||||
R = submatrix(qr[1],[0:mindim-1], [0:mindim-1]),
|
||||
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
|
||||
)
|
||||
zeros != [] ? undef :
|
||||
m<n ? Q*back_substitute(R,b,transpose=true) :
|
||||
back_substitute(R, transpose(Q)*b);
|
||||
|
||||
|
||||
// Function: submatrix()
|
||||
// Usage: submatrix(M, ind1, ind2)
|
||||
// Description:
|
||||
// Returns a submatrix with the specified index ranges or index sets.
|
||||
function submatrix(M,ind1,ind2) =
|
||||
[for(i=ind1)
|
||||
[for(j=ind2)
|
||||
M[i][j]
|
||||
]
|
||||
];
|
||||
|
||||
|
||||
// Function: qr_factor()
|
||||
// Usage: qr = qr_factor(A)
|
||||
// Description:
|
||||
@ -563,41 +600,6 @@ function _qr_factor(A,Q, column, m, n) =
|
||||
_qr_factor(Qf*A, Q*Qf, column+1, m, n);
|
||||
|
||||
|
||||
// Function: submatrix()
|
||||
// Usage: submatrix(M, ind1, ind2)
|
||||
// Description:
|
||||
// Returns a submatrix with the specified index ranges or index sets.
|
||||
function submatrix(M,ind1,ind2) =
|
||||
[for(i=ind1)
|
||||
[for(j=ind2)
|
||||
M[i][j]
|
||||
]
|
||||
];
|
||||
|
||||
|
||||
// Function: linear_solve()
|
||||
// Usage: linear_solve(A,b)
|
||||
// Description:
|
||||
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
|
||||
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
|
||||
// If A is rank deficient or singular then linear_solve returns `undef`.
|
||||
function linear_solve(A,b) =
|
||||
let(
|
||||
dim = array_dim(A),
|
||||
m=dim[0], n=dim[1]
|
||||
)
|
||||
assert(len(b)==m,str("Incompatible matrix and vector",dim,len(b)))
|
||||
let (
|
||||
qr = m<n ? qr_factor(transpose(A)) : qr_factor(A),
|
||||
maxdim = max(n,m),
|
||||
mindim = min(n,m),
|
||||
Q = submatrix(qr[0],[0:maxdim-1], [0:mindim-1]),
|
||||
R = submatrix(qr[1],[0:mindim-1], [0:mindim-1]),
|
||||
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
|
||||
)
|
||||
zeros != [] ? undef :
|
||||
m<n ? Q*back_substitute(R,b,transpose=true) :
|
||||
back_substitute(R, transpose(Q)*b);
|
||||
|
||||
// Function: back_substitute()
|
||||
// Usage: back_substitute(R, b, [transpose])
|
||||
|
Loading…
x
Reference in New Issue
Block a user