Minor is_matrix definition and format

This commit is contained in:
RonaldoCMP 2020-08-02 00:47:22 +01:00
parent e858d5627e
commit 2da259c2cc

View File

@ -240,7 +240,7 @@ function atanh(x) =
// quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
// quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
function quant(x,y) =
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero integer.")
is_list(x)
? [for (v=x) quant(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
@ -272,7 +272,7 @@ function quant(x,y) =
// quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
// quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
function quantdn(x,y) =
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero integer.")
is_list(x)
? [for (v=x) quantdn(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
@ -304,7 +304,7 @@ function quantdn(x,y) =
// quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
// quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
function quantup(x,y) =
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero integer.")
is_list(x)
? [for (v=x) quantup(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
@ -778,22 +778,19 @@ function back_substitute(R, b, x=[],transpose = false) =
let(n=len(R))
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
!is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i),transpose=transpose)]) :
transpose?
reverse(back_substitute(
[for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
reverse(b), x, false
)) :
len(x) == n ? x :
let(
ind = n - len(x) - 1
)
R[ind][ind] == 0 ? [] :
let(
newvalue =
len(x)==0? b[ind]/R[ind][ind] :
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
) back_substitute(R, b, concat([newvalue],x));
transpose
    ? let( R = [for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]] )
reverse( back_substitute( R, reverse(b), x ) ) 
: len(x) == n ? x :
let(
ind = n - len(x) - 1
)
R[ind][ind] == 0 ? [] :
let(
newvalue =
len(x)==0? b[ind]/R[ind][ind] :
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
) back_substitute(R, b, concat([newvalue],x));
// Function: det2()
// Description:
@ -865,13 +862,16 @@ function determinant(M) =
// n = optional width of matrix
// square = set to true to require a square matrix. Default: false
function is_matrix(A,m,n,square=false) =
is_list(A[0])
    && ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers
is_list(A)
&& len(A)>0
&& is_vector(A[0])
    && is_vector(A*A[0]) // a matrix of finite numbers
    && (is_undef(n) || len(A[0])==n )
    && (is_undef(m) || len(A)==m )
    && ( !square || len(A)==len(A[0]));
// Section: Comparisons and Logic
// Function: approx()
@ -1037,7 +1037,7 @@ function count_true(l, nmax) =
// data[len(data)-1]. This function uses a symetric derivative approximation
// for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm
// uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h.
// .
//
// If `h` is a vector then it is assumed to be nonuniform, with h[i] giving the sampling distance
// between data[i+1] and data[i], and the data values will be linearly resampled at each corner
// to produce a uniform spacing for the derivative estimate. At the endpoints a single point method