Change Extra Anchors to Named Anchors

This commit is contained in:
Adrian Mariano
2024-05-20 19:42:07 -04:00
parent 33de6a13ea
commit 35f1dc4cb0
13 changed files with 48 additions and 47 deletions

View File

@@ -1374,7 +1374,7 @@ function quadratic_roots(a,b,c,real=false) =
// Function: polynomial()
// Synopsis: Calculates a polynomial equation at a given value.
// Synopsis: Evaluate a polynomial at a real or complex value.
// Topics: Math, Complex Numbers
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add(), poly_roots()
// Usage:
@@ -1394,7 +1394,7 @@ function polynomial(p,z,k,total) =
// Function: poly_mult()
// Synopsis: Returns the polynomial result of multiplying two polynomial equations.
// Synopsis: Compute product of two polynomials, returning a polynomial.
// Topics: Math
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add(), poly_roots()
// Usage:
@@ -1416,7 +1416,7 @@ function poly_mult(p,q) =
// Function: poly_div()
// Synopsis: Returns the polynomial quotient and remainder results of dividing two polynomial equations.
// Synopsis: Returns the polynomial quotient and remainder results of dividing two polynomials.
// Topics: Math
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add(), poly_roots()
// Usage:
@@ -1457,7 +1457,7 @@ function _poly_trim(p,eps=0) =
// Function: poly_add()
// Synopsis: Returns the polynomial sum of adding two polynomial equations.
// Synopsis: Returns the polynomial sum of adding two polynomials.
// Topics: Math
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add(), poly_roots()
// Usage:
@@ -1475,7 +1475,7 @@ function poly_add(p,q) =
// Function: poly_roots()
// Synopsis: Returns all complex number roots of the given real polynomial.
// Synopsis: Returns all complex valued roots of the given real polynomial.
// Topics: Math, Complex Numbers
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add(), poly_roots()
// Usage:
@@ -1563,7 +1563,8 @@ function _poly_roots(p, pderiv, s, z, tol, i=0) =
// parts are zero. You can specify eps, in which case the test is
// z.y/(1+norm(z)) < eps. Because
// of poor convergence and higher error for repeated roots, such roots may
// be missed by the algorithm because their imaginary part is large.
// be missed by the algorithm because error can make their imaginary parts
// large enough to appear non-zero.
// Arguments:
// p = polynomial to solve as coefficient list, highest power term first
// eps = used to determine whether imaginary parts of roots are zero