mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
phillips_drive bugfix:
wing angle corrected from ~70 deg to 92 deg adjusted cutouts so length "b" in the spec is correct (this causes the cutout to not align with the end so it doesn't look as pretty, but the spec wins, right?) Changed construction method to avoid z-fighting which gave rise to failed render doc fixes and shifting in paths.scad decompose_path -> polygon_parts
This commit is contained in:
parent
ef9f54c369
commit
3c6e9804a8
@ -1476,7 +1476,7 @@ function polygon_normal(poly) =
|
||||
// color("red")back(28/(2/3))text("Even-Odd", size=5/(2/3), halign="center");
|
||||
// }
|
||||
// right(40){
|
||||
// dp = decompose_path(path,closed=true);
|
||||
// dp = polygon_parts(path,closed=true);
|
||||
// region(dp);
|
||||
// color("red"){stroke(path,width=1,closed=true);
|
||||
// back(28/(2/3))text("Nonzero", size=5/(2/3), halign="center");
|
||||
|
@ -1036,6 +1036,7 @@ module HSV(h,s=1,v=1,a=1) color(HSV(h,s,v),a) children();
|
||||
// Arguments:
|
||||
// list = The list of items to iterate through.
|
||||
// stride = Consecutive colors stride around the color wheel divided into this many parts.
|
||||
// maxhues = max number of hues to use (to prevent lots of indistinguishable hues)
|
||||
// Side Effects:
|
||||
// Sets the color to progressive values along the ROYGBIV spectrum for each item.
|
||||
// Sets `$idx` to the index of the current item in `list` that we want to show.
|
||||
@ -1045,11 +1046,14 @@ module HSV(h,s=1,v=1,a=1) color(HSV(h,s,v),a) children();
|
||||
// Example(2D):
|
||||
// rgn = [circle(d=45,$fn=3), circle(d=75,$fn=4), circle(d=50)];
|
||||
// rainbow(rgn) stroke($item, closed=true);
|
||||
module rainbow(list, stride=1)
|
||||
module rainbow(list, stride=1, maxhues)
|
||||
{
|
||||
ll = len(list);
|
||||
huestep = 360 / ll;
|
||||
hues = shuffle([for (i=[0:1:ll-1]) posmod(i*huestep+i*360/stride,360)]);
|
||||
maxhues = first_defined([maxhues,ll]);
|
||||
huestep = 360 / maxhues;
|
||||
hues = [for (i=[0:1:ll-1]) posmod(i*huestep+i*360/stride,360)];
|
||||
echo(hues=hues);
|
||||
s = [for (i=[0:1:ll-1]) [.5,.7,1][posmod(i,3)]];
|
||||
for($idx=idx(list)) {
|
||||
$item = list[$idx];
|
||||
HSV(h=hues[$idx]) children();
|
||||
|
854
paths.scad
854
paths.scad
@ -203,6 +203,64 @@ function path_closest_point(path, pt) =
|
||||
) [min_seg, pts[min_seg]];
|
||||
|
||||
|
||||
|
||||
// Function: path_self_intersections()
|
||||
// Usage:
|
||||
// isects = path_self_intersections(path, [eps]);
|
||||
// Description:
|
||||
// Locates all self intersections of the given path. Returns a list of intersections, where
|
||||
// each intersection is a list like [POINT, SEGNUM1, PROPORTION1, SEGNUM2, PROPORTION2] where
|
||||
// POINT is the coordinates of the intersection point, SEGNUMs are the integer indices of the
|
||||
// intersecting segments along the path, and the PROPORTIONS are the 0.0 to 1.0 proportions
|
||||
// of how far along those segments they intersect at. A proportion of 0.0 indicates the start
|
||||
// of the segment, and a proportion of 1.0 indicates the end of the segment.
|
||||
// Arguments:
|
||||
// path = The path to find self intersections of.
|
||||
// closed = If true, treat path like a closed polygon. Default: true
|
||||
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
||||
// Example(2D):
|
||||
// path = [
|
||||
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
|
||||
// ];
|
||||
// isects = path_self_intersections(path, closed=true);
|
||||
// // isects == [[[-33.3333, 0], 0, 0.666667, 4, 0.333333], [[33.3333, 0], 1, 0.333333, 3, 0.666667]]
|
||||
// stroke(path, closed=true, width=1);
|
||||
// for (isect=isects) translate(isect[0]) color("blue") sphere(d=10);
|
||||
function path_self_intersections(path, closed=true, eps=EPSILON) =
|
||||
let(
|
||||
path = cleanup_path(path, eps=eps),
|
||||
plen = len(path)
|
||||
) [
|
||||
for (i = [0:1:plen-(closed?2:3)], j=[i+2:1:plen-(closed?1:2)]) let(
|
||||
a1 = path[i],
|
||||
a2 = path[(i+1)%plen],
|
||||
b1 = path[j],
|
||||
b2 = path[(j+1)%plen],
|
||||
isect =
|
||||
(max(a1.x, a2.x) < min(b1.x, b2.x))? undef :
|
||||
(min(a1.x, a2.x) > max(b1.x, b2.x))? undef :
|
||||
(max(a1.y, a2.y) < min(b1.y, b2.y))? undef :
|
||||
(min(a1.y, a2.y) > max(b1.y, b2.y))? undef :
|
||||
let(
|
||||
c = a1-a2,
|
||||
d = b1-b2,
|
||||
denom = (c.x*d.y)-(c.y*d.x)
|
||||
) abs(denom)<eps? undef :
|
||||
let(
|
||||
e = a1-b1,
|
||||
t = ((e.x*d.y)-(e.y*d.x)) / denom,
|
||||
u = ((e.x*c.y)-(e.y*c.x)) / denom
|
||||
) [a1+t*(a2-a1), t, u]
|
||||
) if (
|
||||
(!closed || i!=0 || j!=plen-1) &&
|
||||
isect != undef &&
|
||||
isect[1]>=-eps && isect[1]<=1+eps &&
|
||||
isect[2]>=-eps && isect[2]<=1+eps
|
||||
) [isect[0], i, isect[1], j, isect[2]]
|
||||
];
|
||||
|
||||
|
||||
|
||||
// Section: Geometric Properties of Paths
|
||||
|
||||
// Function: path_tangents()
|
||||
@ -310,6 +368,8 @@ function path_torsion(path, closed=false) =
|
||||
];
|
||||
|
||||
|
||||
// Section: Modifying paths
|
||||
|
||||
// Function: path_chamfer_and_rounding()
|
||||
// Usage:
|
||||
// path2 = path_chamfer_and_rounding(path, [closed], [chamfer], [rounding]);
|
||||
@ -498,278 +558,194 @@ function path_add_jitter(path, dist=1/512, closed=true) =
|
||||
|
||||
|
||||
|
||||
// Function: path_self_intersections()
|
||||
// Usage:
|
||||
// isects = path_self_intersections(path, [eps]);
|
||||
// Description:
|
||||
// Locates all self intersections of the given path. Returns a list of intersections, where
|
||||
// each intersection is a list like [POINT, SEGNUM1, PROPORTION1, SEGNUM2, PROPORTION2] where
|
||||
// POINT is the coordinates of the intersection point, SEGNUMs are the integer indices of the
|
||||
// intersecting segments along the path, and the PROPORTIONS are the 0.0 to 1.0 proportions
|
||||
// of how far along those segments they intersect at. A proportion of 0.0 indicates the start
|
||||
// of the segment, and a proportion of 1.0 indicates the end of the segment.
|
||||
// Arguments:
|
||||
// path = The path to find self intersections of.
|
||||
// closed = If true, treat path like a closed polygon. Default: true
|
||||
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
||||
// Example(2D):
|
||||
// path = [
|
||||
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
|
||||
// ];
|
||||
// isects = path_self_intersections(path, closed=true);
|
||||
// // isects == [[[-33.3333, 0], 0, 0.666667, 4, 0.333333], [[33.3333, 0], 1, 0.333333, 3, 0.666667]]
|
||||
// stroke(path, closed=true, width=1);
|
||||
// for (isect=isects) translate(isect[0]) color("blue") sphere(d=10);
|
||||
function path_self_intersections(path, closed=true, eps=EPSILON) =
|
||||
let(
|
||||
path = cleanup_path(path, eps=eps),
|
||||
plen = len(path)
|
||||
) [
|
||||
for (i = [0:1:plen-(closed?2:3)], j=[i+2:1:plen-(closed?1:2)]) let(
|
||||
a1 = path[i],
|
||||
a2 = path[(i+1)%plen],
|
||||
b1 = path[j],
|
||||
b2 = path[(j+1)%plen],
|
||||
isect =
|
||||
(max(a1.x, a2.x) < min(b1.x, b2.x))? undef :
|
||||
(min(a1.x, a2.x) > max(b1.x, b2.x))? undef :
|
||||
(max(a1.y, a2.y) < min(b1.y, b2.y))? undef :
|
||||
(min(a1.y, a2.y) > max(b1.y, b2.y))? undef :
|
||||
let(
|
||||
c = a1-a2,
|
||||
d = b1-b2,
|
||||
denom = (c.x*d.y)-(c.y*d.x)
|
||||
) abs(denom)<eps? undef :
|
||||
let(
|
||||
e = a1-b1,
|
||||
t = ((e.x*d.y)-(e.y*d.x)) / denom,
|
||||
u = ((e.x*c.y)-(e.y*c.x)) / denom
|
||||
) [a1+t*(a2-a1), t, u]
|
||||
) if (
|
||||
(!closed || i!=0 || j!=plen-1) &&
|
||||
isect != undef &&
|
||||
isect[1]>=-eps && isect[1]<=1+eps &&
|
||||
isect[2]>=-eps && isect[2]<=1+eps
|
||||
) [isect[0], i, isect[1], j, isect[2]]
|
||||
];
|
||||
|
||||
// Section: Resampling: changing the number of points in a path
|
||||
|
||||
|
||||
// Function: split_path_at_self_crossings()
|
||||
// Usage:
|
||||
// paths = split_path_at_self_crossings(path, [closed], [eps]);
|
||||
// Description:
|
||||
// Splits a path into sub-paths wherever the original path crosses itself.
|
||||
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
|
||||
// Arguments:
|
||||
// path = The path to split up.
|
||||
// closed = If true, treat path as a closed polygon. Default: true
|
||||
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
||||
// Example(2D):
|
||||
// path = [ [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100] ];
|
||||
// paths = split_path_at_self_crossings(path);
|
||||
// rainbow(paths) stroke($item, closed=false, width=2);
|
||||
function split_path_at_self_crossings(path, closed=true, eps=EPSILON) =
|
||||
// Input `data` is a list that sums to an integer.
|
||||
// Returns rounded version of input data so that every
|
||||
// entry is rounded to an integer and the sum is the same as
|
||||
// that of the input. Works by rounding an entry in the list
|
||||
// and passing the rounding error forward to the next entry.
|
||||
// This will generally distribute the error in a uniform manner.
|
||||
function _sum_preserving_round(data, index=0) =
|
||||
index == len(data)-1 ? list_set(data, len(data)-1, round(data[len(data)-1])) :
|
||||
let(
|
||||
path = cleanup_path(path, eps=eps),
|
||||
isects = deduplicate(
|
||||
eps=eps,
|
||||
concat(
|
||||
[[0, 0]],
|
||||
sort([
|
||||
for (
|
||||
a = path_self_intersections(path, closed=closed, eps=eps),
|
||||
ss = [ [a[1],a[2]], [a[3],a[4]] ]
|
||||
) if (ss[0] != undef) ss
|
||||
]),
|
||||
[[len(path)-(closed?1:2), 1]]
|
||||
)
|
||||
)
|
||||
) [
|
||||
for (p = pair(isects))
|
||||
newval = round(data[index]),
|
||||
error = newval - data[index]
|
||||
) _sum_preserving_round(
|
||||
list_set(data, [index,index+1], [newval, data[index+1]-error]),
|
||||
index+1
|
||||
);
|
||||
|
||||
|
||||
// Section: Changing sampling of paths
|
||||
|
||||
// Function: subdivide_path()
|
||||
// Usage:
|
||||
// newpath = subdivide_path(path, [N|refine], method);
|
||||
// Description:
|
||||
// Takes a path as input (closed or open) and subdivides the path to produce a more
|
||||
// finely sampled path. The new points can be distributed proportional to length
|
||||
// (`method="length"`) or they can be divided up evenly among all the path segments
|
||||
// (`method="segment"`). If the extra points don't fit evenly on the path then the
|
||||
// algorithm attempts to distribute them uniformly. The `exact` option requires that
|
||||
// the final length is exactly as requested. If you set it to `false` then the
|
||||
// algorithm will favor uniformity and the output path may have a different number of
|
||||
// points due to rounding error.
|
||||
// .
|
||||
// With the `"segment"` method you can also specify a vector of lengths. This vector,
|
||||
// `N` specfies the desired point count on each segment: with vector input, `subdivide_path`
|
||||
// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid
|
||||
// double counting the endpoints, which are shared by pairs of segments, so that for
|
||||
// a closed polygon the total number of points will be sum(N). Note that with an open
|
||||
// path there is an extra point at the end, so the number of points will be sum(N)+1.
|
||||
// Arguments:
|
||||
// path = path to subdivide
|
||||
// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i.
|
||||
// refine = number of points to add each segment.
|
||||
// closed = set to false if the path is open. Default: True
|
||||
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True
|
||||
// method = One of `"length"` or `"segment"`. If `"length"`, adds vertices evenly along the total path length. If `"segment"`, adds points evenly among the segments. Default: `"length"`
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([2,2],center=true), 12);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([8,2],center=true), 12);
|
||||
// move_copies(mypath)circle(r=.2,$fn=32);
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([8,2],center=true), 12, method="segment");
|
||||
// move_copies(mypath)circle(r=.2,$fn=32);
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([2,2],center=true), 17, closed=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): Specifying different numbers of points on each segment
|
||||
// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment");
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): Requested point total is 14 but 15 points output due to extra end point
|
||||
// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible.
|
||||
// mypath = subdivide_path(pentagon(side=2), 17);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): With `exact=false` a uniform distribution, but only 15 points
|
||||
// mypath = subdivide_path(pentagon(side=2), 17, exact=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18
|
||||
// mypath = subdivide_path(pentagon(side=2), 18, exact=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(FlatSpin,VPD=15,VPT=[0,0,1.5]): Three-dimensional paths also work
|
||||
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
|
||||
// move_copies(mypath)sphere(r=.1,$fn=32);
|
||||
function subdivide_path(path, N, refine, closed=true, exact=true, method="length") =
|
||||
assert(is_path(path))
|
||||
assert(method=="length" || method=="segment")
|
||||
assert(num_defined([N,refine]),"Must give exactly one of N and refine")
|
||||
let(
|
||||
N = !is_undef(N)? N :
|
||||
!is_undef(refine)? len(path) * refine :
|
||||
undef
|
||||
)
|
||||
assert((is_num(N) && N>0) || is_vector(N),"Parameter N to subdivide_path must be postive number or vector")
|
||||
let(
|
||||
count = len(path) - (closed?0:1),
|
||||
add_guess = method=="segment"? (
|
||||
is_list(N)? (
|
||||
assert(len(N)==count,"Vector parameter N to subdivide_path has the wrong length")
|
||||
add_scalar(N,-1)
|
||||
) : repeat((N-len(path)) / count, count)
|
||||
) : // method=="length"
|
||||
assert(is_num(N),"Parameter N to subdivide path must be a number when method=\"length\"")
|
||||
let(
|
||||
s1 = p[0][0],
|
||||
u1 = p[0][1],
|
||||
s2 = p[1][0],
|
||||
u2 = p[1][1],
|
||||
section = _path_select(path, s1, u1, s2, u2, closed=closed),
|
||||
outpath = deduplicate(eps=eps, section)
|
||||
path_lens = concat(
|
||||
[ for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i]) ],
|
||||
closed? [norm(path[len(path)-1]-path[0])] : []
|
||||
),
|
||||
add_density = (N - len(path)) / sum(path_lens)
|
||||
)
|
||||
outpath
|
||||
];
|
||||
|
||||
|
||||
function _tag_self_crossing_subpaths(path, nonzero, closed=true, eps=EPSILON) =
|
||||
let(
|
||||
subpaths = split_path_at_self_crossings(
|
||||
path, closed=closed, eps=eps
|
||||
)
|
||||
) [
|
||||
for (subpath = subpaths) let(
|
||||
seg = select(subpath,0,1),
|
||||
mp = mean(seg),
|
||||
n = line_normal(seg) / 2048,
|
||||
p1 = mp + n,
|
||||
p2 = mp - n,
|
||||
p1in = point_in_polygon(p1, path, nonzero=nonzero) >= 0,
|
||||
p2in = point_in_polygon(p2, path, nonzero=nonzero) >= 0,
|
||||
tag = (p1in && p2in)? "I" : "O"
|
||||
) [tag, subpath]
|
||||
];
|
||||
|
||||
|
||||
// Function: decompose_path()
|
||||
// Usage:
|
||||
// splitpaths = decompose_path(path, [nonzero], [closed], [eps]);
|
||||
// Description:
|
||||
// Given a possibly self-crossing path, decompose it into non-crossing paths that are on the perimeter
|
||||
// of the areas bounded by that path.
|
||||
// Arguments:
|
||||
// path = The path to split up.
|
||||
// closed = If true, treat path like a closed polygon. Default: true
|
||||
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
||||
// Example(2D):
|
||||
// path = [
|
||||
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
|
||||
// ];
|
||||
// splitpaths = decompose_path(path, closed=true);
|
||||
// rainbow(splitpaths) stroke($item, closed=true, width=3);
|
||||
function decompose_path(path, nonzero, closed=true, eps=EPSILON) =
|
||||
let(
|
||||
path = cleanup_path(path, eps=eps),
|
||||
tagged = _tag_self_crossing_subpaths(path, nonzero=nonzero, closed=closed, eps=eps),
|
||||
kept = [for (sub = tagged) if(sub[0] == "O") sub[1]],
|
||||
outregion = _assemble_path_fragments(kept, eps=eps)
|
||||
) outregion;
|
||||
|
||||
|
||||
function _extreme_angle_fragment(seg, fragments, rightmost=true, eps=EPSILON) =
|
||||
!fragments? [undef, []] :
|
||||
let(
|
||||
delta = seg[1] - seg[0],
|
||||
segang = atan2(delta.y,delta.x),
|
||||
frags = [
|
||||
for (i = idx(fragments)) let(
|
||||
fragment = fragments[i],
|
||||
fwdmatch = approx(seg[1], fragment[0], eps=eps),
|
||||
bakmatch = approx(seg[1], last(fragment), eps=eps)
|
||||
) [
|
||||
fwdmatch,
|
||||
bakmatch,
|
||||
bakmatch? reverse(fragment) : fragment
|
||||
path_lens * add_density,
|
||||
add = exact? _sum_preserving_round(add_guess) :
|
||||
[for (val=add_guess) round(val)]
|
||||
) concat(
|
||||
[
|
||||
for (i=[0:1:count]) each [
|
||||
for(j=[0:1:add[i]])
|
||||
lerp(path[i],select(path,i+1), j/(add[i]+1))
|
||||
]
|
||||
],
|
||||
angs = [
|
||||
for (frag = frags)
|
||||
(frag[0] || frag[1])? let(
|
||||
delta2 = frag[2][1] - frag[2][0],
|
||||
segang2 = atan2(delta2.y, delta2.x)
|
||||
) modang(segang2 - segang) : (
|
||||
rightmost? 999 : -999
|
||||
)
|
||||
],
|
||||
fi = rightmost? min_index(angs) : max_index(angs)
|
||||
) abs(angs[fi]) > 360? [undef, fragments] : let(
|
||||
remainder = [for (i=idx(fragments)) if (i!=fi) fragments[i]],
|
||||
frag = frags[fi],
|
||||
foundfrag = frag[2]
|
||||
) [foundfrag, remainder];
|
||||
|
||||
|
||||
/// Internal Function: _assemble_a_path_from_fragments()
|
||||
/// Usage:
|
||||
/// _assemble_a_path_from_fragments(subpaths);
|
||||
/// Description:
|
||||
/// Given a list of paths, assembles them together into one complete closed polygon path, and
|
||||
/// remainder fragments. Returns [PATH, FRAGMENTS] where FRAGMENTS is the list of remaining
|
||||
/// unused path fragments.
|
||||
/// Arguments:
|
||||
/// fragments = List of paths to be assembled into complete polygons.
|
||||
/// rightmost = If true, assemble paths using rightmost turns. Leftmost if false.
|
||||
/// startfrag = The fragment to start with. Default: 0
|
||||
/// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
||||
function _assemble_a_path_from_fragments(fragments, rightmost=true, startfrag=0, eps=EPSILON) =
|
||||
len(fragments)==0? _finished :
|
||||
let(
|
||||
path = fragments[startfrag],
|
||||
newfrags = [for (i=idx(fragments)) if (i!=startfrag) fragments[i]]
|
||||
) is_closed_path(path, eps=eps)? (
|
||||
// starting fragment is already closed
|
||||
[path, newfrags]
|
||||
) : let(
|
||||
// Find rightmost/leftmost continuation fragment
|
||||
seg = select(path,-2,-1),
|
||||
extrema = _extreme_angle_fragment(seg=seg, fragments=newfrags, rightmost=rightmost, eps=eps),
|
||||
foundfrag = extrema[0],
|
||||
remainder = extrema[1]
|
||||
) is_undef(foundfrag)? (
|
||||
// No remaining fragments connect! INCOMPLETE PATH!
|
||||
// Treat it as complete.
|
||||
[path, remainder]
|
||||
) : is_closed_path(foundfrag, eps=eps)? (
|
||||
// Found fragment is already closed
|
||||
[foundfrag, concat([path], remainder)]
|
||||
) : let(
|
||||
fragend = last(foundfrag),
|
||||
hits = [for (i = idx(path,e=-2)) if(approx(path[i],fragend,eps=eps)) i]
|
||||
) hits? (
|
||||
let(
|
||||
// Found fragment intersects with initial path
|
||||
hitidx = last(hits),
|
||||
newpath = list_head(path,hitidx),
|
||||
newfrags = concat(len(newpath)>1? [newpath] : [], remainder),
|
||||
outpath = concat(slice(path,hitidx,-2), foundfrag)
|
||||
)
|
||||
[outpath, newfrags]
|
||||
) : let(
|
||||
// Path still incomplete. Continue building it.
|
||||
newpath = concat(path, list_tail(foundfrag)),
|
||||
newfrags = concat([newpath], remainder)
|
||||
)
|
||||
_assemble_a_path_from_fragments(
|
||||
fragments=newfrags,
|
||||
rightmost=rightmost,
|
||||
eps=eps
|
||||
closed? [] : [last(path)]
|
||||
);
|
||||
|
||||
|
||||
/// Internal Function: _assemble_path_fragments()
|
||||
/// Usage:
|
||||
/// _assemble_path_fragments(subpaths);
|
||||
/// Description:
|
||||
/// Given a list of paths, assembles them together into complete closed polygon paths if it can.
|
||||
/// Arguments:
|
||||
/// fragments = List of paths to be assembled into complete polygons.
|
||||
/// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
||||
function _assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) =
|
||||
len(fragments)==0? _finished :
|
||||
let(
|
||||
minxidx = min_index([
|
||||
for (frag=fragments) min(subindex(frag,0))
|
||||
]),
|
||||
result_l = _assemble_a_path_from_fragments(
|
||||
fragments=fragments,
|
||||
startfrag=minxidx,
|
||||
rightmost=false,
|
||||
eps=eps
|
||||
),
|
||||
result_r = _assemble_a_path_from_fragments(
|
||||
fragments=fragments,
|
||||
startfrag=minxidx,
|
||||
rightmost=true,
|
||||
eps=eps
|
||||
),
|
||||
l_area = abs(polygon_area(result_l[0])),
|
||||
r_area = abs(polygon_area(result_r[0])),
|
||||
result = l_area < r_area? result_l : result_r,
|
||||
newpath = cleanup_path(result[0]),
|
||||
remainder = result[1],
|
||||
finished = concat(_finished, [newpath])
|
||||
) _assemble_path_fragments(
|
||||
fragments=remainder,
|
||||
eps=eps,
|
||||
_finished=finished
|
||||
);
|
||||
|
||||
// Function: subdivide_long_segments()
|
||||
// Topics: Paths, Path Subdivision
|
||||
// See Also: subdivide_path(), subdivide_and_slice(), path_add_jitter(), jittered_poly()
|
||||
// Usage:
|
||||
// spath = subdivide_long_segments(path, maxlen, [closed=]);
|
||||
// Description:
|
||||
// Evenly subdivides long `path` segments until they are all shorter than `maxlen`.
|
||||
// Arguments:
|
||||
// path = The path to subdivide.
|
||||
// maxlen = The maximum allowed path segment length.
|
||||
// ---
|
||||
// closed = If true, treat path like a closed polygon. Default: true
|
||||
// Example:
|
||||
// path = pentagon(d=100);
|
||||
// spath = subdivide_long_segments(path, 10, closed=true);
|
||||
// stroke(path);
|
||||
// color("lightgreen") move_copies(path) circle(d=5,$fn=12);
|
||||
// color("blue") move_copies(spath) circle(d=3,$fn=12);
|
||||
function subdivide_long_segments(path, maxlen, closed=false) =
|
||||
assert(is_path(path))
|
||||
assert(is_finite(maxlen))
|
||||
assert(is_bool(closed))
|
||||
[
|
||||
for (p=pair(path,closed)) let(
|
||||
steps = ceil(norm(p[1]-p[0])/maxlen)
|
||||
) each lerpn(p[0], p[1], steps, false),
|
||||
if (!closed) last(path)
|
||||
];
|
||||
|
||||
|
||||
|
||||
// Function: resample_path()
|
||||
// Usage:
|
||||
// newpath = resample_path(path, N|spacing, [closed]);
|
||||
// Description:
|
||||
// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N
|
||||
// points spaced uniformly (by linear interpolation along the input path segments). The only points of the
|
||||
// input path that are guaranteed to appear in the output path are the starting and ending points.
|
||||
// If you specify `spacing` then the length you give will be rounded to the nearest spacing that gives
|
||||
// a uniform sampling of the path and the resulting uniformly sampled path is returned.
|
||||
// Note that because this function operates on a discrete input path the quality of the output depends on
|
||||
// the sampling of the input. If you want very accurate output, use a lot of points for the input.
|
||||
// Arguments:
|
||||
// path = path to resample
|
||||
// N = Number of points in output
|
||||
// spacing = Approximate spacing desired
|
||||
// closed = set to true if path is closed. Default: false
|
||||
function resample_path(path, N, spacing, closed=false) =
|
||||
assert(is_path(path))
|
||||
assert(num_defined([N,spacing])==1,"Must define exactly one of N and spacing")
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
length = path_length(path,closed),
|
||||
// In the open path case decrease N by 1 so that we don't try to get
|
||||
// path_cut to return the endpoint (which might fail due to rounding)
|
||||
// Add last point later
|
||||
N = is_def(N) ? N-(closed?0:1) : round(length/spacing),
|
||||
distlist = lerpn(0,length,N,false),
|
||||
cuts = _path_cut_points(path, distlist, closed=closed)
|
||||
)
|
||||
[ each subindex(cuts,0),
|
||||
if (!closed) last(path) // Then add last point here
|
||||
];
|
||||
|
||||
|
||||
|
||||
|
||||
// Section: Breaking paths up into subpaths
|
||||
|
||||
|
||||
/// Internal Function: _path_cut_points()
|
||||
@ -964,154 +940,238 @@ function _cut_to_seg_u_form(pathcut, path, closed) =
|
||||
|
||||
|
||||
|
||||
// Input `data` is a list that sums to an integer.
|
||||
// Returns rounded version of input data so that every
|
||||
// entry is rounded to an integer and the sum is the same as
|
||||
// that of the input. Works by rounding an entry in the list
|
||||
// and passing the rounding error forward to the next entry.
|
||||
// This will generally distribute the error in a uniform manner.
|
||||
function _sum_preserving_round(data, index=0) =
|
||||
index == len(data)-1 ? list_set(data, len(data)-1, round(data[len(data)-1])) :
|
||||
let(
|
||||
newval = round(data[index]),
|
||||
error = newval - data[index]
|
||||
) _sum_preserving_round(
|
||||
list_set(data, [index,index+1], [newval, data[index+1]-error]),
|
||||
index+1
|
||||
);
|
||||
|
||||
|
||||
// Section: Changing sampling of paths
|
||||
|
||||
// Function: subdivide_path()
|
||||
// Function: split_path_at_self_crossings()
|
||||
// Usage:
|
||||
// newpath = subdivide_path(path, [N|refine], method);
|
||||
// paths = split_path_at_self_crossings(path, [closed], [eps]);
|
||||
// Description:
|
||||
// Takes a path as input (closed or open) and subdivides the path to produce a more
|
||||
// finely sampled path. The new points can be distributed proportional to length
|
||||
// (`method="length"`) or they can be divided up evenly among all the path segments
|
||||
// (`method="segment"`). If the extra points don't fit evenly on the path then the
|
||||
// algorithm attempts to distribute them uniformly. The `exact` option requires that
|
||||
// the final length is exactly as requested. If you set it to `false` then the
|
||||
// algorithm will favor uniformity and the output path may have a different number of
|
||||
// points due to rounding error.
|
||||
// .
|
||||
// With the `"segment"` method you can also specify a vector of lengths. This vector,
|
||||
// `N` specfies the desired point count on each segment: with vector input, `subdivide_path`
|
||||
// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid
|
||||
// double counting the endpoints, which are shared by pairs of segments, so that for
|
||||
// a closed polygon the total number of points will be sum(N). Note that with an open
|
||||
// path there is an extra point at the end, so the number of points will be sum(N)+1.
|
||||
// Splits a path into sub-paths wherever the original path crosses itself.
|
||||
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
|
||||
// Arguments:
|
||||
// path = path to subdivide
|
||||
// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i.
|
||||
// refine = number of points to add each segment.
|
||||
// closed = set to false if the path is open. Default: True
|
||||
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True
|
||||
// method = One of `"length"` or `"segment"`. If `"length"`, adds vertices evenly along the total path length. If `"segment"`, adds points evenly among the segments. Default: `"length"`
|
||||
// path = The path to split up.
|
||||
// closed = If true, treat path as a closed polygon. Default: true
|
||||
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([2,2],center=true), 12);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([8,2],center=true), 12);
|
||||
// move_copies(mypath)circle(r=.2,$fn=32);
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([8,2],center=true), 12, method="segment");
|
||||
// move_copies(mypath)circle(r=.2,$fn=32);
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([2,2],center=true), 17, closed=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): Specifying different numbers of points on each segment
|
||||
// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment");
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): Requested point total is 14 but 15 points output due to extra end point
|
||||
// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible.
|
||||
// mypath = subdivide_path(pentagon(side=2), 17);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): With `exact=false` a uniform distribution, but only 15 points
|
||||
// mypath = subdivide_path(pentagon(side=2), 17, exact=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18
|
||||
// mypath = subdivide_path(pentagon(side=2), 18, exact=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(FlatSpin,VPD=15,VPT=[0,0,1.5]): Three-dimensional paths also work
|
||||
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
|
||||
// move_copies(mypath)sphere(r=.1,$fn=32);
|
||||
function subdivide_path(path, N, refine, closed=true, exact=true, method="length") =
|
||||
assert(is_path(path))
|
||||
assert(method=="length" || method=="segment")
|
||||
assert(num_defined([N,refine]),"Must give exactly one of N and refine")
|
||||
// path = [ [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100] ];
|
||||
// paths = split_path_at_self_crossings(path);
|
||||
// rainbow(paths) stroke($item, closed=false, width=2);
|
||||
function split_path_at_self_crossings(path, closed=true, eps=EPSILON) =
|
||||
let(
|
||||
N = !is_undef(N)? N :
|
||||
!is_undef(refine)? len(path) * refine :
|
||||
undef
|
||||
)
|
||||
assert((is_num(N) && N>0) || is_vector(N),"Parameter N to subdivide_path must be postive number or vector")
|
||||
let(
|
||||
count = len(path) - (closed?0:1),
|
||||
add_guess = method=="segment"? (
|
||||
is_list(N)? (
|
||||
assert(len(N)==count,"Vector parameter N to subdivide_path has the wrong length")
|
||||
add_scalar(N,-1)
|
||||
) : repeat((N-len(path)) / count, count)
|
||||
) : // method=="length"
|
||||
assert(is_num(N),"Parameter N to subdivide path must be a number when method=\"length\"")
|
||||
let(
|
||||
path_lens = concat(
|
||||
[ for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i]) ],
|
||||
closed? [norm(path[len(path)-1]-path[0])] : []
|
||||
),
|
||||
add_density = (N - len(path)) / sum(path_lens)
|
||||
path = cleanup_path(path, eps=eps),
|
||||
isects = deduplicate(
|
||||
eps=eps,
|
||||
concat(
|
||||
[[0, 0]],
|
||||
sort([
|
||||
for (
|
||||
a = path_self_intersections(path, closed=closed, eps=eps),
|
||||
ss = [ [a[1],a[2]], [a[3],a[4]] ]
|
||||
) if (ss[0] != undef) ss
|
||||
]),
|
||||
[[len(path)-(closed?1:2), 1]]
|
||||
)
|
||||
path_lens * add_density,
|
||||
add = exact? _sum_preserving_round(add_guess) :
|
||||
[for (val=add_guess) round(val)]
|
||||
) concat(
|
||||
[
|
||||
for (i=[0:1:count]) each [
|
||||
for(j=[0:1:add[i]])
|
||||
lerp(path[i],select(path,i+1), j/(add[i]+1))
|
||||
)
|
||||
) [
|
||||
for (p = pair(isects))
|
||||
let(
|
||||
s1 = p[0][0],
|
||||
u1 = p[0][1],
|
||||
s2 = p[1][0],
|
||||
u2 = p[1][1],
|
||||
section = _path_select(path, s1, u1, s2, u2, closed=closed),
|
||||
outpath = deduplicate(eps=eps, section)
|
||||
)
|
||||
outpath
|
||||
];
|
||||
|
||||
|
||||
function _tag_self_crossing_subpaths(path, nonzero, closed=true, eps=EPSILON) =
|
||||
let(
|
||||
subpaths = split_path_at_self_crossings(
|
||||
path, closed=true, eps=eps
|
||||
)
|
||||
) [
|
||||
for (subpath = subpaths) let(
|
||||
seg = select(subpath,0,1),
|
||||
mp = mean(seg),
|
||||
n = line_normal(seg) / 2048,
|
||||
p1 = mp + n,
|
||||
p2 = mp - n,
|
||||
p1in = point_in_polygon(p1, path, nonzero=nonzero) >= 0,
|
||||
p2in = point_in_polygon(p2, path, nonzero=nonzero) >= 0,
|
||||
tag = (p1in && p2in)? "I" : "O"
|
||||
) [tag, subpath]
|
||||
];
|
||||
|
||||
|
||||
// Function: polygon_parts()
|
||||
// Usage:
|
||||
// splitpaths = polygon_parts(path, [nonzero], [eps]);
|
||||
// Description:
|
||||
// Given a possibly self-intersecting polygon, constructs a representation of the original polygon as a list of
|
||||
// non-intersecting simple polygons. If nonzero is set to true then it uses the nonzero method for defining polygon membership, which
|
||||
// means it will produce the outer perimeter.
|
||||
// Arguments:
|
||||
// path = The path to split up.
|
||||
// nonzero = If true use the nonzero method for checking if a point is in a polygon. Otherwise use the even-odd method. Default: false
|
||||
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
||||
// Example(2D): This cross-crossing polygon breaks up into its 3 components (regardless of the value of nonzero).
|
||||
// path = [
|
||||
// [-100,100], [0,-50], [100,100],
|
||||
// [100,-100], [0,50], [-100,-100]
|
||||
// ];
|
||||
// splitpaths = polygon_parts(path);
|
||||
// rainbow(splitpaths) stroke($item, closed=true, width=3);
|
||||
// Example(2D): With nonzero=false you get even-odd mode which matches OpenSCAD, so the pentagram breaks apart into its five points.
|
||||
// pentagram = turtle(["move",100,"left",144], repeat=4);
|
||||
// left(100)polygon(pentagram);
|
||||
// rainbow(polygon_parts(pentagram,nonzero=false))
|
||||
// stroke($item,closed=true);
|
||||
// Example(2D): With nonzero=true you get only the outer perimeter. You can use this to create the polygon using the nonzero method, which is not supported by OpenSCAD.
|
||||
// pentagram = turtle(["move",100,"left",144], repeat=4);
|
||||
// outside = polygon_parts(pentagram,nonzero=true);
|
||||
// left(100)region(outside);
|
||||
// rainbow(outside)
|
||||
// stroke($item,closed=true);
|
||||
function polygon_parts(path, nonzero=false, closed=true, eps=EPSILON) =
|
||||
let(
|
||||
path = cleanup_path(path, eps=eps),
|
||||
tagged = _tag_self_crossing_subpaths(path, nonzero=nonzero, closed=closed, eps=eps),
|
||||
kept = [for (sub = tagged) if(sub[0] == "O") sub[1]],
|
||||
outregion = _assemble_path_fragments(kept, eps=eps)
|
||||
) outregion;
|
||||
|
||||
|
||||
function _extreme_angle_fragment(seg, fragments, rightmost=true, eps=EPSILON) =
|
||||
!fragments? [undef, []] :
|
||||
let(
|
||||
delta = seg[1] - seg[0],
|
||||
segang = atan2(delta.y,delta.x),
|
||||
frags = [
|
||||
for (i = idx(fragments)) let(
|
||||
fragment = fragments[i],
|
||||
fwdmatch = approx(seg[1], fragment[0], eps=eps),
|
||||
bakmatch = approx(seg[1], last(fragment), eps=eps)
|
||||
) [
|
||||
fwdmatch,
|
||||
bakmatch,
|
||||
bakmatch? reverse(fragment) : fragment
|
||||
]
|
||||
],
|
||||
closed? [] : [last(path)]
|
||||
angs = [
|
||||
for (frag = frags)
|
||||
(frag[0] || frag[1])? let(
|
||||
delta2 = frag[2][1] - frag[2][0],
|
||||
segang2 = atan2(delta2.y, delta2.x)
|
||||
) modang(segang2 - segang) : (
|
||||
rightmost? 999 : -999
|
||||
)
|
||||
],
|
||||
fi = rightmost? min_index(angs) : max_index(angs)
|
||||
) abs(angs[fi]) > 360? [undef, fragments] : let(
|
||||
remainder = [for (i=idx(fragments)) if (i!=fi) fragments[i]],
|
||||
frag = frags[fi],
|
||||
foundfrag = frag[2]
|
||||
) [foundfrag, remainder];
|
||||
|
||||
|
||||
/// Internal Function: _assemble_a_path_from_fragments()
|
||||
/// Usage:
|
||||
/// _assemble_a_path_from_fragments(subpaths);
|
||||
/// Description:
|
||||
/// Given a list of paths, assembles them together into one complete closed polygon path, and
|
||||
/// remainder fragments. Returns [PATH, FRAGMENTS] where FRAGMENTS is the list of remaining
|
||||
/// unused path fragments.
|
||||
/// Arguments:
|
||||
/// fragments = List of paths to be assembled into complete polygons.
|
||||
/// rightmost = If true, assemble paths using rightmost turns. Leftmost if false.
|
||||
/// startfrag = The fragment to start with. Default: 0
|
||||
/// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
||||
function _assemble_a_path_from_fragments(fragments, rightmost=true, startfrag=0, eps=EPSILON) =
|
||||
len(fragments)==0? _finished :
|
||||
let(
|
||||
path = fragments[startfrag],
|
||||
newfrags = [for (i=idx(fragments)) if (i!=startfrag) fragments[i]]
|
||||
) is_closed_path(path, eps=eps)? (
|
||||
// starting fragment is already closed
|
||||
[path, newfrags]
|
||||
) : let(
|
||||
// Find rightmost/leftmost continuation fragment
|
||||
seg = select(path,-2,-1),
|
||||
extrema = _extreme_angle_fragment(seg=seg, fragments=newfrags, rightmost=rightmost, eps=eps),
|
||||
foundfrag = extrema[0],
|
||||
remainder = extrema[1]
|
||||
) is_undef(foundfrag)? (
|
||||
// No remaining fragments connect! INCOMPLETE PATH!
|
||||
// Treat it as complete.
|
||||
[path, remainder]
|
||||
) : is_closed_path(foundfrag, eps=eps)? (
|
||||
// Found fragment is already closed
|
||||
[foundfrag, concat([path], remainder)]
|
||||
) : let(
|
||||
fragend = last(foundfrag),
|
||||
hits = [for (i = idx(path,e=-2)) if(approx(path[i],fragend,eps=eps)) i]
|
||||
) hits? (
|
||||
let(
|
||||
// Found fragment intersects with initial path
|
||||
hitidx = last(hits),
|
||||
newpath = list_head(path,hitidx),
|
||||
newfrags = concat(len(newpath)>1? [newpath] : [], remainder),
|
||||
outpath = concat(slice(path,hitidx,-2), foundfrag)
|
||||
)
|
||||
[outpath, newfrags]
|
||||
) : let(
|
||||
// Path still incomplete. Continue building it.
|
||||
newpath = concat(path, list_tail(foundfrag)),
|
||||
newfrags = concat([newpath], remainder)
|
||||
)
|
||||
_assemble_a_path_from_fragments(
|
||||
fragments=newfrags,
|
||||
rightmost=rightmost,
|
||||
eps=eps
|
||||
);
|
||||
|
||||
|
||||
/// Internal Function: _assemble_path_fragments()
|
||||
/// Usage:
|
||||
/// _assemble_path_fragments(subpaths);
|
||||
/// Description:
|
||||
/// Given a list of paths, assembles them together into complete closed polygon paths if it can.
|
||||
/// Arguments:
|
||||
/// fragments = List of paths to be assembled into complete polygons.
|
||||
/// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
||||
function _assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) =
|
||||
len(fragments)==0? _finished :
|
||||
let(
|
||||
minxidx = min_index([
|
||||
for (frag=fragments) min(subindex(frag,0))
|
||||
]),
|
||||
result_l = _assemble_a_path_from_fragments(
|
||||
fragments=fragments,
|
||||
startfrag=minxidx,
|
||||
rightmost=false,
|
||||
eps=eps
|
||||
),
|
||||
result_r = _assemble_a_path_from_fragments(
|
||||
fragments=fragments,
|
||||
startfrag=minxidx,
|
||||
rightmost=true,
|
||||
eps=eps
|
||||
),
|
||||
l_area = abs(polygon_area(result_l[0])),
|
||||
r_area = abs(polygon_area(result_r[0])),
|
||||
result = l_area < r_area? result_l : result_r,
|
||||
newpath = cleanup_path(result[0]),
|
||||
remainder = result[1],
|
||||
finished = concat(_finished, [newpath])
|
||||
) _assemble_path_fragments(
|
||||
fragments=remainder,
|
||||
eps=eps,
|
||||
_finished=finished
|
||||
);
|
||||
|
||||
|
||||
|
||||
// Function: resample_path()
|
||||
// Usage:
|
||||
// newpath = resample_path(path, N|spacing, [closed]);
|
||||
// Description:
|
||||
// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N
|
||||
// points spaced uniformly (by linear interpolation along the input path segments). The only points of the
|
||||
// input path that are guaranteed to appear in the output path are the starting and ending points.
|
||||
// If you specify `spacing` then the length you give will be rounded to the nearest spacing that gives
|
||||
// a uniform sampling of the path and the resulting uniformly sampled path is returned.
|
||||
// Note that because this function operates on a discrete input path the quality of the output depends on
|
||||
// the sampling of the input. If you want very accurate output, use a lot of points for the input.
|
||||
// Arguments:
|
||||
// path = path to resample
|
||||
// N = Number of points in output
|
||||
// spacing = Approximate spacing desired
|
||||
// closed = set to true if path is closed. Default: false
|
||||
function resample_path(path, N, spacing, closed=false) =
|
||||
assert(is_path(path))
|
||||
assert(num_defined([N,spacing])==1,"Must define exactly one of N and spacing")
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
length = path_length(path,closed),
|
||||
// In the open path case decrease N by 1 so that we don't try to get
|
||||
// path_cut to return the endpoint (which might fail due to rounding)
|
||||
// Add last point later
|
||||
N = is_def(N) ? N-(closed?0:1) : round(length/spacing),
|
||||
distlist = lerpn(0,length,N,false),
|
||||
cuts = _path_cut_points(path, distlist, closed=closed)
|
||||
)
|
||||
[ each subindex(cuts,0),
|
||||
if (!closed) last(path) // Then add last point here
|
||||
];
|
||||
|
||||
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
@ -25,13 +25,17 @@
|
||||
// phillips_drive(size="#2", shaft=6, l=20);
|
||||
// phillips_drive(size="#3", shaft=6, l=20);
|
||||
// }
|
||||
module phillips_drive(size="#2", shaft=6, l=20, $fn=36, anchor=BOTTOM, spin=0, orient=UP) {
|
||||
module phillips_drive(size="#2", shaft, l=20, $fn=36, anchor=BOTTOM, spin=0, orient=UP) {
|
||||
assert(is_string(size));
|
||||
assert(in_list(size,["#0","#1","#2","#3","#4"]));
|
||||
|
||||
num = ord(size[1]) - ord("0");
|
||||
defshaft = [3,4.5,6,8,10][num];
|
||||
shaft = first_defined([defshaft,shaft,defshaft]);
|
||||
|
||||
b = [0.61, 0.97, 1.47, 2.41, 3.48][num];
|
||||
e = [0.31, 0.43, 0.81, 2.00, 2.41][num];
|
||||
e = [0.31, 0.435, 0.815, 2.005, 2.415][num];
|
||||
// e = [0.31, 0.435, 0.815, 2.1505, 2.415][num];
|
||||
g = [0.81, 1.27, 2.29, 3.81, 5.08][num];
|
||||
//f = [0.33, 0.53, 0.70, 0.82, 1.23][num];
|
||||
//r = [0.30, 0.50, 0.60, 0.80, 1.00][num];
|
||||
@ -40,28 +44,23 @@ module phillips_drive(size="#2", shaft=6, l=20, $fn=36, anchor=BOTTOM, spin=0, o
|
||||
gamma = 92.0;
|
||||
ang1 = 28.0;
|
||||
ang2 = 26.5;
|
||||
h1 = adj_ang_to_opp(g/2, ang1);
|
||||
h2 = adj_ang_to_opp((shaft-g)/2, 90-ang2);
|
||||
h3 = adj_ang_to_opp(b/2, ang1);
|
||||
h1 = adj_ang_to_opp(g/2, ang1); // height of the small conical tip
|
||||
h2 = adj_ang_to_opp((shaft-g)/2, 90-ang2); // height of larger cone
|
||||
h3 = adj_ang_to_opp(b/2, ang1); // height where cutout starts
|
||||
p0 = [0,0];
|
||||
p1 = [e/2, adj_ang_to_opp(e/2, 90-alpha/2)];
|
||||
p2 = p1 + [(shaft-e)/2, adj_ang_to_hyp((shaft-e)/2, 90-gamma/2)];
|
||||
p1 = [adj_ang_to_opp(e/2, 90-alpha/2), -e/2];
|
||||
p2 = p1 + [adj_ang_to_opp((shaft-e)/2, 90-gamma/2),-(shaft-e)/2];
|
||||
attachable(anchor,spin,orient, d=shaft, l=l) {
|
||||
down(l/2) {
|
||||
difference() {
|
||||
union() {
|
||||
cyl(d1=0, d2=g, h=h1, anchor=BOT);
|
||||
up(h1) {
|
||||
cyl(d1=g, d2=shaft, h=h2, anchor=BOT);
|
||||
up(h2) cyl(d=shaft, h=l-h1-h2, anchor=BOT);
|
||||
}
|
||||
}
|
||||
rotate_extrude()
|
||||
polygon([[0,0],[g/2,h1],[shaft/2,h1+h2],[shaft/2,l],[0,l]]);
|
||||
zrot(45)
|
||||
zrot_copies(n=4, r=b/2/cos(90-alpha/2), sa=90) {
|
||||
zrot_copies(n=4, r=b/2) {
|
||||
up(h3) {
|
||||
xrot(-beta) {
|
||||
linear_extrude(height=(h1+h2)*20, convexity=4, center=true) {
|
||||
path = [p0, p1, p2, [-p2.x,p2.y], [-p1.x,p1.y]];
|
||||
yrot(beta) {
|
||||
linear_extrude(height=(h1+h2)*20, convexity=4, center=false) {
|
||||
path = [p0, p1, p2, [p2.x,-p2.y], [p1.x,-p1.y]];
|
||||
polygon(path);
|
||||
}
|
||||
}
|
||||
|
@ -125,7 +125,7 @@ function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) =
|
||||
// Usage:
|
||||
// b = polygons_equal(poly1, poly2, [eps])
|
||||
// Description:
|
||||
// Returns true if the components of region1 and region2 are the same polygons
|
||||
// Returns true if poly1 and poly2 are the same polongs
|
||||
// within given epsilon tolerance.
|
||||
// Arguments:
|
||||
// poly1 = first polygon
|
||||
@ -174,11 +174,11 @@ function __poly_in_polygons(poly, polys, i) =
|
||||
// Usage:
|
||||
// b = regions_equal(region1, region2, [eps])
|
||||
// Description:
|
||||
// Returns true if the components of region1 and region2 are the same polygons
|
||||
// Returns true if the components of region1 and region2 are the same polygons (in any order)
|
||||
// within given epsilon tolerance.
|
||||
// Arguments:
|
||||
// poly1 = first polygon
|
||||
// poly2 = second polygon
|
||||
// region1 = first region
|
||||
// region2 = second region
|
||||
// eps = tolerance for comparison
|
||||
function regions_equal(region1, region2) =
|
||||
assert(is_region(region1) && is_region(region2))
|
||||
|
24
screws.scad
24
screws.scad
@ -837,18 +837,18 @@ module screw_head(screw_info,details=false) {
|
||||
// anchor = anchor relative to the shaft of the screw
|
||||
// anchor_head = anchor relative to the screw head
|
||||
// Example(Med): Selected UTS (English) screws
|
||||
$fn=32;
|
||||
xdistribute(spacing=8){
|
||||
screw("#6", length=12);
|
||||
screw("#6-32", head="button", drive="torx",length=12);
|
||||
screw("#6-32,3/4", head="hex");
|
||||
screw("#6", thread="fine", head="fillister",length=12, drive="phillips");
|
||||
screw("#6", head="flat small",length=12,drive="slot");
|
||||
screw("#6-32", head="flat large", length=12, drive="torx");
|
||||
screw("#6-32", head="flat undercut",length=12);
|
||||
screw("#6-24", head="socket",length=12); // Non-standard threading
|
||||
screw("#6-32", drive="hex", drive_size=1.5, length=12);
|
||||
}
|
||||
// $fn=32;
|
||||
// xdistribute(spacing=8){
|
||||
// screw("#6", length=12);
|
||||
// screw("#6-32", head="button", drive="torx",length=12);
|
||||
// screw("#6-32,3/4", head="hex");
|
||||
// screw("#6", thread="fine", head="fillister",length=12, drive="phillips");
|
||||
// screw("#6", head="flat small",length=12,drive="slot");
|
||||
// screw("#6-32", head="flat large", length=12, drive="torx");
|
||||
// screw("#6-32", head="flat undercut",length=12);
|
||||
// screw("#6-24", head="socket",length=12); // Non-standard threading
|
||||
// screw("#6-32", drive="hex", drive_size=1.5, length=12);
|
||||
// }
|
||||
// Example(Med): A few examples of ISO (metric) screws
|
||||
// $fn=32;
|
||||
// xdistribute(spacing=8){
|
||||
|
31
skin.scad
31
skin.scad
@ -1163,37 +1163,6 @@ function subdivide_and_slice(profiles, slices, numpoints, method="length", close
|
||||
|
||||
|
||||
|
||||
// Function: subdivide_long_segments()
|
||||
// Topics: Paths, Path Subdivision
|
||||
// See Also: subdivide_path(), subdivide_and_slice(), path_add_jitter(), jittered_poly()
|
||||
// Usage:
|
||||
// spath = subdivide_long_segments(path, maxlen, [closed=]);
|
||||
// Description:
|
||||
// Evenly subdivides long `path` segments until they are all shorter than `maxlen`.
|
||||
// Arguments:
|
||||
// path = The path to subdivide.
|
||||
// maxlen = The maximum allowed path segment length.
|
||||
// ---
|
||||
// closed = If true, treat path like a closed polygon. Default: true
|
||||
// Example:
|
||||
// path = pentagon(d=100);
|
||||
// spath = subdivide_long_segments(path, 10, closed=true);
|
||||
// stroke(path);
|
||||
// color("lightgreen") move_copies(path) circle(d=5,$fn=12);
|
||||
// color("blue") move_copies(spath) circle(d=3,$fn=12);
|
||||
function subdivide_long_segments(path, maxlen, closed=false) =
|
||||
assert(is_path(path))
|
||||
assert(is_finite(maxlen))
|
||||
assert(is_bool(closed))
|
||||
[
|
||||
for (p=pair(path,closed)) let(
|
||||
steps = ceil(norm(p[1]-p[0])/maxlen)
|
||||
) each lerpn(p[0], p[1], steps, false),
|
||||
if (!closed) last(path)
|
||||
];
|
||||
|
||||
|
||||
|
||||
// Function: slice_profiles()
|
||||
// Topics: Paths, Path Subdivision
|
||||
// Usage:
|
||||
|
Loading…
x
Reference in New Issue
Block a user