mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-17 06:08:32 +01:00
Merge remote-tracking branch 'upstream/master'
This commit is contained in:
commit
3e356c7c34
46
.github/workflows/main.yml
vendored
46
.github/workflows/main.yml
vendored
@ -21,7 +21,7 @@ jobs:
|
||||
export OPENSCADPATH=$(dirname $GITHUB_WORKSPACE)
|
||||
./scripts/run_tests.sh
|
||||
|
||||
CheckDocs:
|
||||
CheckTutorials:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
@ -55,17 +55,45 @@ jobs:
|
||||
echo "::add-matcher::.github/check_for_tabs.json"
|
||||
./scripts/check_for_tabs.sh
|
||||
|
||||
- name: Checking Docs
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
echo "::add-matcher::.github/openscad_docsgen.json"
|
||||
export OPENSCADPATH=$(dirname $GITHUB_WORKSPACE)
|
||||
openscad-docsgen -Tmf *.scad
|
||||
|
||||
- name: Checking Tutorials
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
echo "::add-matcher::.github/openscad_docsgen.json"
|
||||
export OPENSCADPATH=$(dirname $GITHUB_WORKSPACE)
|
||||
openscad-mdimggen -T *.scad
|
||||
openscad-mdimggen -T
|
||||
|
||||
CheckDocs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Clone Wiki
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
repository: revarbat/BOSL2.wiki
|
||||
path: BOSL2.wiki
|
||||
|
||||
- name: Apt Update
|
||||
run: sudo apt update
|
||||
|
||||
- name: Install Python dev
|
||||
run: sudo apt-get install python3-pip python3-dev python3-setuptools python3-pil
|
||||
|
||||
- name: Install OpenSCAD-DocsGen package.
|
||||
run: sudo pip3 install openscad-docsgen
|
||||
|
||||
- name: Install OpenSCAD
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
wget https://files.openscad.org/OpenSCAD-2021.01-x86_64.AppImage
|
||||
sudo mv OpenSCAD-2021.01*-x86_64.AppImage /usr/local/bin/openscad
|
||||
sudo chmod +x /usr/local/bin/openscad
|
||||
|
||||
- name: Checking Docs
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
echo "::add-matcher::.github/openscad_docsgen.json"
|
||||
export OPENSCADPATH=$(dirname $GITHUB_WORKSPACE)
|
||||
openscad-docsgen -Tmf
|
||||
|
||||
|
161
paths.scad
161
paths.scad
@ -689,169 +689,8 @@ function path_torsion(path, closed=false) =
|
||||
];
|
||||
|
||||
|
||||
// Section: Modifying paths
|
||||
|
||||
// Function: path_chamfer_and_rounding()
|
||||
// Usage:
|
||||
// path2 = path_chamfer_and_rounding(path, [closed], [chamfer], [rounding]);
|
||||
// Description:
|
||||
// Rounds or chamfers corners in the given path.
|
||||
// Arguments:
|
||||
// path = The path to chamfer and/or round.
|
||||
// closed = If true, treat path like a closed polygon. Default: true
|
||||
// chamfer = The length of the chamfer faces at the corners. If given as a list of numbers, gives individual chamfers for each corner, from first to last. Default: 0 (no chamfer)
|
||||
// rounding = The rounding radius for the corners. If given as a list of numbers, gives individual radii for each corner, from first to last. Default: 0 (no rounding)
|
||||
// Example(2D): Chamfering a Path
|
||||
// path = star(5, step=2, d=100);
|
||||
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=5);
|
||||
// stroke(path2, closed=true);
|
||||
// Example(2D): Per-Corner Chamfering
|
||||
// path = star(5, step=2, d=100);
|
||||
// chamfs = [for (i=[0:1:4]) each 3*[i,i]];
|
||||
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=chamfs);
|
||||
// stroke(path2, closed=true);
|
||||
// Example(2D): Rounding a Path
|
||||
// path = star(5, step=2, d=100);
|
||||
// path2 = path_chamfer_and_rounding(path, closed=true, rounding=5);
|
||||
// stroke(path2, closed=true);
|
||||
// Example(2D): Per-Corner Chamfering
|
||||
// path = star(5, step=2, d=100);
|
||||
// rs = [for (i=[0:1:4]) each 2*[i,i]];
|
||||
// path2 = path_chamfer_and_rounding(path, closed=true, rounding=rs);
|
||||
// stroke(path2, closed=true);
|
||||
// Example(2D): Mixing Chamfers and Roundings
|
||||
// path = star(5, step=2, d=100);
|
||||
// chamfs = [for (i=[0:4]) each [5,0]];
|
||||
// rs = [for (i=[0:4]) each [0,10]];
|
||||
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=chamfs, rounding=rs);
|
||||
// stroke(path2, closed=true);
|
||||
function path_chamfer_and_rounding(path, closed=true, chamfer, rounding) =
|
||||
let (
|
||||
p = force_path(path)
|
||||
)
|
||||
assert(is_path(p),"Input 'path' is not a path")
|
||||
let(
|
||||
path = deduplicate(p,closed=true),
|
||||
lp = len(path),
|
||||
chamfer = is_undef(chamfer)? repeat(0,lp) :
|
||||
is_vector(chamfer)? list_pad(chamfer,lp,0) :
|
||||
is_num(chamfer)? repeat(chamfer,lp) :
|
||||
assert(false, "Bad chamfer value."),
|
||||
rounding = is_undef(rounding)? repeat(0,lp) :
|
||||
is_vector(rounding)? list_pad(rounding,lp,0) :
|
||||
is_num(rounding)? repeat(rounding,lp) :
|
||||
assert(false, "Bad rounding value."),
|
||||
|
||||
corner_paths = [
|
||||
for (i=(closed? [0:1:lp-1] : [1:1:lp-2])) let(
|
||||
p1 = select(path,i-1),
|
||||
p2 = select(path,i),
|
||||
p3 = select(path,i+1)
|
||||
)
|
||||
chamfer[i] > 0? _corner_chamfer_path(p1, p2, p3, side=chamfer[i]) :
|
||||
rounding[i] > 0? _corner_roundover_path(p1, p2, p3, r=rounding[i]) :
|
||||
[p2]
|
||||
],
|
||||
out = [
|
||||
if (!closed) path[0],
|
||||
for (i=(closed? [0:1:lp-1] : [1:1:lp-2])) let(
|
||||
p1 = select(path,i-1),
|
||||
p2 = select(path,i),
|
||||
crn1 = select(corner_paths,i-1),
|
||||
crn2 = corner_paths[i],
|
||||
l1 = norm(last(crn1)-p1),
|
||||
l2 = norm(crn2[0]-p2),
|
||||
needed = l1 + l2,
|
||||
seglen = norm(p2-p1),
|
||||
check = assert(seglen >= needed, str("Path segment ",i," is too short to fulfill rounding/chamfering for the adjacent corners."))
|
||||
) each crn2,
|
||||
if (!closed) last(path)
|
||||
]
|
||||
) deduplicate(out);
|
||||
|
||||
|
||||
function _corner_chamfer_path(p1, p2, p3, dist1, dist2, side, angle) =
|
||||
let(
|
||||
v1 = unit(p1 - p2),
|
||||
v2 = unit(p3 - p2),
|
||||
n = vector_axis(v1,v2),
|
||||
ang = vector_angle(v1,v2),
|
||||
path = (is_num(dist1) && is_undef(dist2) && is_undef(side))? (
|
||||
// dist1 & optional angle
|
||||
assert(dist1 > 0)
|
||||
let(angle = default(angle,(180-ang)/2))
|
||||
assert(is_num(angle))
|
||||
assert(angle > 0 && angle < 180)
|
||||
let(
|
||||
pta = p2 + dist1*v1,
|
||||
a3 = 180 - angle - ang
|
||||
) assert(a3>0, "Angle too extreme.")
|
||||
let(
|
||||
side = sin(angle) * dist1/sin(a3),
|
||||
ptb = p2 + side*v2
|
||||
) [pta, ptb]
|
||||
) : (is_undef(dist1) && is_num(dist2) && is_undef(side))? (
|
||||
// dist2 & optional angle
|
||||
assert(dist2 > 0)
|
||||
let(angle = default(angle,(180-ang)/2))
|
||||
assert(is_num(angle))
|
||||
assert(angle > 0 && angle < 180)
|
||||
let(
|
||||
ptb = p2 + dist2*v2,
|
||||
a3 = 180 - angle - ang
|
||||
) assert(a3>0, "Angle too extreme.")
|
||||
let(
|
||||
side = sin(angle) * dist2/sin(a3),
|
||||
pta = p2 + side*v1
|
||||
) [pta, ptb]
|
||||
) : (is_undef(dist1) && is_undef(dist2) && is_num(side))? (
|
||||
// side & optional angle
|
||||
assert(side > 0)
|
||||
let(angle = default(angle,(180-ang)/2))
|
||||
assert(is_num(angle))
|
||||
assert(angle > 0 && angle < 180)
|
||||
let(
|
||||
a3 = 180 - angle - ang
|
||||
) assert(a3>0, "Angle too extreme.")
|
||||
let(
|
||||
dist1 = sin(a3) * side/sin(ang),
|
||||
dist2 = sin(angle) * side/sin(ang),
|
||||
pta = p2 + dist1*v1,
|
||||
ptb = p2 + dist2*v2
|
||||
) [pta, ptb]
|
||||
) : (is_num(dist1) && is_num(dist2) && is_undef(side) && is_undef(side))? (
|
||||
// dist1 & dist2
|
||||
assert(dist1 > 0)
|
||||
assert(dist2 > 0)
|
||||
let(
|
||||
pta = p2 + dist1*v1,
|
||||
ptb = p2 + dist2*v2
|
||||
) [pta, ptb]
|
||||
) : (
|
||||
assert(false,"Bad arguments.")
|
||||
)
|
||||
) path;
|
||||
|
||||
|
||||
function _corner_roundover_path(p1, p2, p3, r, d) =
|
||||
let(
|
||||
r = get_radius(r=r,d=d,dflt=undef),
|
||||
res = circle_2tangents(p1, p2, p3, r=r, tangents=true),
|
||||
cp = res[0],
|
||||
n = res[1],
|
||||
tp1 = res[2],
|
||||
ang = res[4]+res[5],
|
||||
steps = floor(segs(r)*ang/360+0.5),
|
||||
step = ang / steps,
|
||||
path = [for (i=[0:1:steps]) move(cp, p=rot(a=-i*step, v=n, p=tp1-cp))]
|
||||
) path;
|
||||
|
||||
|
||||
|
||||
|
||||
// Section: Breaking paths up into subpaths
|
||||
|
||||
|
||||
/// Internal Function: _path_cut_points()
|
||||
///
|
||||
/// Usage:
|
||||
|
143
shapes2d.scad
143
shapes2d.scad
@ -84,8 +84,8 @@ module square(size=1, center, anchor, spin) {
|
||||
// When called as a function, returns a 2D path/list of points for a square/rectangle of the given size.
|
||||
// Arguments:
|
||||
// size = The size of the rectangle to create. If given as a scalar, both X and Y will be the same size.
|
||||
// rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
|
||||
// chamfer = The chamfer size for the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
|
||||
// rounding = The rounding radius for the corners. If negative, produces external roundover spikes on the X axis. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
|
||||
// chamfer = The chamfer size for the corners. If negative, produces external chamfer spikes on the X axis. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
|
||||
// Example(2D):
|
||||
@ -98,6 +98,10 @@ module square(size=1, center, anchor, spin) {
|
||||
// rect([40,30], chamfer=5);
|
||||
// Example(2D): Rounded Rect
|
||||
// rect([40,30], rounding=5);
|
||||
// Example(2D): Negative-Chamferred Rect
|
||||
// rect([40,30], chamfer=-5);
|
||||
// Example(2D): Negative-Rounded Rect
|
||||
// rect([40,30], rounding=-5);
|
||||
// Example(2D): Mixed Chamferring and Rounding
|
||||
// rect([40,30],rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1);
|
||||
// Example(2D): Called as Function
|
||||
@ -145,7 +149,8 @@ function rect(size=1, rounding=0, chamfer=0, anchor=CENTER, spin=0) =
|
||||
rounding = is_list(rounding)? rounding : [for (i=[0:3]) rounding],
|
||||
quadorder = [3,2,1,0],
|
||||
quadpos = [[1,1],[-1,1],[-1,-1],[1,-1]],
|
||||
insets = [for (i=[0:3]) chamfer[i]>0? chamfer[i] : rounding[i]>0? rounding[i] : 0],
|
||||
eps = 1e-9,
|
||||
insets = [for (i=[0:3]) abs(chamfer[i])>=eps? chamfer[i] : abs(rounding[i])>=eps? rounding[i] : 0],
|
||||
insets_x = max(insets[0]+insets[1],insets[2]+insets[3]),
|
||||
insets_y = max(insets[0]+insets[3],insets[1]+insets[2])
|
||||
)
|
||||
@ -156,16 +161,20 @@ function rect(size=1, rounding=0, chamfer=0, anchor=CENTER, spin=0) =
|
||||
for(i = [0:3])
|
||||
let(
|
||||
quad = quadorder[i],
|
||||
inset = insets[quad],
|
||||
cverts = quant(segs(inset),4)/4,
|
||||
cp = v_mul(size/2-[inset,inset], quadpos[quad]),
|
||||
qinset = insets[quad],
|
||||
qpos = quadpos[quad],
|
||||
qchamf = chamfer[quad],
|
||||
qround = rounding[quad],
|
||||
cverts = quant(segs(abs(qinset)),4)/4,
|
||||
step = 90/cverts,
|
||||
angs =
|
||||
chamfer[quad] > 0? [0,-90]-90*[i,i] :
|
||||
rounding[quad] > 0? [for (j=[0:1:cverts]) 360-j*step-i*90] :
|
||||
[0]
|
||||
cp = v_mul(size/2-[qinset,abs(qinset)], qpos),
|
||||
qpts = abs(qchamf) >= eps? [[0,abs(qinset)], [qinset,0]] :
|
||||
abs(qround) >= eps? [for (j=[0:1:cverts]) let(a=90-j*step) v_mul(polar_to_xy(abs(qinset),a),[sign(qinset),1])] :
|
||||
[[0,0]],
|
||||
qfpts = [for (p=qpts) v_mul(p,qpos)],
|
||||
qrpts = qpos.x*qpos.y < 0? reverse(qfpts) : qfpts
|
||||
)
|
||||
each [for (a = angs) cp + inset*[cos(a),sin(a)]]
|
||||
each move(cp, p=qrpts)
|
||||
]
|
||||
) complex?
|
||||
reorient(anchor,spin, two_d=true, path=path, p=path) :
|
||||
@ -785,6 +794,7 @@ module right_triangle(size=[1,1], center, anchor, spin=0) {
|
||||
// shift = Scalar value to shift the back of the trapezoid along the X axis by. Default: 0
|
||||
// rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
|
||||
// chamfer = The Length of the chamfer faces at the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
|
||||
// flip = If true, negative roundings and chamfers will point forward and back instead of left and right. Default: `false`.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
|
||||
// Examples(2D):
|
||||
@ -796,15 +806,23 @@ module right_triangle(size=[1,1], center, anchor, spin=0) {
|
||||
// trapezoid(h=20, w2=10, angle=30);
|
||||
// trapezoid(h=20, w2=30, angle=-30);
|
||||
// trapezoid(w1=30, w2=10, angle=30);
|
||||
// Example(2D): Chamferred Trapezoid
|
||||
// Example(2D): Chamfered Trapezoid
|
||||
// trapezoid(h=30, w1=60, w2=40, chamfer=5);
|
||||
// Example(2D): Negative Chamfered Trapezoid
|
||||
// trapezoid(h=30, w1=60, w2=40, chamfer=-5);
|
||||
// Example(2D): Flipped Negative Chamfered Trapezoid
|
||||
// trapezoid(h=30, w1=60, w2=40, chamfer=-5, flip=true);
|
||||
// Example(2D): Rounded Trapezoid
|
||||
// trapezoid(h=30, w1=60, w2=40, rounding=5);
|
||||
// Example(2D): Negative Rounded Trapezoid
|
||||
// trapezoid(h=30, w1=60, w2=40, rounding=-5);
|
||||
// Example(2D): Flipped Negative Rounded Trapezoid
|
||||
// trapezoid(h=30, w1=60, w2=40, rounding=-5, flip=true);
|
||||
// Example(2D): Mixed Chamfering and Rounding
|
||||
// trapezoid(h=30, w1=60, w2=40, rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1);
|
||||
// trapezoid(h=30, w1=60, w2=40, rounding=[5,0,-10,0],chamfer=[0,8,0,-15],$fa=1,$fs=1);
|
||||
// Example(2D): Called as Function
|
||||
// stroke(closed=true, trapezoid(h=30, w1=40, w2=20));
|
||||
function trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER, spin=0) =
|
||||
function trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0) =
|
||||
assert(is_undef(h) || is_finite(h))
|
||||
assert(is_undef(w1) || is_finite(w1))
|
||||
assert(is_undef(w2) || is_finite(w2))
|
||||
@ -817,23 +835,65 @@ function trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENT
|
||||
simple = chamfer==0 && rounding==0,
|
||||
h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle)),
|
||||
w1 = !is_undef(w1)? w1 : w2 + 2*(adj_ang_to_opp(h, angle) + shift),
|
||||
w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift)
|
||||
w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift),
|
||||
chamfs = is_num(chamfer)? [for (i=[0:3]) chamfer] :
|
||||
assert(len(chamfer)==4) chamfer,
|
||||
rounds = is_num(rounding)? [for (i=[0:3]) rounding] :
|
||||
assert(len(rounding)==4) rounding,
|
||||
srads = [for (i=[0:3]) rounds[i]? rounds[i] : chamfs[i]],
|
||||
rads = v_abs(srads)
|
||||
)
|
||||
assert(w1>=0 && w2>=0 && h>0, "Degenerate trapezoid geometry.")
|
||||
assert(w1+w2>0, "Degenerate trapezoid geometry.")
|
||||
let(
|
||||
base_path = [
|
||||
[w2/2+shift,h/2],
|
||||
[-w2/2+shift,h/2],
|
||||
base = [
|
||||
[ w2/2+shift, h/2],
|
||||
[-w2/2+shift, h/2],
|
||||
[-w1/2,-h/2],
|
||||
[w1/2,-h/2],
|
||||
[ w1/2,-h/2],
|
||||
],
|
||||
cpath = simple? base_path :
|
||||
path_chamfer_and_rounding(
|
||||
base_path, closed=true,
|
||||
chamfer=chamfer,
|
||||
rounding=rounding
|
||||
ang1 = v_theta(base[0]-base[3])-90,
|
||||
ang2 = v_theta(base[1]-base[2])-90,
|
||||
angs = [ang1, ang2, ang2, ang1],
|
||||
qdirs = [[1,1], [-1,1], [-1,-1], [1,-1]],
|
||||
hyps = [for (i=[0:3]) adj_ang_to_hyp(rads[i],angs[i])],
|
||||
offs = [
|
||||
for (i=[0:3]) let(
|
||||
xoff = adj_ang_to_opp(rads[i],angs[i]),
|
||||
a = [xoff, -rads[i]] * qdirs[i].y * (srads[i]<0 && flip? -1 : 1),
|
||||
b = a + [hyps[i] * qdirs[i].x * (srads[i]<0 && !flip? 1 : -1), 0]
|
||||
) b
|
||||
],
|
||||
cpath = [
|
||||
each (
|
||||
let(i = 0)
|
||||
rads[i] == 0? [base[i]] :
|
||||
srads[i] > 0? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i], 90], r=rads[i]) :
|
||||
flip? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i],-90], r=rads[i]) :
|
||||
arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],90], r=rads[i])
|
||||
),
|
||||
each (
|
||||
let(i = 1)
|
||||
rads[i] == 0? [base[i]] :
|
||||
srads[i] > 0? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[90,180+angs[i]], r=rads[i]) :
|
||||
flip? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[270,180+angs[i]], r=rads[i]) :
|
||||
arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[90,angs[i]], r=rads[i])
|
||||
),
|
||||
each (
|
||||
let(i = 2)
|
||||
rads[i] == 0? [base[i]] :
|
||||
srads[i] > 0? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],270], r=rads[i]) :
|
||||
flip? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],90], r=rads[i]) :
|
||||
arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i],-90], r=rads[i])
|
||||
),
|
||||
each (
|
||||
let(i = 3)
|
||||
rads[i] == 0? [base[i]] :
|
||||
srads[i] > 0? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[-90,angs[i]], r=rads[i]) :
|
||||
flip? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[90,angs[i]], r=rads[i]) :
|
||||
arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[270,180+angs[i]], r=rads[i])
|
||||
),
|
||||
],
|
||||
path = reverse(cpath)
|
||||
) simple
|
||||
? reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, p=path)
|
||||
@ -841,8 +901,8 @@ function trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENT
|
||||
|
||||
|
||||
|
||||
module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER, spin=0) {
|
||||
path = trapezoid(h=h, w1=w1, w2=w2, angle=angle, shift=shift, chamfer=chamfer, rounding=rounding);
|
||||
module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0) {
|
||||
path = trapezoid(h=h, w1=w1, w2=w2, angle=angle, shift=shift, chamfer=chamfer, rounding=rounding, flip=flip);
|
||||
union() {
|
||||
simple = chamfer==0 && rounding==0;
|
||||
h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle));
|
||||
@ -1103,26 +1163,17 @@ module teardrop2d(r, ang=45, cap_h, d, anchor=CENTER, spin=0)
|
||||
function teardrop2d(r, ang=45, cap_h, d, anchor=CENTER, spin=0) =
|
||||
let(
|
||||
r = get_radius(r=r, d=d, dflt=1),
|
||||
tanpt = polar_to_xy(r, ang),
|
||||
tip_y = adj_ang_to_hyp(r, 90-ang),
|
||||
cap_h = min(default(cap_h,tip_y), tip_y),
|
||||
cap_w = tanpt.y >= cap_h
|
||||
? hyp_opp_to_adj(r, cap_h)
|
||||
: adj_ang_to_opp(tip_y-cap_h, ang),
|
||||
ang2 = min(ang,atan2(cap_h,cap_w)),
|
||||
sa = 180 - ang2,
|
||||
ea = 360 + ang2,
|
||||
steps = ceil(segs(r)*(ea-sa)/360),
|
||||
path = deduplicate(
|
||||
[
|
||||
[ cap_w,cap_h],
|
||||
for (a=lerpn(ea,sa,steps+1)) r*[cos(a),sin(a)],
|
||||
[-cap_w,cap_h]
|
||||
], closed=true
|
||||
),
|
||||
maxx_idx = max_index(column(path,0)),
|
||||
path2 = list_rotate(path,maxx_idx)
|
||||
) reorient(anchor,spin, two_d=true, path=path2, p=path2, extent=false);
|
||||
ang2 = 90-ang,
|
||||
prepath = zrot(90, p=circle(r=r)),
|
||||
eps=1e-9,
|
||||
prepath2 = [for (p=prepath) let(a=atan2(p.y,p.x)) if(a<=90-ang2+eps || a>=90+ang2-eps) p],
|
||||
hyp = is_undef(cap_h)
|
||||
? opp_ang_to_hyp(abs(prepath2[0].x), ang)
|
||||
: adj_ang_to_hyp(cap_h-prepath2[0].y, ang),
|
||||
p1 = prepath2[0] + polar_to_xy(hyp, 90+ang),
|
||||
p2 = last(prepath2) + polar_to_xy(hyp, 90-ang),
|
||||
path = deduplicate([p1, each prepath2, p2], closed=true)
|
||||
) reorient(anchor,spin, two_d=true, path=path, p=path, extent=false);
|
||||
|
||||
|
||||
|
||||
|
@ -94,7 +94,7 @@ function cube(size=1, center, anchor, spin=0, orient=UP) =
|
||||
// Usage: Chamfered Cubes
|
||||
// cuboid(size, [chamfer=], [edges=], [except=], [trimcorners=], ...);
|
||||
// Usage: Rounded Cubes
|
||||
// cuboid(size, [rounding=], [edges=], [except=], [trimcorners=], ...);
|
||||
// cuboid(size, [rounding=], [teardrop=], [edges=], [except=], [trimcorners=], ...);
|
||||
// Usage: Attaching children
|
||||
// cuboid(size, [anchor=], ...) [attachments];
|
||||
//
|
||||
@ -113,6 +113,7 @@ function cube(size=1, center, anchor, spin=0, orient=UP) =
|
||||
// edges = Edges to mask. See [Specifying Edges](attachments.scad#section-specifying-edges). Default: all edges.
|
||||
// except = Edges to explicitly NOT mask. See [Specifying Edges](attachments.scad#section-specifying-edges). Default: No edges.
|
||||
// trimcorners = If true, rounds or chamfers corners where three chamfered/rounded edges meet. Default: `true`
|
||||
// teardrop = If given as a number, rounding around the bottom edge of the cuboid won't exceed this many degrees from vertical. If true, the limit angle is 45 degrees. Default: `false`
|
||||
// p1 = Align the cuboid's corner at `p1`, if given. Forces `anchor=FRONT+LEFT+BOTTOM`.
|
||||
// p2 = If given with `p1`, defines the cornerpoints of the cuboid.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
|
||||
@ -132,6 +133,8 @@ function cube(size=1, center, anchor, spin=0, orient=UP) =
|
||||
// cuboid([30,40,50], chamfer=5, trimcorners=false);
|
||||
// Example: Rounded Edges and Corners
|
||||
// cuboid([30,40,50], rounding=10);
|
||||
// Example(VPR=[100,0,25],VPD=180): Rounded Edges and Corners with Teardrop Bottoms
|
||||
// cuboid([30,40,50], rounding=10, teardrop=true);
|
||||
// Example: Rounded Edges, Untrimmed Corners
|
||||
// cuboid([30,40,50], rounding=10, trimcorners=false);
|
||||
// Example: Chamferring Selected Edges
|
||||
@ -181,10 +184,32 @@ module cuboid(
|
||||
except=[],
|
||||
except_edges,
|
||||
trimcorners=true,
|
||||
teardrop=false,
|
||||
anchor=CENTER,
|
||||
spin=0,
|
||||
orient=UP
|
||||
) {
|
||||
module xtcyl(l,r) {
|
||||
if (teardrop) {
|
||||
teardrop(r=r, l=l, cap_h=r, ang=teardrop, spin=90, orient=DOWN);
|
||||
} else {
|
||||
yrot(90) cyl(l=l, r=r);
|
||||
}
|
||||
}
|
||||
module ytcyl(l,r) {
|
||||
if (teardrop) {
|
||||
teardrop(r=r, l=l, cap_h=r, ang=teardrop, spin=0, orient=DOWN);
|
||||
} else {
|
||||
zrot(90) yrot(90) cyl(l=l, r=r);
|
||||
}
|
||||
}
|
||||
module tsphere(r) {
|
||||
if (teardrop) {
|
||||
onion(r=r, cap_h=r, ang=teardrop, orient=DOWN);
|
||||
} else {
|
||||
spheroid(r=r, style="octa", orient=DOWN);
|
||||
}
|
||||
}
|
||||
module corner_shape(corner) {
|
||||
e = _corner_edges(edges, corner);
|
||||
cnt = sum(e);
|
||||
@ -197,33 +222,33 @@ module cuboid(
|
||||
if (cnt == 0 || approx(r,0)) {
|
||||
translate(c2) cube(c, center=true);
|
||||
} else if (cnt == 1) {
|
||||
if (e.x) right(c2.x) xcyl(l=c.x, r=r);
|
||||
if (e.y) back (c2.y) ycyl(l=c.y, r=r);
|
||||
if (e.x) right(c2.x) xtcyl(l=c.x, r=r);
|
||||
if (e.y) back (c2.y) ytcyl(l=c.y, r=r);
|
||||
if (e.z) up (c2.z) zcyl(l=c.z, r=r);
|
||||
} else if (cnt == 2) {
|
||||
if (!e.x) {
|
||||
intersection() {
|
||||
ycyl(l=c.y*2, r=r);
|
||||
ytcyl(l=c.y*2, r=r);
|
||||
zcyl(l=c.z*2, r=r);
|
||||
}
|
||||
} else if (!e.y) {
|
||||
intersection() {
|
||||
xcyl(l=c.x*2, r=r);
|
||||
xtcyl(l=c.x*2, r=r);
|
||||
zcyl(l=c.z*2, r=r);
|
||||
}
|
||||
} else {
|
||||
intersection() {
|
||||
xcyl(l=c.x*2, r=r);
|
||||
ycyl(l=c.y*2, r=r);
|
||||
xtcyl(l=c.x*2, r=r);
|
||||
ytcyl(l=c.y*2, r=r);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (trimcorners) {
|
||||
spheroid(r=r, style="octa");
|
||||
tsphere(r=r);
|
||||
} else {
|
||||
intersection() {
|
||||
xcyl(l=c.x*2, r=r);
|
||||
ycyl(l=c.y*2, r=r);
|
||||
xtcyl(l=c.x*2, r=r);
|
||||
ytcyl(l=c.y*2, r=r);
|
||||
zcyl(l=c.z*2, r=r);
|
||||
}
|
||||
}
|
||||
@ -233,6 +258,7 @@ module cuboid(
|
||||
|
||||
size = scalar_vec3(size);
|
||||
edges = _edges(edges, except=first_defined([except_edges,except]));
|
||||
teardrop = is_bool(teardrop)&&teardrop? 45 : teardrop;
|
||||
chamfer = approx(chamfer,0) ? undef : chamfer;
|
||||
rounding = approx(rounding,0) ? undef : rounding;
|
||||
assert(is_vector(size,3));
|
||||
@ -240,6 +266,7 @@ module cuboid(
|
||||
assert(is_undef(chamfer) || is_finite(chamfer),"chamfer must be a finite value");
|
||||
assert(is_undef(rounding) || is_finite(rounding),"rounding must be a finite value");
|
||||
assert(is_undef(rounding) || is_undef(chamfer), "Cannot specify nonzero value for both chamfer and rounding");
|
||||
assert(teardrop==false || (is_finite(teardrop) && teardrop>0 && teardrop<90), "teardrop must be either false or an angle number between 0 and 90")
|
||||
assert(is_undef(p1) || is_vector(p1));
|
||||
assert(is_undef(p2) || is_vector(p2));
|
||||
assert(is_bool(trimcorners));
|
||||
@ -358,12 +385,12 @@ module cuboid(
|
||||
minkowski() {
|
||||
cube(isize, center=true);
|
||||
if (trimcorners) {
|
||||
spheroid(r=rounding, style="octa", $fn=sides);
|
||||
tsphere(r=rounding, $fn=sides);
|
||||
} else {
|
||||
intersection() {
|
||||
xtcyl(r=rounding, l=rounding*2, $fn=sides);
|
||||
ytcyl(r=rounding, l=rounding*2, $fn=sides);
|
||||
cyl(r=rounding, h=rounding*2, $fn=sides);
|
||||
rotate([90,0,0]) cyl(r=rounding, h=rounding*2, $fn=sides);
|
||||
rotate([0,90,0]) cyl(r=rounding, h=rounding*2, $fn=sides);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -90,10 +90,10 @@ test_octagon();
|
||||
|
||||
module test_teardrop2d() {
|
||||
$fn=24;
|
||||
assert_approx(teardrop2d(r=50), [[50,0],[48.2962913145,-12.9409522551],[43.3012701892,-25],[35.3553390593,-35.3553390593],[25,-43.3012701892],[12.9409522551,-48.2962913145],[0,-50],[-12.9409522551,-48.2962913145],[-25,-43.3012701892],[-35.3553390593,-35.3553390593],[-43.3012701892,-25],[-48.2962913145,-12.9409522551],[-50,0],[-48.2962913145,12.9409522551],[-43.3012701892,25],[-35.3553390593,35.3553390593],[0,70.7106781187],[35.3553390593,35.3553390593],[43.3012701892,25],[48.2962913145,12.9409522551]]);
|
||||
assert_approx(teardrop2d(d=100), [[50,0],[48.2962913145,-12.9409522551],[43.3012701892,-25],[35.3553390593,-35.3553390593],[25,-43.3012701892],[12.9409522551,-48.2962913145],[0,-50],[-12.9409522551,-48.2962913145],[-25,-43.3012701892],[-35.3553390593,-35.3553390593],[-43.3012701892,-25],[-48.2962913145,-12.9409522551],[-50,0],[-48.2962913145,12.9409522551],[-43.3012701892,25],[-35.3553390593,35.3553390593],[0,70.7106781187],[35.3553390593,35.3553390593],[43.3012701892,25],[48.2962913145,12.9409522551]]);
|
||||
assert_approx(teardrop2d(r=50,cap_h=50), [[50,0],[48.2962913145,-12.9409522551],[43.3012701892,-25],[35.3553390593,-35.3553390593],[25,-43.3012701892],[12.9409522551,-48.2962913145],[0,-50],[-12.9409522551,-48.2962913145],[-25,-43.3012701892],[-35.3553390593,-35.3553390593],[-43.3012701892,-25],[-48.2962913145,-12.9409522551],[-50,0],[-48.2962913145,12.9409522551],[-43.3012701892,25],[-35.3553390593,35.3553390593],[-20.7106781187,50],[20.7106781187,50],[35.3553390593,35.3553390593],[43.3012701892,25],[48.2962913145,12.9409522551]]);
|
||||
assert_approx(teardrop2d(r=50,cap_h=50,ang=30), [[50,0],[48.2962913145,-12.9409522551],[43.3012701892,-25],[35.3553390593,-35.3553390593],[25,-43.3012701892],[12.9409522551,-48.2962913145],[0,-50],[-12.9409522551,-48.2962913145],[-25,-43.3012701892],[-35.3553390593,-35.3553390593],[-43.3012701892,-25],[-48.2962913145,-12.9409522551],[-50,0],[-48.2962913145,12.9409522551],[-43.3012701892,25],[-28.8675134595,50],[28.8675134595,50],[43.3012701892,25],[48.2962913145,12.9409522551]]);
|
||||
assert_approx(teardrop2d(r=50), [[0,70.7106781187],[35.3553390593,35.3553390593],[43.3012701892,25],[48.2962913145,12.9409522551],[50,0],[48.2962913145,-12.9409522551],[43.3012701892,-25],[35.3553390593,-35.3553390593],[25,-43.3012701892],[12.9409522551,-48.2962913145],[0,-50],[-12.9409522551,-48.2962913145],[-25,-43.3012701892],[-35.3553390593,-35.3553390593],[-43.3012701892,-25],[-48.2962913145,-12.9409522551],[-50,0],[-48.2962913145,12.9409522551],[-43.3012701892,25],[-35.3553390593,35.3553390593]]);
|
||||
assert_approx(teardrop2d(d=100), [[0,70.7106781187],[35.3553390593,35.3553390593],[43.3012701892,25],[48.2962913145,12.9409522551],[50,0],[48.2962913145,-12.9409522551],[43.3012701892,-25],[35.3553390593,-35.3553390593],[25,-43.3012701892],[12.9409522551,-48.2962913145],[0,-50],[-12.9409522551,-48.2962913145],[-25,-43.3012701892],[-35.3553390593,-35.3553390593],[-43.3012701892,-25],[-48.2962913145,-12.9409522551],[-50,0],[-48.2962913145,12.9409522551],[-43.3012701892,25],[-35.3553390593,35.3553390593]]);
|
||||
assert_approx(teardrop2d(r=50,cap_h=50), [[20.7106781187,50],[35.3553390593,35.3553390593],[43.3012701892,25],[48.2962913145,12.9409522551],[50,0],[48.2962913145,-12.9409522551],[43.3012701892,-25],[35.3553390593,-35.3553390593],[25,-43.3012701892],[12.9409522551,-48.2962913145],[0,-50],[-12.9409522551,-48.2962913145],[-25,-43.3012701892],[-35.3553390593,-35.3553390593],[-43.3012701892,-25],[-48.2962913145,-12.9409522551],[-50,0],[-48.2962913145,12.9409522551],[-43.3012701892,25],[-35.3553390593,35.3553390593],[-20.7106781187,50]]);
|
||||
assert_approx(teardrop2d(r=50,cap_h=50,ang=30), [[28.8675134595,50],[43.3012701892,25],[48.2962913145,12.9409522551],[50,0],[48.2962913145,-12.9409522551],[43.3012701892,-25],[35.3553390593,-35.3553390593],[25,-43.3012701892],[12.9409522551,-48.2962913145],[0,-50],[-12.9409522551,-48.2962913145],[-25,-43.3012701892],[-35.3553390593,-35.3553390593],[-43.3012701892,-25],[-48.2962913145,-12.9409522551],[-50,0],[-48.2962913145,12.9409522551],[-43.3012701892,25],[-28.8675134595,50]]);
|
||||
}
|
||||
test_teardrop2d();
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user