plane_intersection() bugfix. plane_line_intersection() and polygon_line_intersection() can now detect on-plane intersections.

This commit is contained in:
Revar Desmera 2020-03-17 01:12:51 -07:00
parent 9257c74236
commit 412dd9e260
2 changed files with 53 additions and 25 deletions

View File

@ -592,23 +592,19 @@ function plane3pt_indexed(points, i1, i2, i3) =
// is returned as a list of two points on the line of intersection. If any of the input planes are parallel
// then returns undef.
function plane_intersection(plane1,plane2,plane3) =
is_def(plane3) ?
let (
matrix = [for(p=[plane1,plane2,plane3]) select(p,0,2)],
rhs = [for(p=[plane1,plane2,plane3]) p[3]]
)
linear_solve(matrix,rhs)
:
let(
normal = cross(plane_normal(plane1), plane_normal(plane2))
)
approx(normal,0) ? undef :
let(
matrix = [for(p=[plane1,plane2]) select(p,0,2)],
rhs = [for(p=[plane1,plane2]) p[3]],
point = linear_solve(matrix,rhs)
)
[point, point+normal];
is_def(plane3)? let(
matrix = [for(p=[plane1,plane2,plane3]) select(p,0,2)],
rhs = [for(p=[plane1,plane2,plane3]) p[3]]
) linear_solve(matrix,rhs) :
let(
normal = cross(plane_normal(plane1), plane_normal(plane2))
) approx(norm(normal),0) ? undef :
let(
matrix = [for(p=[plane1,plane2]) select(p,0,2)],
rhs = [for(p=[plane1,plane2]) p[3]],
point = linear_solve(matrix,rhs)
) is_undef(point)? undef :
[point, point+normal];
// Function: plane_from_normal()
@ -653,8 +649,8 @@ function plane_from_pointslist(points, fast=false, eps=EPSILON) =
// Usage:
// plane_normal(plane);
// Description:
// Returns the normal vector for the given plane.
function plane_normal(plane) = [for (i=[0:2]) plane[i]];
// Returns the unit length normal vector for the given plane.
function plane_normal(plane) = unit([for (i=[0:2]) plane[i]]);
// Function: distance_from_plane()
@ -690,6 +686,9 @@ function closest_point_on_plane(plane, point) =
) point - n*d;
// Returns [POINT, U] if line intersects plane at one point.
// Returns [LINE, undef] if the line is on the plane.
// Returns undef if line is parallel to, but not on the given plane.
function _general_plane_line_intersection(plane, line, eps=EPSILON) =
let(
p0 = line[0],
@ -698,6 +697,7 @@ function _general_plane_line_intersection(plane, line, eps=EPSILON) =
u = p1 - p0,
d = n * u
) abs(d)<eps? (
coplanar(plane, p0)? [line,undef] : // Line on plane
undef // Line parallel to plane
) : let(
v0 = closest_point_on_plane(plane, [0,0,0]),
@ -726,20 +726,24 @@ function plane_line_angle(plane, line) =
// pt = plane_line_intersection(plane, line, [eps]);
// Description:
// Takes a line, and a plane [A,B,C,D] where the equation of that plane is `Ax+By+Cz=D`.
// Returns the coordinates of the where the given `line` intersects the given `plane`.
// Returns `undef` if the line is parallel to the plane.
// If `line` intersects `plane` at one point, then that intersection point is returned.
// If `line` lies on `plane`, then the original given `line` is returned.
// If `line` is parallel to, but not on `plane`, then `undef` is returned.
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// line = A list of two 3D points that are on the line.
// bounded = If false, the line is considered unbounded. If true, it is treated as a bounded line segment. If given as `[true, false]` or `[false, true]`, the boundedness of the points are specified individually, allowing the line to be treated as a half-bounded ray. Default: false (unbounded)
// eps = The epsilon error value to determine whether the line is too close to parallel to the plane. Default: `EPSILON` (1e-9)
function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) =
assert(is_vector(plane)&&len(plane)==4)
assert(is_path(line)&&len(line)==2)
assert(is_vector(plane)&&len(plane)==4, "Invalid plane value.")
assert(is_path(line)&&len(line)==2, "Invalid line value.")
assert(!approx(line[0],line[1]), "The two points defining the line must not be the same point.")
let(
bounded = is_list(bounded)? bounded : [bounded, bounded],
res = _general_plane_line_intersection(plane, line, eps=eps)
)
is_undef(res)? undef :
is_undef(res[1])? res[0] :
bounded[0]&&res[1]<0? undef :
bounded[1]&&res[1]>1? undef :
res[0];
@ -750,7 +754,10 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) =
// pt = polygon_line_intersection(poly, line, [bounded], [eps]);
// Description:
// Takes a possibly bounded line, and a 3D planar polygon, and finds their intersection point.
// Returns the 3D coordinates of the intersection point, or `undef` if they do not intersect.
// If the line is on the plane as the polygon, and intersects, then a list of 3D line
// segments is returned, one for each section of the line that is inside the polygon.
// If the line is not on the plane of the polygon, but intersects, then the 3D intersection
// point is returned. If the line does not intersect the polygon, then `undef` is returned.
// Arguments:
// poly = The 3D planar polygon to find the intersection with.
// line = A list of two 3D points that are on the line.
@ -770,6 +777,27 @@ function polygon_line_intersection(poly, line, bounded=false, eps=EPSILON) =
res = _general_plane_line_intersection(plane, line, eps=eps)
)
is_undef(res)? undef :
is_undef(res[1])? (
let(
// Line is on polygon plane.
linevec = unit(line[1] - line[0]),
lp1 = line[0] + (bounded[0]? 0 : -1000000) * linevec,
lp2 = line[1] + (bounded[1]? 0 : 1000000) * linevec,
poly2d = clockwise_polygon(project_plane(poly, p1, p2, p3)),
line2d = project_plane([lp1,lp2], p1, p2, p3),
parts = split_path_at_region_crossings(line2d, [poly2d], closed=false),
inside = [
for (part = parts)
if (point_in_polygon(mean(part), poly2d)>0) part
]
) !inside? undef :
let(
isegs = [
for (seg = inside)
lift_plane(seg, p1, p2, p3)
]
) isegs
) :
bounded[0]&&res[1]<0? undef :
bounded[1]&&res[1]>1? undef :
let(

View File

@ -8,7 +8,7 @@
//////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,196];
BOSL_VERSION = [2,0,197];
// Section: BOSL Library Version Functions