mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 21:58:27 +01:00
commit
49be01970a
@ -650,7 +650,7 @@ function sort(list, idx=undef) =
|
||||
is_string(list)? str_join(sort([for (x = list) x],idx)) :
|
||||
!is_list(list) || len(list)<=1 ? list :
|
||||
is_homogeneous(list,1)
|
||||
? let(size = array_dim(list[0]))
|
||||
? let(size = list_shape(list[0]))
|
||||
size==0 ? _sort_scalars(list)
|
||||
: len(size)!=1 ? _sort_general(list,idx)
|
||||
: is_undef(idx) ? _sort_vectors(list)
|
||||
@ -692,7 +692,7 @@ function sortidx(list, idx=undef) =
|
||||
!is_list(list) || len(list)<=1 ? list :
|
||||
is_homogeneous(list,1)
|
||||
? let(
|
||||
size = array_dim(list[0]),
|
||||
size = list_shape(list[0]),
|
||||
aug = ! (size==0 || len(size)==1) ? 0 // for general sorting
|
||||
: [for(i=[0:len(list)-1]) concat(i,list[i])], // for scalar or vector sorting
|
||||
lidx = size==0? [1] : // scalar sorting
|
||||
|
@ -1860,6 +1860,7 @@ function ccw_polygon(poly) =
|
||||
// Arguments:
|
||||
// poly = The list of the path points for the perimeter of the polygon.
|
||||
function reverse_polygon(poly) =
|
||||
let(poly=force_path(poly,"poly"))
|
||||
assert(is_path(poly), "Input should be a polygon")
|
||||
[ poly[0], for(i=[len(poly)-1:-1:1]) poly[i] ];
|
||||
|
||||
@ -1878,6 +1879,7 @@ function reverse_polygon(poly) =
|
||||
// Example:
|
||||
// polygon_shift([[3,4], [8,2], [0,2], [-4,0]], 2); // Returns [[0,2], [-4,0], [3,4], [8,2]]
|
||||
function polygon_shift(poly, i) =
|
||||
let(poly=force_path(poly,"poly"))
|
||||
assert(is_path(poly), "Invalid polygon." )
|
||||
list_rotate(cleanup_path(poly), i);
|
||||
|
||||
@ -1895,7 +1897,7 @@ function polygon_shift(poly, i) =
|
||||
// makes the total sum over all pairs as small as possible. Returns the reindexed polygon. Note
|
||||
// that the geometry of the polygon is not changed by this operation, just the labeling of its
|
||||
// vertices. If the input polygon is 2d and is oriented opposite the reference then its point order is
|
||||
// flipped.
|
||||
// reversed.
|
||||
// Arguments:
|
||||
// reference = reference polygon path
|
||||
// poly = input polygon to reindex
|
||||
@ -1913,7 +1915,9 @@ function polygon_shift(poly, i) =
|
||||
// move_copies(concat(circ,pent)) circle(r=.1,$fn=32);
|
||||
// color("red") move_copies([pent[0],circ[0]]) circle(r=.1,$fn=32);
|
||||
// color("blue") translate(reindexed[0])circle(r=.1,$fn=32);
|
||||
function reindex_polygon(reference, poly, return_error=false) =
|
||||
function reindex_polygon(reference, poly, return_error=false) =
|
||||
let(reference=force_path(reference,"reference"),
|
||||
poly=force_path(poly,"poly"))
|
||||
assert(is_path(reference) && is_path(poly,dim=len(reference[0])),
|
||||
"Invalid polygon(s) or incompatible dimensions. " )
|
||||
assert(len(reference)==len(poly), "The polygons must have the same length.")
|
||||
@ -1971,6 +1975,8 @@ function polygon_shift(poly, i) =
|
||||
// stroke(ellipse, width=.5, closed=true);
|
||||
// color("blue")stroke(aligned,width=.5,closed=true);
|
||||
function align_polygon(reference, poly, angles, cp, trans, return_ind=false) =
|
||||
let(reference=force_path(reference,"reference"),
|
||||
poly=force_path(poly,"poly"))
|
||||
assert(is_undef(trans) || (is_undef(angles) && is_undef(cp)), "Cannot give both angles/cp and trans as input")
|
||||
let(
|
||||
trans = is_def(trans) ? trans :
|
||||
@ -1978,8 +1984,8 @@ function align_polygon(reference, poly, angles, cp, trans, return_ind=false) =
|
||||
"The `angle` parameter must be a range or a non void list of numbers.")
|
||||
[for(angle=angles) zrot(angle,cp=cp)]
|
||||
)
|
||||
assert(is_path(reference,dim=2) && is_path(poly,dim=2),
|
||||
"Invalid polygon(s). " )
|
||||
assert(is_path(reference,dim=2), "reference must be a 2D polygon")
|
||||
assert(is_path(poly,dim=2), "poly must be a 2D polygon")
|
||||
assert(len(reference)==len(poly), "The polygons must have the same length.")
|
||||
let( // alignments is a vector of entries of the form: [polygon, error]
|
||||
alignments = [
|
||||
|
227
lists.scad
227
lists.scad
@ -84,6 +84,59 @@ function max_length(array) =
|
||||
|
||||
|
||||
|
||||
|
||||
// Internal. Not exposed.
|
||||
function _list_shape_recurse(v) =
|
||||
!is_list(v[0])
|
||||
? len( [for(entry=v) if(!is_list(entry)) 0] ) == 0 ? [] : [undef]
|
||||
: let(
|
||||
firstlen = is_list(v[0]) ? len(v[0]): undef,
|
||||
first = len( [for(entry = v) if(! is_list(entry) || (len(entry) != firstlen)) 0 ] ) == 0 ? firstlen : undef,
|
||||
leveldown = flatten(v)
|
||||
)
|
||||
is_list(leveldown[0])
|
||||
? concat([first],_list_shape_recurse(leveldown))
|
||||
: [first];
|
||||
|
||||
function _list_shape_recurse(v) =
|
||||
let( alen = [for(vi=v) is_list(vi) ? len(vi): -1] )
|
||||
v==[] || max(alen)==-1 ? [] :
|
||||
let( add = max(alen)!=min(alen) ? undef : alen[0] )
|
||||
concat( add, _list_shape_recurse(flatten(v)));
|
||||
|
||||
|
||||
// Function: list_shape()
|
||||
// Usage:
|
||||
// dims = list_shape(v, [depth]);
|
||||
// Topics: Matrices, Array Handling
|
||||
// Description:
|
||||
// Returns the size of a multi-dimensional array, a list of the lengths at each depth.
|
||||
// If the returned value has `dims[i] = j` then it means the ith index ranges of j items.
|
||||
// The return `dims[0]` is equal to the length of v. Then `dims[1]` is equal to the
|
||||
// length of the lists in v, and in general, `dims[i]` is equal to the length of the items
|
||||
// nested to depth i in the list v. If the length of items at that depth is inconsistent, then
|
||||
// `undef` is returned. If no items exist at that depth then `0` is returned. Note that
|
||||
// for simple vectors or matrices it is faster to compute `len(v)` and `len(v[0])`.
|
||||
// Arguments:
|
||||
// v = list to get shape of
|
||||
// depth = depth to compute the size of. If not given, returns a list of sizes at all depths.
|
||||
// Example:
|
||||
// a = list_shape([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]); // Returns [2,2,3]
|
||||
// b = list_shape([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 0); // Returns 2
|
||||
// c = list_shape([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 2); // Returns 3
|
||||
// d = list_shape([[[1,2,3],[4,5,6]],[[7,8,9]]]); // Returns [2,undef,3]
|
||||
function list_shape(v, depth=undef) =
|
||||
assert( is_undef(depth) || ( is_finite(depth) && depth>=0 ), "Invalid depth.")
|
||||
! is_list(v) ? 0 :
|
||||
(depth == undef)
|
||||
? concat([len(v)], _list_shape_recurse(v))
|
||||
: (depth == 0)
|
||||
? len(v)
|
||||
: let( dimlist = _list_shape_recurse(v))
|
||||
(depth > len(dimlist))? 0 : dimlist[depth-1] ;
|
||||
|
||||
|
||||
|
||||
// Function: in_list()
|
||||
// Usage:
|
||||
// bool = in_list(val, list, [idx]);
|
||||
@ -98,13 +151,25 @@ function max_length(array) =
|
||||
// a = in_list("bar", ["foo", "bar", "baz"]); // Returns true.
|
||||
// b = in_list("bee", ["foo", "bar", "baz"]); // Returns false.
|
||||
// c = in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true.
|
||||
|
||||
// Note that a huge complication occurs because OpenSCAD's search() finds
|
||||
// index i as a hits if the val equals list[i] but also if val equals list[i][0].
|
||||
// This means every hit needs to be checked to see if it's actually a hit,
|
||||
// and if the first hit is a mismatch we have to keep searching.
|
||||
// We assume that the normal case doesn't have mixed data, and try first
|
||||
// with just one hit, but if this finds a mismatch then we try again
|
||||
// with all hits, which could be slow for long lists.
|
||||
function in_list(val,list,idx) =
|
||||
assert( is_list(list) && (is_undef(idx) || is_finite(idx)),
|
||||
"Invalid input." )
|
||||
let( s = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] )
|
||||
s==[] || s==[[]] ? false
|
||||
: is_undef(idx) ? val==list[s]
|
||||
: val==list[s][idx];
|
||||
assert(is_list(list),"Input is not a list")
|
||||
assert(is_undef(idx) || is_finite(idx), "Invalid idx value.")
|
||||
let( firsthit = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] )
|
||||
firsthit==[] ? false
|
||||
: is_undef(idx) && val==list[firsthit] ? true
|
||||
: is_def(idx) && val==list[firsthit][idx] ? true
|
||||
// first hit was found but didn't match, so try again with all hits
|
||||
: let ( allhits = search([val], list, 0, idx)[0])
|
||||
is_undef(idx) ? [for(hit=allhits) if (list[hit]==val) 1] != []
|
||||
: [for(hit=allhits) if (list[hit][idx]==val) 1] != [];
|
||||
|
||||
|
||||
// Function: add_scalar()
|
||||
@ -641,31 +706,44 @@ function list_insert(list, indices, values) =
|
||||
|
||||
// Function: list_remove()
|
||||
// Usage:
|
||||
// list = list_remove(list, indices);
|
||||
// list = list_remove(list, ind);
|
||||
// Topics: List Handling
|
||||
// See Also: list_set(), list_insert(), list_remove_values()
|
||||
// Description:
|
||||
// Remove all items from `list` whose indexes are in `indices`.
|
||||
// If `ind` is a number remove `list[ind]` from the list. If `ind` is a list of indices
|
||||
// remove from the list the item all items whose indices appear in `ind`. If you give
|
||||
// indices that are not in the list they are ignored.
|
||||
// Arguments:
|
||||
// list = The list to remove items from.
|
||||
// indices = The list of indexes of items to remove.
|
||||
// ind = index or list of indices of items to remove.
|
||||
// Example:
|
||||
// a = list_insert([3,6,9,12],1); // Returns: [3,9,12]
|
||||
// b = list_insert([3,6,9,12],[1,3]); // Returns: [3,9]
|
||||
function list_remove(list, indices) =
|
||||
assert(is_list(list))
|
||||
is_finite(indices) ?
|
||||
// a = list_remove([3,6,9,12],1); // Returns: [3,9,12]
|
||||
// b = list_remove([3,6,9,12],[1,3]); // Returns: [3,9]
|
||||
// c = list_remove([3,6],3); // Returns: [3,6]
|
||||
function list_remove(list, ind) =
|
||||
assert(is_list(list), "Invalid list in list_remove")
|
||||
is_finite(ind) ?
|
||||
(
|
||||
(ind<0 || ind>=len(list)) ? list
|
||||
:
|
||||
[
|
||||
for (i=[0:1:ind-1]) list[i],
|
||||
for (i=[ind+1:1:len(list)-1]) list[i]
|
||||
]
|
||||
)
|
||||
: ind==[] ? list
|
||||
: assert( is_vector(ind), "Invalid index list in list_remove")
|
||||
let(sres = search(count(list),ind,1))
|
||||
[
|
||||
for (i=[0:1:min(indices, len(list)-1)-1]) list[i],
|
||||
for (i=[min(indices, len(list)-1)+1:1:len(list)-1]) list[i]
|
||||
]
|
||||
: indices==[] ? list
|
||||
: assert( is_vector(indices), "Invalid list `indices`." )
|
||||
[
|
||||
for(i=[0:len(list)-1])
|
||||
if ( []==search(i,indices,1) )
|
||||
list[i]
|
||||
];
|
||||
for(i=idx(list))
|
||||
if (sres[i] == [])
|
||||
list[i]
|
||||
];
|
||||
|
||||
// This method is faster for long lists with few values to remove
|
||||
// let( rem = list_set([], indices, repeat(1,len(indices)), minlen=len(list)))
|
||||
// [for(i=idx(list)) if (rem[i]==0) list[i]];
|
||||
|
||||
|
||||
|
||||
// Function: list_remove_values()
|
||||
@ -675,13 +753,22 @@ function list_remove(list, indices) =
|
||||
// Topics: List Handling
|
||||
// See Also: list_set(), list_insert(), list_remove()
|
||||
// Description:
|
||||
// Removes the first, or all instances of the given `values` from the `list`.
|
||||
// Returns the modified list.
|
||||
// Removes the first, or all instances of the given value or list of values from the list.
|
||||
// If you specify `all=false` and list a value twice then the first two instances will be removed.
|
||||
// Note that if you want to remove a list value such as `[3,4]` then you must give it as
|
||||
// a singleton list, or it will be interpreted as a list of two scalars to remove.
|
||||
// Arguments:
|
||||
// list = The list to modify.
|
||||
// values = The values to remove from the list.
|
||||
// values = The value or list of values to remove from the list.
|
||||
// all = If true, remove all instances of the value `value` from the list `list`. If false, remove only the first. Default: false
|
||||
// Example:
|
||||
// test = [3,4,[5,6],7,5,[5,6],4,[6,5],7,[4,4]];
|
||||
// a=list_remove_values(test,4); // Returns: [3, [5, 6], 7, 5, [5, 6], 4, [6, 5], 7, [4, 4]]
|
||||
// b=list_remove_values(test,[4,4]); // Returns: [3, [5, 6], 7, 5, [5, 6], [6, 5], 7, [4, 4]]
|
||||
// c=list_remove_values(test,[4,7]); // Returns: [3, [5, 6], 5, [5, 6], 4, [6, 5], 7, [4, 4]]
|
||||
// d=list_remove_values(test,[5,6]); // Returns: [3, 4, [5, 6], 7, [5, 6], 4, [6, 5], 7, [4, 4]]
|
||||
// e=list_remove_values(test,[[5,6]]); // Returns: [3,4,7,5,[5,6],4,[6,5],7,[4,4]]
|
||||
// f=list_remove_values(test,[[5,6]],all=true); // Returns: [3,4,7,5,4,[6,5],7,[4,4]]
|
||||
// animals = ["bat", "cat", "rat", "dog", "bat", "rat"];
|
||||
// animals2 = list_remove_values(animals, "rat"); // Returns: ["bat","cat","dog","bat","rat"]
|
||||
// nonflying = list_remove_values(animals, "bat", all=true); // Returns: ["cat","rat","dog","rat"]
|
||||
@ -689,13 +776,39 @@ function list_remove(list, indices) =
|
||||
// domestic = list_remove_values(animals, ["bat","rat"], all=true); // Returns: ["cat","dog"]
|
||||
// animals4 = list_remove_values(animals, ["tucan","rat"], all=true); // Returns: ["bat","cat","dog","bat"]
|
||||
function list_remove_values(list,values=[],all=false) =
|
||||
assert(is_list(list))
|
||||
!is_list(values)? list_remove_values(list, values=[values], all=all) :
|
||||
let(
|
||||
idxs = all? flatten(search(values,list,0)) : search(values,list,1),
|
||||
uidxs = unique(idxs)
|
||||
) list_remove(list,uidxs);
|
||||
|
||||
assert(is_list(list), "Invalid list")
|
||||
len(values)==0 ? list :
|
||||
len(values)==1 ?
|
||||
(
|
||||
!all ?
|
||||
(
|
||||
let(firsthit = search(values,list,1)[0])
|
||||
firsthit==[] ? list
|
||||
: list[firsthit]==values[0] ? list_remove(list,firsthit)
|
||||
: let(allhits = search(values,list,0)[0],
|
||||
allind = [for(i=allhits) if (list[i]==values[0]) i]
|
||||
)
|
||||
allind==[] ? list : list_remove(list,min(allind))
|
||||
)
|
||||
:
|
||||
(
|
||||
let(allhits = search(values,list,0)[0],
|
||||
allind = [for(i=allhits) if (list[i]==values[0]) i]
|
||||
)
|
||||
allind==[] ? list : list_remove(list,allind)
|
||||
)
|
||||
)
|
||||
:!all ? list_remove_values(list_remove_values(list, values[0],all=all), list_tail(values),all=all)
|
||||
:
|
||||
[
|
||||
for(i=idx(list))
|
||||
let(hit=search([list[i]],values,0)[0])
|
||||
if (hit==[]) list[i]
|
||||
else
|
||||
let(check = [for(j=hit) if (values[j]==list[i]) 1])
|
||||
if (check==[]) list[i]
|
||||
];
|
||||
|
||||
|
||||
// Section: List Length Manipulation
|
||||
@ -931,54 +1044,6 @@ function permutations(l,n=2) =
|
||||
// Section: Changing list structure
|
||||
|
||||
|
||||
// Internal. Not exposed.
|
||||
function _array_dim_recurse(v) =
|
||||
!is_list(v[0])
|
||||
? len( [for(entry=v) if(!is_list(entry)) 0] ) == 0 ? [] : [undef]
|
||||
: let(
|
||||
firstlen = is_list(v[0]) ? len(v[0]): undef,
|
||||
first = len( [for(entry = v) if(! is_list(entry) || (len(entry) != firstlen)) 0 ] ) == 0 ? firstlen : undef,
|
||||
leveldown = flatten(v)
|
||||
)
|
||||
is_list(leveldown[0])
|
||||
? concat([first],_array_dim_recurse(leveldown))
|
||||
: [first];
|
||||
|
||||
function _array_dim_recurse(v) =
|
||||
let( alen = [for(vi=v) is_list(vi) ? len(vi): -1] )
|
||||
v==[] || max(alen)==-1 ? [] :
|
||||
let( add = max(alen)!=min(alen) ? undef : alen[0] )
|
||||
concat( add, _array_dim_recurse(flatten(v)));
|
||||
|
||||
|
||||
// Function: array_dim()
|
||||
// Usage:
|
||||
// dims = array_dim(v, [depth]);
|
||||
// Topics: Matrices, Array Handling
|
||||
// Description:
|
||||
// Returns the size of a multi-dimensional array. Returns a list of dimension lengths. The length
|
||||
// of `v` is the dimension `0`. The length of the items in `v` is dimension `1`. The length of the
|
||||
// items in the items in `v` is dimension `2`, etc. For each dimension, if the length of items at
|
||||
// that depth is inconsistent, `undef` will be returned. If no items of that dimension depth exist,
|
||||
// `0` is returned. Otherwise, the consistent length of items in that dimensional depth is
|
||||
// returned.
|
||||
// Arguments:
|
||||
// v = Array to get dimensions of.
|
||||
// depth = Dimension to get size of. If not given, returns a list of dimension lengths.
|
||||
// Example:
|
||||
// a = array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]); // Returns [2,2,3]
|
||||
// b = array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 0); // Returns 2
|
||||
// c = array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 2); // Returns 3
|
||||
// d = array_dim([[[1,2,3],[4,5,6]],[[7,8,9]]]); // Returns [2,undef,3]
|
||||
function array_dim(v, depth=undef) =
|
||||
assert( is_undef(depth) || ( is_finite(depth) && depth>=0 ), "Invalid depth.")
|
||||
! is_list(v) ? 0 :
|
||||
(depth == undef)
|
||||
? concat([len(v)], _array_dim_recurse(v))
|
||||
: (depth == 0)
|
||||
? len(v)
|
||||
: let( dimlist = _array_dim_recurse(v))
|
||||
(depth > len(dimlist))? 0 : dimlist[depth-1] ;
|
||||
|
||||
|
||||
// Function: list_to_matrix()
|
||||
|
115
paths.scad
115
paths.scad
@ -45,6 +45,39 @@ function is_path(list, dim=[2,3], fast=false) =
|
||||
&& len(list[0])>0
|
||||
&& (is_undef(dim) || in_list(len(list[0]), force_list(dim)));
|
||||
|
||||
// Function: is_path_region()
|
||||
// Usage:
|
||||
// bool = is_path_region(path, [name])
|
||||
// Description:
|
||||
// If `path` is a region with one component then return true. If path is a region with more components
|
||||
// then display an error message about the parameter `name` requiring a path or a single component region. If the input
|
||||
// is not a region then return false. This function helps accept singleton regions in functions that
|
||||
// operate on a path.
|
||||
// Arguments:
|
||||
// path = input to process
|
||||
// name = name of parameter to use in error message. Default: "path"
|
||||
function is_path_region(path, name="path") =
|
||||
!is_region(path)? false
|
||||
:assert(len(path)==1,str("Parameter \"",name,"\" must be a path or singleton region, but is a multicomponent region"))
|
||||
true;
|
||||
|
||||
// Function: force_path()
|
||||
// Usage:
|
||||
// outpath = force_path(path, [name])
|
||||
// Description:
|
||||
// If `path` is a region with one component then return that component as a path. If path is a region with more components
|
||||
// then display an error message about the parameter `name` requiring a path or a single component region. If the input
|
||||
// is not a region then return the input without any checks. This function helps accept singleton regions in functions that
|
||||
// operate on a path.
|
||||
// Arguments:
|
||||
// path = input to process
|
||||
// name = name of parameter to use in error message. Default: "path"
|
||||
function force_path(path, name="path") =
|
||||
is_region(path) ?
|
||||
assert(len(path)==1, str("Parameter \"",name,"\" must be a path or singleton region, but is a multicomponent region"))
|
||||
path[0]
|
||||
: path;
|
||||
|
||||
|
||||
// Function: is_closed_path()
|
||||
// Usage:
|
||||
@ -102,6 +135,7 @@ function _path_select(path, s1, u1, s2, u2, closed=false) =
|
||||
) pathout;
|
||||
|
||||
|
||||
|
||||
// Function: path_merge_collinear()
|
||||
// Description:
|
||||
// Takes a path and removes unnecessary sequential collinear points.
|
||||
@ -111,8 +145,11 @@ function _path_select(path, s1, u1, s2, u2, closed=false) =
|
||||
// path = A list of path points of any dimension.
|
||||
// closed = treat as closed polygon. Default: false
|
||||
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
|
||||
function path_merge_collinear(path, closed=false, eps=EPSILON) =
|
||||
assert( is_path(path), "Invalid path." )
|
||||
function path_merge_collinear(path, closed, eps=EPSILON) =
|
||||
is_path_region(path) ? path_merge_collinear(path[0], default(closed,true), eps) :
|
||||
let(closed=default(closed,false))
|
||||
assert(is_bool(closed))
|
||||
assert( is_path(path), "Invalid path in path_merge_collinear." )
|
||||
assert( is_undef(eps) || (is_finite(eps) && (eps>=0) ), "Invalid tolerance." )
|
||||
len(path)<=2 ? path :
|
||||
let(
|
||||
@ -140,7 +177,11 @@ function path_merge_collinear(path, closed=false, eps=EPSILON) =
|
||||
// Example:
|
||||
// path = [[0,0], [5,35], [60,-25], [80,0]];
|
||||
// echo(path_length(path));
|
||||
function path_length(path,closed=false) =
|
||||
function path_length(path,closed) =
|
||||
is_path_region(path) ? path_length(path[0], default(closed,true)) :
|
||||
assert(is_path(path), "Invalid path in path_length")
|
||||
let(closed=default(closed,false))
|
||||
assert(is_bool(closed))
|
||||
len(path)<2? 0 :
|
||||
sum([for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i])])+(closed?norm(path[len(path)-1]-path[0]):0);
|
||||
|
||||
@ -153,7 +194,11 @@ function path_length(path,closed=false) =
|
||||
// Arguments:
|
||||
// path = path to measure
|
||||
// closed = true if the path is closed. Default: false
|
||||
function path_segment_lengths(path, closed=false) =
|
||||
function path_segment_lengths(path, closed) =
|
||||
is_path_region(path) ? path_segment_lengths(path[0], default(closed,true)) :
|
||||
let(closed=default(closed,false))
|
||||
assert(is_path(path),"Invalid path in path_segment_lengths.")
|
||||
assert(is_bool(closed))
|
||||
[
|
||||
for (i=[0:1:len(path)-2]) norm(path[i+1]-path[i]),
|
||||
if (closed) norm(path[0]-last(path))
|
||||
@ -171,7 +216,9 @@ function path_segment_lengths(path, closed=false) =
|
||||
// Arguments:
|
||||
// path = path to operate on
|
||||
// closed = set to true if path is closed. Default: false
|
||||
function path_length_fractions(path, closed=false) =
|
||||
function path_length_fractions(path, closed) =
|
||||
is_path_region(path) ? path_length_fractions(path[0], default(closed,true)):
|
||||
let(closed=default(closed, false))
|
||||
assert(is_path(path))
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
@ -327,6 +374,7 @@ function _sum_preserving_round(data, index=0) =
|
||||
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
|
||||
// move_copies(mypath)sphere(r=.1,$fn=32);
|
||||
function subdivide_path(path, N, refine, closed=true, exact=true, method="length") =
|
||||
let(path = force_path(path))
|
||||
assert(is_path(path))
|
||||
assert(method=="length" || method=="segment")
|
||||
assert(num_defined([N,refine]),"Must give exactly one of N and refine")
|
||||
@ -385,7 +433,8 @@ function subdivide_path(path, N, refine, closed=true, exact=true, method="length
|
||||
// stroke(path,width=2,closed=true);
|
||||
// color("red") move_copies(path) circle(d=9,$fn=12);
|
||||
// color("blue") move_copies(spath) circle(d=5,$fn=12);
|
||||
function subdivide_long_segments(path, maxlen, closed=false) =
|
||||
function subdivide_long_segments(path, maxlen, closed=true) =
|
||||
let(path=force_path(path))
|
||||
assert(is_path(path))
|
||||
assert(is_finite(maxlen))
|
||||
assert(is_bool(closed))
|
||||
@ -413,8 +462,9 @@ function subdivide_long_segments(path, maxlen, closed=false) =
|
||||
// path = path to resample
|
||||
// N = Number of points in output
|
||||
// spacing = Approximate spacing desired
|
||||
// closed = set to true if path is closed. Default: false
|
||||
function resample_path(path, N, spacing, closed=false) =
|
||||
// closed = set to true if path is closed. Default: true
|
||||
function resample_path(path, N, spacing, closed=true) =
|
||||
let(path = force_path(path))
|
||||
assert(is_path(path))
|
||||
assert(num_defined([N,spacing])==1,"Must define exactly one of N and spacing")
|
||||
assert(is_bool(closed))
|
||||
@ -432,9 +482,6 @@ function resample_path(path, N, spacing, closed=false) =
|
||||
];
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// Section: Path Geometry
|
||||
|
||||
// Function: is_path_simple()
|
||||
@ -449,8 +496,11 @@ function resample_path(path, N, spacing, closed=false) =
|
||||
// path = path to check
|
||||
// closed = set to true to treat path as a polygon. Default: false
|
||||
// eps = Epsilon error value used for determine if points coincide. Default: `EPSILON` (1e-9)
|
||||
function is_path_simple(path, closed=false, eps=EPSILON) =
|
||||
function is_path_simple(path, closed, eps=EPSILON) =
|
||||
is_path_region(path) ? is_path_simple(path[0], default(closed,true), eps) :
|
||||
let(closed=default(closed,false))
|
||||
assert(is_path(path, 2),"Must give a 2D path")
|
||||
assert(is_bool(closed))
|
||||
[for(i=[0:1:len(path)-(closed?2:3)])
|
||||
let(v1=path[i+1]-path[i],
|
||||
v2=select(path,i+2)-path[i+1],
|
||||
@ -471,6 +521,7 @@ function is_path_simple(path, closed=false, eps=EPSILON) =
|
||||
// Arguments:
|
||||
// path = The path to find the closest point on.
|
||||
// pt = the point to find the closest point to.
|
||||
// closed =
|
||||
// Example(2D):
|
||||
// path = circle(d=100,$fn=6);
|
||||
// pt = [20,10];
|
||||
@ -478,9 +529,13 @@ function is_path_simple(path, closed=false, eps=EPSILON) =
|
||||
// stroke(path, closed=true);
|
||||
// color("blue") translate(pt) circle(d=3, $fn=12);
|
||||
// color("red") translate(closest[1]) circle(d=3, $fn=12);
|
||||
function path_closest_point(path, pt) =
|
||||
function path_closest_point(path, pt, closed=true) =
|
||||
let(path = force_path(path))
|
||||
assert(is_path(path,[2,3]), "Must give 2D or 3D path.")
|
||||
assert(is_vector(pt, len(path[0])), "Input pt must be a compatible vector")
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
pts = [for (seg=idx(path)) line_closest_point(select(path,seg,seg+1),pt,SEGMENT)],
|
||||
pts = [for (seg=[0:1:len(path)-(closed?1:2)]) line_closest_point(select(path,seg,seg+1),pt,SEGMENT)],
|
||||
dists = [for (p=pts) norm(p-pt)],
|
||||
min_seg = min_index(dists)
|
||||
) [min_seg, pts[min_seg]];
|
||||
@ -513,7 +568,10 @@ function path_closest_point(path, pt) =
|
||||
// color("purple")
|
||||
// for(i=[0:len(tangents)-1])
|
||||
// stroke([rect[i]-tangents[i], rect[i]+tangents[i]],width=.25, endcap2="arrow2");
|
||||
function path_tangents(path, closed=false, uniform=true) =
|
||||
function path_tangents(path, closed, uniform=true) =
|
||||
is_path_region(path) ? path_tangents(path[0], default(closed,true), uniform) :
|
||||
let(closed=default(closed,false))
|
||||
assert(is_bool(closed))
|
||||
assert(is_path(path))
|
||||
!uniform ? [for(t=deriv(path,closed=closed, h=path_segment_lengths(path,closed))) unit(t)]
|
||||
: [for(t=deriv(path,closed=closed)) unit(t)];
|
||||
@ -533,7 +591,13 @@ function path_tangents(path, closed=false, uniform=true) =
|
||||
// normal is not uniquely defined. In this case the function issues an error.
|
||||
// For 2d paths the plane is always defined so the normal fails to exist only
|
||||
// when the derivative is zero (in the case of repeated points).
|
||||
function path_normals(path, tangents, closed=false) =
|
||||
// Arguments:
|
||||
// path = path to compute the normals to
|
||||
// tangents = path tangents optionally supplied
|
||||
// closed = if true path is treated as a polygon. Default: false
|
||||
function path_normals(path, tangents, closed) =
|
||||
is_path_region(path) ? path_normals(path[0], tangents, default(closed,true)) :
|
||||
let(closed=default(closed,false))
|
||||
assert(is_path(path,[2,3]))
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
@ -560,7 +624,11 @@ function path_normals(path, tangents, closed=false) =
|
||||
// curvs = path_curvature(path, [closed]);
|
||||
// Description:
|
||||
// Numerically estimate the curvature of the path (in any dimension).
|
||||
function path_curvature(path, closed=false) =
|
||||
function path_curvature(path, closed) =
|
||||
is_path_region(path) ? path_curvature(path[0], default(closed,true)) :
|
||||
let(closed=default(closed,false))
|
||||
assert(is_bool(closed))
|
||||
assert(is_path(path))
|
||||
let(
|
||||
d1 = deriv(path, closed=closed),
|
||||
d2 = deriv2(path, closed=closed)
|
||||
@ -579,6 +647,8 @@ function path_curvature(path, closed=false) =
|
||||
// Description:
|
||||
// Numerically estimate the torsion of a 3d path.
|
||||
function path_torsion(path, closed=false) =
|
||||
assert(is_path(path,3), "Input path must be a 3d path")
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
d1 = deriv(path,closed=closed),
|
||||
d2 = deriv2(path,closed=closed),
|
||||
@ -883,13 +953,16 @@ function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
|
||||
// Arguments:
|
||||
// path = The original path to split.
|
||||
// cutdist = Distance or list of distances where path is cut
|
||||
// closed = If true, treat the path as a closed polygon.
|
||||
// closed = If true, treat the path as a closed polygon. Default: false
|
||||
// Example(2D,NoAxes):
|
||||
// path = circle(d=100);
|
||||
// segs = path_cut(path, [50, 200], closed=true);
|
||||
// rainbow(segs) stroke($item, endcaps="butt", width=3);
|
||||
function path_cut(path,cutdist,closed) =
|
||||
is_num(cutdist) ? path_cut(path,[cutdist],closed) :
|
||||
is_path_region(path) ? path_cut(path[0], cutdist, default(closed,true)):
|
||||
let(closed=default(closed,false))
|
||||
assert(is_bool(closed))
|
||||
assert(is_vector(cutdist))
|
||||
assert(last(cutdist)<path_length(path,closed=closed),"Cut distances must be smaller than the path length")
|
||||
assert(cutdist[0]>0, "Cut distances must be strictly positive")
|
||||
@ -955,6 +1028,9 @@ function _cut_to_seg_u_form(pathcut, path, closed) =
|
||||
// paths = split_path_at_self_crossings(path);
|
||||
// rainbow(paths) stroke($item, closed=false, width=3);
|
||||
function split_path_at_self_crossings(path, closed=true, eps=EPSILON) =
|
||||
let(path = force_path(path))
|
||||
assert(is_path(path,2), "Must give a 2D path")
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
path = cleanup_path(path, eps=eps),
|
||||
isects = deduplicate(
|
||||
@ -1063,6 +1139,9 @@ function _tag_self_crossing_subpaths(path, nonzero, closed=true, eps=EPSILON) =
|
||||
// right(27)rainbow(polygon_parts(path)) polygon($item);
|
||||
// move([16,-14])rainbow(polygon_parts(path,nonzero=true)) polygon($item);
|
||||
function polygon_parts(path, nonzero=false, eps=EPSILON) =
|
||||
let(path = force_path(path))
|
||||
assert(is_path(path,2), "Must give 2D path")
|
||||
assert(is_bool(nonzero))
|
||||
let(
|
||||
path = cleanup_path(path, eps=eps),
|
||||
tagged = _tag_self_crossing_subpaths(path, nonzero=nonzero, closed=true, eps=eps),
|
||||
|
181
regions.scad
181
regions.scad
@ -43,42 +43,6 @@ function is_region(x) = is_list(x) && is_path(x.x);
|
||||
function force_region(path) = is_path(path) ? [path] : path;
|
||||
|
||||
|
||||
// Function: check_and_fix_path()
|
||||
// Usage:
|
||||
// check_and_fix_path(path, [valid_dim], [closed], [name])
|
||||
// Description:
|
||||
// Checks that the input is a path. If it is a region with one component, converts it to a path.
|
||||
// Note that arbitrary paths must have at least two points, but closed paths need at least 3 points.
|
||||
// valid_dim specfies the allowed dimension of the points in the path.
|
||||
// If the path is closed, removes duplicate endpoint if present.
|
||||
// Arguments:
|
||||
// path = path to process
|
||||
// valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef
|
||||
// closed = set to true if the path is closed, which enables a check for endpoint duplication
|
||||
// name = parameter name to use for reporting errors. Default: "path"
|
||||
function check_and_fix_path(path, valid_dim=undef, closed=false, name="path") =
|
||||
let(
|
||||
path =
|
||||
is_region(path)?
|
||||
assert(len(path)==1,str("Region ",name," supplied as path does not have exactly one component"))
|
||||
path[0]
|
||||
:
|
||||
assert(is_path(path), str("Input ",name," is not a path"))
|
||||
path
|
||||
)
|
||||
assert(len(path)>(closed?2:1),closed?str("Closed path ",name," must have at least 3 points")
|
||||
:str("Path ",name," must have at least 2 points"))
|
||||
let(valid=is_undef(valid_dim) || in_list(len(path[0]),force_list(valid_dim)))
|
||||
assert(
|
||||
valid, str(
|
||||
"Input ",name," must has dimension ", len(path[0])," but dimension must be ",
|
||||
is_list(valid_dim) ? str("one of ",valid_dim) : valid_dim
|
||||
)
|
||||
)
|
||||
closed && approx(path[0], last(path))? list_head(path) : path;
|
||||
|
||||
|
||||
|
||||
// Function: sanitize_region()
|
||||
// Usage:
|
||||
// r_fixed = sanitize_region(r, [nonzero], [eps]);
|
||||
@ -150,6 +114,20 @@ function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) =
|
||||
: point_in_region(point, region, eps=eps, _i=_i+1, _cnt = _cnt + (pip>0? 1 : 0));
|
||||
|
||||
|
||||
// Function: region_area()
|
||||
// Usage:
|
||||
// area=region_area(region);
|
||||
// Description:
|
||||
// Computes the area of the specified valid region. (If the region is invalid and has self intersections
|
||||
// the result is meaningless.)
|
||||
function region_area(region) =
|
||||
assert(is_region(region), "Input must be a region")
|
||||
let(
|
||||
parts = region_parts(region)
|
||||
)
|
||||
-sum([for(R=parts, poly=R) polygon_area(poly,signed=true)]);
|
||||
|
||||
|
||||
// Function: is_region_simple()
|
||||
// Usage:
|
||||
// bool = is_region_simple(region, [eps]);
|
||||
@ -840,40 +818,51 @@ function offset(
|
||||
/// "S" - the subpath is on the 2nd region's border and the two regions interiors are on the same side of the subpath
|
||||
/// "U" - the subpath is on the 2nd region's border and the two regions meet at the subpath from opposite sides
|
||||
/// You specify which type of subpaths to keep with a string of the desired types such as "OS".
|
||||
function _filter_region_parts(region1, region2, keep1, keep2, eps=EPSILON) =
|
||||
function _filter_region_parts(region1, region2, keep, eps=EPSILON) =
|
||||
// We have to compute common vertices between paths in the region because
|
||||
// they can be places where the path must be cut, even though they aren't
|
||||
// found my the split_path function.
|
||||
let(
|
||||
keep = [keep1,keep2],
|
||||
subpaths = split_region_at_region_crossings(region1,region2,eps=eps),
|
||||
regions=[region1,region2]
|
||||
regions=[force_region(region1),
|
||||
force_region(region2)]
|
||||
)
|
||||
_assemble_path_fragments(
|
||||
[for(i=[0:1])
|
||||
let(
|
||||
keepS = search("S",keep[i])!=[],
|
||||
keepU = search("U",keep[i])!=[],
|
||||
keepoutside = search("O",keep[i]) !=[],
|
||||
keepinside = search("I",keep[i]) !=[],
|
||||
all_subpaths = flatten(subpaths[i])
|
||||
)
|
||||
for (subpath = all_subpaths)
|
||||
let(
|
||||
midpt = mean([subpath[0], subpath[1]]),
|
||||
rel = point_in_region(midpt,regions[1-i],eps=eps),
|
||||
keepthis = rel<0 ? keepoutside
|
||||
: rel>0 ? keepinside
|
||||
: !(keepS || keepU) ? false
|
||||
: let(
|
||||
sidept = midpt + 0.01*line_normal(subpath[0],subpath[1]),
|
||||
rel1 = point_in_region(sidept,region1,eps=eps)>0,
|
||||
rel2 = point_in_region(sidept,region2,eps=eps)>0
|
||||
)
|
||||
rel1==rel2 ? keepS : keepU
|
||||
)
|
||||
if (keepthis) subpath
|
||||
]);
|
||||
[for(i=[0:1])
|
||||
let(
|
||||
keepS = search("S",keep[i])!=[],
|
||||
keepU = search("U",keep[i])!=[],
|
||||
keepoutside = search("O",keep[i]) !=[],
|
||||
keepinside = search("I",keep[i]) !=[],
|
||||
all_subpaths = flatten(subpaths[i])
|
||||
)
|
||||
for (subpath = all_subpaths)
|
||||
let(
|
||||
midpt = mean([subpath[0], subpath[1]]),
|
||||
rel = point_in_region(midpt,regions[1-i],eps=eps),
|
||||
keepthis = rel<0 ? keepoutside
|
||||
: rel>0 ? keepinside
|
||||
: !(keepS || keepU) ? false
|
||||
: let(
|
||||
sidept = midpt + 0.01*line_normal(subpath[0],subpath[1]),
|
||||
rel1 = point_in_region(sidept,regions[0],eps=eps)>0,
|
||||
rel2 = point_in_region(sidept,regions[1],eps=eps)>0
|
||||
)
|
||||
rel1==rel2 ? keepS : keepU
|
||||
)
|
||||
if (keepthis) subpath
|
||||
]
|
||||
);
|
||||
|
||||
|
||||
function _list_three(a,b,c) =
|
||||
is_undef(b) ? a :
|
||||
[
|
||||
a,
|
||||
if (is_def(b)) b,
|
||||
if (is_def(c)) c
|
||||
];
|
||||
|
||||
|
||||
|
||||
// Function&Module: union()
|
||||
@ -894,12 +883,12 @@ function _filter_region_parts(region1, region2, keep1, keep2, eps=EPSILON) =
|
||||
// color("green") region(union(shape1,shape2));
|
||||
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
|
||||
function union(regions=[],b=undef,c=undef,eps=EPSILON) =
|
||||
b!=undef? union(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
|
||||
let(regions=_list_three(regions,b,c))
|
||||
len(regions)==0? [] :
|
||||
len(regions)==1? regions[0] :
|
||||
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
|
||||
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
||||
union([
|
||||
_filter_region_parts(regions[0],regions[1],"OS", "O", eps=eps),
|
||||
_filter_region_parts(regions[0],regions[1],["OS", "O"], eps=eps),
|
||||
for (i=[2:1:len(regions)-1]) regions[i]
|
||||
],
|
||||
eps=eps
|
||||
@ -925,17 +914,17 @@ function union(regions=[],b=undef,c=undef,eps=EPSILON) =
|
||||
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
|
||||
// color("green") region(difference(shape1,shape2));
|
||||
function difference(regions=[],b=undef,c=undef,eps=EPSILON) =
|
||||
b!=undef? difference(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
|
||||
len(regions)==0? [] :
|
||||
len(regions)==1? regions[0] :
|
||||
regions[0]==[] ? [] :
|
||||
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
|
||||
difference([
|
||||
_filter_region_parts(regions[0],regions[1],"OU", "I", eps=eps),
|
||||
for (i=[2:1:len(regions)-1]) regions[i]
|
||||
],
|
||||
eps=eps
|
||||
);
|
||||
let(regions = _list_three(regions,b,c))
|
||||
len(regions)==0? []
|
||||
: len(regions)==1? regions[0]
|
||||
: regions[0]==[] ? []
|
||||
: let(regions=[for (r=regions) is_path(r)? [r] : r])
|
||||
difference([
|
||||
_filter_region_parts(regions[0],regions[1],["OU", "I"], eps=eps),
|
||||
for (i=[2:1:len(regions)-1]) regions[i]
|
||||
],
|
||||
eps=eps
|
||||
);
|
||||
|
||||
|
||||
// Function&Module: intersection()
|
||||
@ -956,17 +945,16 @@ function difference(regions=[],b=undef,c=undef,eps=EPSILON) =
|
||||
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
|
||||
// color("green") region(intersection(shape1,shape2));
|
||||
function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
|
||||
b!=undef? intersection(concat([regions],[b],c==undef?[]:[c]),eps=eps)
|
||||
: len(regions)==0 ? []
|
||||
let(regions = _list_three(regions,b,c))
|
||||
len(regions)==0 ? []
|
||||
: len(regions)==1? regions[0]
|
||||
: regions[0]==[] || regions[1]==[] ? []
|
||||
: let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
|
||||
intersection([
|
||||
_filter_region_parts(regions[0],regions[1],"IS","I",eps=eps),
|
||||
for (i=[2:1:len(regions)-1]) regions[i]
|
||||
],
|
||||
eps=eps
|
||||
);
|
||||
: intersection([
|
||||
_filter_region_parts(regions[0],regions[1],["IS","I"],eps=eps),
|
||||
for (i=[2:1:len(regions)-1]) regions[i]
|
||||
],
|
||||
eps=eps
|
||||
);
|
||||
|
||||
|
||||
|
||||
@ -995,16 +983,17 @@ function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
|
||||
// circle(d=40);
|
||||
// }
|
||||
function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) =
|
||||
b!=undef? exclusive_or([regions, b, if(is_def(c)) c],eps=eps) :
|
||||
len(regions)==0? [] :
|
||||
len(regions)==1? regions[0] :
|
||||
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
||||
exclusive_or([
|
||||
_filter_region_parts(regions[0],regions[1],"IO","IO",eps=eps),
|
||||
for (i=[2:1:len(regions)-1]) regions[i]
|
||||
],
|
||||
eps=eps
|
||||
);
|
||||
let(regions = _list_three(regions,b,c))
|
||||
len(regions)==0? []
|
||||
: len(regions)==1? regions[0]
|
||||
: regions[0]==[] ? exclusive_or(list_tail(regions))
|
||||
: regions[1]==[] ? exclusive_or(list_remove(regions,1))
|
||||
: exclusive_or([
|
||||
_filter_region_parts(regions[0],regions[1],["IO","IO"],eps=eps),
|
||||
for (i=[2:1:len(regions)-1]) regions[i]
|
||||
],
|
||||
eps=eps
|
||||
);
|
||||
|
||||
|
||||
module exclusive_or() {
|
||||
|
@ -227,9 +227,7 @@ function round_corners(path, method="circle", radius, cut, joint, k, closed=true
|
||||
let(
|
||||
default_k = 0.5,
|
||||
size=one_defined([radius, cut, joint], "radius,cut,joint"),
|
||||
path = is_region(path)?
|
||||
assert(len(path)==1, "Region supplied as path does not have exactly one component")
|
||||
path[0] : path,
|
||||
path = force_path(path),
|
||||
size_ok = is_num(size) || len(size)==len(path) || (!closed && len(size)==len(path)-2),
|
||||
k_ok = is_undef(k) || (method=="smooth" && (is_num(k) || len(k)==len(path) || (!closed && len(k)==len(path)-2))),
|
||||
measure = is_def(radius) ? "radius" :
|
||||
@ -611,6 +609,7 @@ module path_join(paths,joint=0,k=0.5,relocate=true,closed=false) { no_module();}
|
||||
function path_join(paths,joint=0,k=0.5,relocate=true,closed=false)=
|
||||
assert(is_list(paths),"Input paths must be a list of paths")
|
||||
let(
|
||||
paths = [for(i=idx(paths)) force_path(paths[i],str("paths[",i,"]"))],
|
||||
badpath = [for(j=idx(paths)) if (!is_path(paths[j])) j]
|
||||
)
|
||||
assert(badpath==[], str("Entries in paths are not valid paths: ",badpath))
|
||||
@ -963,7 +962,10 @@ function offset_sweep(
|
||||
["k", k],
|
||||
["points", []],
|
||||
],
|
||||
path = check_and_fix_path(path, [2], closed=true),
|
||||
path = force_path(path)
|
||||
)
|
||||
assert(is_path(path,2), "Input path must be a 2D path")
|
||||
let(
|
||||
clockwise = is_polygon_clockwise(path),
|
||||
dummy1 = _struct_valid(top,"offset_sweep","top"),
|
||||
dummy2 = _struct_valid(bottom,"offset_sweep","bottom"),
|
||||
@ -1456,6 +1458,7 @@ function _remove_undefined_vals(list) =
|
||||
// right(12)
|
||||
// offset_stroke(path, width=1, closed=true);
|
||||
function offset_stroke(path, width=1, rounded=true, start="flat", end="flat", check_valid=true, quality=1, chamfer=false, closed=false) =
|
||||
let(path = force_path(path))
|
||||
assert(is_path(path,2),"path is not a 2d path")
|
||||
let(closedok = !closed || (is_undef(start) && is_undef(end)))
|
||||
assert(closedok, "Parameters `start` and `end` not allowed with closed path")
|
||||
@ -1832,7 +1835,11 @@ module rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_bot
|
||||
|
||||
function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_bot, k_top, k_sides, k=0.5, splinesteps=16,
|
||||
h, length, l, height, debug=false) =
|
||||
assert(is_path(bottom) && len(bottom)>=3)
|
||||
let(
|
||||
bottom = force_path(bottom,"bottom"),
|
||||
top = force_path(top,"top")
|
||||
)
|
||||
assert(is_path(bottom,[2,3]) && len(bottom)>=3, "bottom must be a 2D or 3D path")
|
||||
assert(is_num(k) && k>=0 && k<=1, "Curvature parameter k must be in interval [0,1]")
|
||||
let(
|
||||
N=len(bottom),
|
||||
@ -2155,21 +2162,22 @@ module bent_cutout_mask(r, thickness, path, radius, convexity=10)
|
||||
{
|
||||
no_children($children);
|
||||
r = get_radius(r1=r, r2=radius);
|
||||
dummy=assert(is_def(r) && r>0,"Radius of the cylinder to bend around must be positive");
|
||||
assert(is_path(path,2),"Input path must be a 2d path");
|
||||
dummy1=assert(is_def(r) && r>0,"Radius of the cylinder to bend around must be positive");
|
||||
path2 = force_path(path);
|
||||
dummy2=assert(is_path(path2,2),"Input path must be a 2D path");
|
||||
assert(r-thickness>0, "Thickness too large for radius");
|
||||
assert(thickness>0, "Thickness must be positive");
|
||||
path = clockwise_polygon(path);
|
||||
fixpath = clockwise_polygon(path2);
|
||||
curvepoints = arc(d=thickness, angle = [-180,0]);
|
||||
profiles = [for(pt=curvepoints) _cyl_hole(r+pt.x,apply(xscale((r+pt.x)/r), offset(path,delta=thickness/2+pt.y,check_valid=false,closed=true)))];
|
||||
pathx = column(path,0);
|
||||
profiles = [for(pt=curvepoints) _cyl_hole(r+pt.x,apply(xscale((r+pt.x)/r), offset(fixpath,delta=thickness/2+pt.y,check_valid=false,closed=true)))];
|
||||
pathx = column(fixpath,0);
|
||||
minangle = (min(pathx)-thickness/2)*360/(2*PI*r);
|
||||
maxangle = (max(pathx)+thickness/2)*360/(2*PI*r);
|
||||
mindist = (r+thickness/2)/cos((maxangle-minangle)/2);
|
||||
assert(maxangle-minangle<180,"Cutout angle span is too large. Must be smaller than 180.");
|
||||
zmean = mean(column(path,1));
|
||||
innerzero = repeat([0,0,zmean], len(path));
|
||||
outerpt = repeat( [1.5*mindist*cos((maxangle+minangle)/2),1.5*mindist*sin((maxangle+minangle)/2),zmean], len(path));
|
||||
zmean = mean(column(fixpath,1));
|
||||
innerzero = repeat([0,0,zmean], len(fixpath));
|
||||
outerpt = repeat( [1.5*mindist*cos((maxangle+minangle)/2),1.5*mindist*sin((maxangle+minangle)/2),zmean], len(fixpath));
|
||||
vnf_polyhedron(vnf_vertex_array([innerzero, each profiles, outerpt],col_wrap=true),convexity=convexity);
|
||||
}
|
||||
|
||||
|
12
skin.scad
12
skin.scad
@ -436,7 +436,7 @@ function skin(profiles, slices, refine=1, method="direct", sampling, caps, close
|
||||
assert(capsOK, "caps must be boolean or a list of two booleans")
|
||||
assert(!closed || !caps, "Cannot make closed shape with caps")
|
||||
let(
|
||||
profile_dim=array_dim(profiles,2),
|
||||
profile_dim=list_shape(profiles,2),
|
||||
profiles_zcheck = (profile_dim != 2) || (profile_dim==2 && is_list(z) && len(z)==len(profiles)),
|
||||
profiles_ok = (profile_dim==2 && is_list(z) && len(z)==len(profiles)) || profile_dim==3
|
||||
)
|
||||
@ -829,8 +829,8 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
|
||||
assert(!closed || twist % (360/symmetry)==0, str("For a closed sweep, twist must be a multiple of 360/symmetry = ",360/symmetry))
|
||||
assert(closed || symmetry==1, "symmetry must be 1 when closed is false")
|
||||
assert(is_integer(symmetry) && symmetry>0, "symmetry must be a positive integer")
|
||||
// let(shape = check_and_fix_path(shape,valid_dim=2,closed=true,name="shape"))
|
||||
assert(is_path(path), "input path is not a path")
|
||||
let(path = force_path(path))
|
||||
assert(is_path(path,[2,3]), "input path is not a 2D or 3D path")
|
||||
assert(!closed || !approx(path[0],last(path)), "Closed path includes start point at the end")
|
||||
let(
|
||||
path = path3d(path),
|
||||
@ -973,8 +973,11 @@ function path_sweep2d(shape, path, closed=false, caps, quality=1, style="min_edg
|
||||
: closed ? false : true,
|
||||
capsOK = is_bool(caps) || is_bool_list(caps,2),
|
||||
fullcaps = is_bool(caps) ? [caps,caps] : caps,
|
||||
shape = check_and_fix_path(shape,valid_dim=2,closed=true,name="shape")
|
||||
shape = force_path(shape,"shape"),
|
||||
path = force_path(path)
|
||||
)
|
||||
assert(is_path(shape,2), "shape must be a 2D path")
|
||||
assert(is_path(path,2), "path must be a 2D path")
|
||||
assert(capsOK, "caps must be boolean or a list of two booleans")
|
||||
assert(!closed || !caps, "Cannot make closed shape with caps")
|
||||
let(
|
||||
@ -1222,6 +1225,7 @@ function _smooth(data,len,closed=false,angle=false) =
|
||||
)
|
||||
result;
|
||||
|
||||
|
||||
// Function: rot_resample()
|
||||
// Usage:
|
||||
// rlist = rot_resample(rotlist, N, [method], [twist], [scale], [smoothlen], [long], [turns], [closed])
|
||||
|
@ -156,9 +156,14 @@ test_list_set();
|
||||
|
||||
module test_list_remove() {
|
||||
assert(list_remove([3,6,9,12],1) == [3,9,12]);
|
||||
assert(list_remove([3,6,9,12],[1]) == [3,9,12]);
|
||||
assert(list_remove([3,6,9,12],[1,3]) == [3,9]);
|
||||
assert(list_remove([3,6,9],[]) == [3,6,9]);
|
||||
assert(list_remove([],[]) == []);
|
||||
assert(list_remove([1,2,3], -1)==[1,2,3]);
|
||||
assert(list_remove([1,2,3], 3)==[1,2,3]);
|
||||
assert(list_remove([1,2,3], [-1,3])==[1,2,3]);
|
||||
assert(list_remove([1,2,3], [-1,1,3])==[1,3]);
|
||||
}
|
||||
test_list_remove();
|
||||
|
||||
@ -169,6 +174,23 @@ module test_list_remove_values() {
|
||||
assert(list_remove_values(animals, ["bat","rat"]) == ["cat","dog","bat","rat"]);
|
||||
assert(list_remove_values(animals, ["bat","rat"], all=true) == ["cat","dog"]);
|
||||
assert(list_remove_values(animals, ["tucan","rat"], all=true) == ["bat","cat","dog","bat"]);
|
||||
|
||||
test = [3,4,[5,6],7,5,[5,6],4,[6,5],7,[4,4]];
|
||||
assert_equal(list_remove_values(test,4), [3, [5, 6], 7, 5, [5, 6], 4, [6, 5], 7, [4, 4]]);
|
||||
assert_equal(list_remove_values(test,[4,4]), [3, [5, 6], 7, 5, [5, 6], [6, 5], 7, [4, 4]]);
|
||||
assert_equal(list_remove_values(test,[4,7]), [3, [5, 6], 5, [5, 6], 4, [6, 5], 7, [4, 4]]);
|
||||
assert_equal(list_remove_values(test,[5,6]), [3, 4, [5, 6], 7, [5, 6], 4, [6, 5], 7, [4, 4]]);
|
||||
assert_equal(list_remove_values(test,[[5,6]]), [3,4,7,5,[5,6],4,[6,5],7,[4,4]]);
|
||||
assert_equal(list_remove_values(test,[[5,6]],all=true), [3,4,7,5,4,[6,5],7,[4,4]]);
|
||||
assert_equal(list_remove_values(test,4,all=true), [3, [5, 6], 7, 5, [5, 6], [6, 5],7, [4, 4]]);
|
||||
assert_equal(list_remove_values(test,[4,7],all=true), [3, [5, 6], 5, [5, 6], [6, 5], [4, 4]]);
|
||||
assert_equal(list_remove_values(test,[]),test);
|
||||
assert_equal(list_remove_values(test,[],all=true),test);
|
||||
assert_equal(list_remove_values(test,99), test);
|
||||
assert_equal(list_remove_values(test,99,all=true), test);
|
||||
assert_equal(list_remove_values(test,[99,100],all=true), test);
|
||||
assert_equal(list_remove_values(test,[99,100]), test);
|
||||
|
||||
}
|
||||
test_list_remove_values();
|
||||
|
||||
@ -402,19 +424,19 @@ module test_full_flatten() {
|
||||
test_full_flatten();
|
||||
|
||||
|
||||
module test_array_dim() {
|
||||
assert(array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]) == [2,2,3]);
|
||||
assert(array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 0) == 2);
|
||||
assert(array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 2) == 3);
|
||||
assert(array_dim([[[1,2,3],[4,5,6]],[[7,8,9]]]) == [2,undef,3]);
|
||||
assert(array_dim([1,2,3,4,5,6,7,8,9]) == [9]);
|
||||
assert(array_dim([[1],[2],[3],[4],[5],[6],[7],[8],[9]]) == [9,1]);
|
||||
assert(array_dim([]) == [0]);
|
||||
assert(array_dim([[]]) == [1,0]);
|
||||
assert(array_dim([[],[]]) == [2,0]);
|
||||
assert(array_dim([[],[1]]) == [2,undef]);
|
||||
module test_list_shape() {
|
||||
assert(list_shape([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]) == [2,2,3]);
|
||||
assert(list_shape([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 0) == 2);
|
||||
assert(list_shape([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 2) == 3);
|
||||
assert(list_shape([[[1,2,3],[4,5,6]],[[7,8,9]]]) == [2,undef,3]);
|
||||
assert(list_shape([1,2,3,4,5,6,7,8,9]) == [9]);
|
||||
assert(list_shape([[1],[2],[3],[4],[5],[6],[7],[8],[9]]) == [9,1]);
|
||||
assert(list_shape([]) == [0]);
|
||||
assert(list_shape([[]]) == [1,0]);
|
||||
assert(list_shape([[],[]]) == [2,0]);
|
||||
assert(list_shape([[],[1]]) == [2,undef]);
|
||||
}
|
||||
test_array_dim();
|
||||
test_list_shape();
|
||||
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
@ -39,6 +39,7 @@ test_cleanup_path();
|
||||
module test_path_merge_collinear() {
|
||||
path = [[-20,-20], [-10,-20], [0,-10], [10,0], [20,10], [20,20], [15,30]];
|
||||
assert(path_merge_collinear(path) == [[-20,-20], [-10,-20], [20,10], [20,20], [15,30]]);
|
||||
assert(path_merge_collinear([path]) == [[-20,-20], [-10,-20], [20,10], [20,20], [15,30]]);
|
||||
}
|
||||
test_path_merge_collinear();
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user