mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-04-22 02:13:12 +02:00
Merge branch 'anachronist_isosurface' of https://github.com/amatulic/BOSL2 into anachronist_isosurface
This commit is contained in:
commit
4fe70f6a23
@ -5061,7 +5061,7 @@ module restore(desc)
|
||||
req_children($children);
|
||||
if (is_undef(desc)){
|
||||
T = matrix_inverse($transform);
|
||||
$parent_geom = ["prismoid", [CTR, UP, 0]];
|
||||
$parent_geom = attach_geom([0,0,0]);
|
||||
multmatrix(T) children();
|
||||
}
|
||||
else{
|
||||
|
@ -448,7 +448,7 @@ function zcopies(spacing, n, l, sp, p=_NO_ARG) =
|
||||
// When called as a module, copies `children()` at one or more evenly spaced positions along a line.
|
||||
// By default, the line will be centered at the origin, unless the starting point `p1` is given.
|
||||
// The line will be pointed towards `RIGHT` (X+) unless otherwise given as a vector in `l`,
|
||||
// `spacing`, or `p1`/`p2`. The psotion of the copies is specified in one of several ways:
|
||||
// `spacing`, or `p1`/`p2`. The position of the copies is specified in one of several ways:
|
||||
// .
|
||||
// If You Know... | Then Use Something Like...
|
||||
// -------------------------------- | --------------------------------
|
||||
@ -520,6 +520,7 @@ module line_copies(spacing, n, l, p1, p2)
|
||||
|
||||
function line_copies(spacing, n, l, p1, p2, p=_NO_ARG) =
|
||||
assert(is_undef(spacing) || is_finite(spacing) || is_vector(spacing))
|
||||
assert(!is_list(spacing) || len(spacing)==2 || len(spacing)==3, "Vector `spacing` must have length 2 or 3")
|
||||
assert(is_undef(n) || is_finite(n))
|
||||
assert(is_undef(l) || is_finite(l) || is_vector(l))
|
||||
assert(is_undef(p1) || is_vector(p1))
|
||||
@ -527,7 +528,9 @@ function line_copies(spacing, n, l, p1, p2, p=_NO_ARG) =
|
||||
assert(is_undef(p2) || is_def(p1), "If p2 is given must also give p1")
|
||||
assert(is_undef(p2) || is_undef(l), "Cannot give both p2 and l")
|
||||
assert(is_undef(n) || num_defined([l,spacing,p2])==1,"If n is given then must give exactly one of 'l', 'spacing', or the 'p1'/'p2' pair")
|
||||
assert(is_def(n) || num_defined([l,spacing,p2])>=1,"If n is given then must give at least one of 'l', 'spacing', or the 'p1'/'p2' pair")
|
||||
assert(is_def(n) || num_defined([l,spacing,p2])>=1,"If n is not given then must give at least one of 'l', 'spacing', or the 'p1'/'p2' pair")
|
||||
assert(!(is_vector(spacing) && is_vector(l) && vector_angle(spacing,l)>EPSILON), "Cannot give conflicting vector 'spacing' and vector 'l' value.")
|
||||
assert(!(is_vector(spacing) && is_def(p2)), "Cannot combine vector 'spacing' with the 'p1'/'p2' pair")
|
||||
let(
|
||||
ll = is_def(l)? scalar_vec3(l, 0)
|
||||
: is_def(spacing) && is_def(n)? (n-1) * scalar_vec3(spacing, 0)
|
||||
@ -538,7 +541,7 @@ function line_copies(spacing, n, l, p1, p2, p=_NO_ARG) =
|
||||
: 2,
|
||||
spc = cnt<=1? [0,0,0]
|
||||
: is_undef(spacing) && is_def(ll)? ll/(cnt-1)
|
||||
: is_num(spacing) && is_def(ll)? (ll/(cnt-1))
|
||||
: is_num(spacing) && is_def(ll)? ll/(cnt-1)
|
||||
: scalar_vec3(spacing, 0)
|
||||
)
|
||||
assert(!is_undef(cnt), "Need two of `spacing`, 'l', 'n', or `p1`/`p2` arguments in `line_copies()`.")
|
||||
@ -546,7 +549,6 @@ function line_copies(spacing, n, l, p1, p2, p=_NO_ARG) =
|
||||
[for (i=[0:1:cnt-1]) translate(i * spc + spos, p=p)];
|
||||
|
||||
|
||||
|
||||
// Function&Module: grid_copies()
|
||||
// Synopsis: Places copies of children in an [X,Y] grid.
|
||||
// SynTags: MatList, Trans
|
||||
|
@ -1907,8 +1907,8 @@ function _merge_segments(insegs,outsegs, eps, i=1) =
|
||||
// the input polygon. For 3d polygons, the triangle windings will induce a normal
|
||||
// vector with the same direction of the polygon normal.
|
||||
// .
|
||||
// The function produce correct triangulations for some non-twisted non-simple polygons.
|
||||
// A polygon is non-twisted iff it is simple or it has a partition in
|
||||
// The function produces correct triangulations for some non-twisted non-simple polygons.
|
||||
// A polygon is non-twisted if it is simple or it has a partition in
|
||||
// simple polygons with the same winding such that the intersection of any two partitions is
|
||||
// made of full edges and/or vertices of both partitions. These polygons may have "touching" vertices
|
||||
// (two vertices having the same coordinates, but distinct adjacencies) and "contact" edges
|
||||
@ -1972,7 +1972,11 @@ function polygon_triangulate(poly, ind, error=true, eps=EPSILON) =
|
||||
len(ind) == 3
|
||||
? _degenerate_tri([poly[ind[0]], poly[ind[1]], poly[ind[2]]], eps) ? [] :
|
||||
// non zero area
|
||||
let( degen = norm(scalar_vec3(cross(poly[ind[1]]-poly[ind[0]], poly[ind[2]]-poly[ind[0]]))) < 2*eps )
|
||||
let(
|
||||
cp = cross(poly[ind[1]]-poly[ind[0]], poly[ind[2]]-poly[ind[0]]),
|
||||
degen = is_num(cp) ? abs(cp) < 2*eps
|
||||
: norm(cp) < 2*eps
|
||||
)
|
||||
assert( ! error || ! degen, "The polygon vertices are collinear.")
|
||||
degen ? undef : [ind]
|
||||
: len(poly[ind[0]]) == 3
|
||||
|
@ -461,7 +461,7 @@ function list(l) = is_list(l)? l : [for (x=l) x];
|
||||
// Arguments:
|
||||
// value = The value or list to coerce into a list.
|
||||
// n = The number of items in the coerced list. Default: 1
|
||||
// fill = The value to pad the coerced list with, after the firt value. Default: undef (pad with copies of `value`)
|
||||
// fill = The value to pad the coerced list with, after the first value. Default: undef (pad with copies of `value`)
|
||||
// Example:
|
||||
// x = force_list([3,4,5]); // Returns: [3,4,5]
|
||||
// y = force_list(5); // Returns: [5]
|
||||
|
@ -358,7 +358,6 @@ function sinh(x) =
|
||||
assert(is_finite(x), "The input must be a finite number.")
|
||||
(exp(x)-exp(-x))/2;
|
||||
|
||||
|
||||
// Function: cosh()
|
||||
// Synopsis: Returns the hyperbolic cosine of the given value.
|
||||
// Topics: Math, Trigonometry
|
||||
@ -378,10 +377,11 @@ function cosh(x) =
|
||||
// Usage:
|
||||
// a = tanh(x);
|
||||
// Description: Takes a value `x`, and returns the hyperbolic tangent of it.
|
||||
|
||||
function tanh(x) =
|
||||
assert(is_finite(x), "The input must be a finite number.")
|
||||
sinh(x)/cosh(x);
|
||||
|
||||
let (e = exp(2*x) + 1)
|
||||
e == INF ? 1 : (e-2)/e;
|
||||
|
||||
// Function: asinh()
|
||||
// Synopsis: Returns the hyperbolic arc-sine of the given value.
|
||||
|
@ -488,7 +488,7 @@ module chain_hull()
|
||||
// Synopsis: Removes diff shapes from base shape surface.
|
||||
// SynTags: Geom
|
||||
// Topics: Miscellaneous
|
||||
// See Also: offset3d()
|
||||
// See Also: offset3d(), round3d()
|
||||
// Usage:
|
||||
// minkowski_difference() { BASE; DIFF1; DIFF2; ... }
|
||||
// Description:
|
||||
@ -536,14 +536,15 @@ module minkowski_difference(planar=false) {
|
||||
// Usage:
|
||||
// offset3d(r, [size], [convexity]) CHILDREN;
|
||||
// Description:
|
||||
// Expands or contracts the surface of a 3D object by a given amount. This is very, very slow.
|
||||
// Expands or contracts the surface of a 3D object by a given amount. The children must
|
||||
// fit in a centered cube of the specified size. This is very, very slow.
|
||||
// No really, this is unbearably slow. It uses `minkowski()`. Use this as a last resort.
|
||||
// This is so slow that no example images will be rendered.
|
||||
// Arguments:
|
||||
// r = Radius to expand object by. Negative numbers contract the object.
|
||||
// size = Maximum size of object to be contracted, given as a scalar. Default: 100
|
||||
// size = Scalar size of a centered cube containing the children. Default: 1000
|
||||
// convexity = Max number of times a line could intersect the walls of the object. Default: 10
|
||||
module offset3d(r, size=100, convexity=10) {
|
||||
module offset3d(r, size=1000, convexity=10) {
|
||||
req_children($children);
|
||||
n = quant(max(8,segs(abs(r))),4);
|
||||
attachable(){
|
||||
@ -589,14 +590,16 @@ module offset3d(r, size=100, convexity=10) {
|
||||
// Rounds arbitrary 3D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
|
||||
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
|
||||
// can let you round to different radii for concave and convex corners. The 3D object must not have
|
||||
// any parts narrower than twice the `or` radius. Such parts will disappear. This is an *extremely*
|
||||
// any parts narrower than twice the `or` radius. Such parts will disappear. The children must fit
|
||||
// inside a cube of the specified size. This is an *extremely*
|
||||
// slow operation. I cannot emphasize enough just how slow it is. It uses `minkowski()` multiple times.
|
||||
// Use this as a last resort. This is so slow that no example images will be rendered.
|
||||
// Arguments:
|
||||
// r = Radius to round all concave and convex corners to.
|
||||
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
|
||||
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
|
||||
module round3d(r, or, ir, size=100)
|
||||
// size = size of centered cube that contains the children. Default: 1000
|
||||
module round3d(r, or, ir, size=1000)
|
||||
{
|
||||
req_children($children);
|
||||
or = get_radius(r1=or, r=r, dflt=0);
|
||||
|
@ -58,8 +58,8 @@ use <builtins.scad>
|
||||
module cube(size=1, center, anchor, spin=0, orient=UP)
|
||||
{
|
||||
anchor = get_anchor(anchor, center, -[1,1,1], -[1,1,1]);
|
||||
size = scalar_vec3(size);
|
||||
attachable(anchor,spin,orient, size=size) {
|
||||
size = force_list(size,3); // Native cube prints a warning and gives a unit cube when parameters are bogus
|
||||
attachable(anchor,spin,orient, size=is_vector(size,3)?size:[1,1,1]) {
|
||||
_cube(size, center=true);
|
||||
children();
|
||||
}
|
||||
@ -67,18 +67,17 @@ module cube(size=1, center, anchor, spin=0, orient=UP)
|
||||
|
||||
function cube(size=1, center, anchor, spin=0, orient=UP) =
|
||||
let(
|
||||
siz = scalar_vec3(size)
|
||||
size = force_list(size,3)
|
||||
)
|
||||
assert(all_positive(siz), "All size components must be positive.")
|
||||
assert(is_vector(size,3), "\nSize parameter cannot be converted to a 3-vector")
|
||||
assert(all_positive(size), "\nAll size components must be positive.")
|
||||
let(
|
||||
anchor = get_anchor(anchor, center, -[1,1,1], -[1,1,1]),
|
||||
unscaled = [
|
||||
[-1,-1,-1],[1,-1,-1],[1,1,-1],[-1,1,-1],
|
||||
[-1,-1, 1],[1,-1, 1],[1,1, 1],[-1,1, 1],
|
||||
]/2,
|
||||
verts = is_num(size)? unscaled * size :
|
||||
is_vector(size,3)? [for (p=unscaled) v_mul(p,size)] :
|
||||
assert(is_num(size) || is_vector(size,3)),
|
||||
verts = [for (p=unscaled) v_mul(p,size)],
|
||||
faces = [
|
||||
[0,1,2], [0,2,3], //BOTTOM
|
||||
[0,4,5], [0,5,1], //FRONT
|
||||
@ -87,7 +86,7 @@ function cube(size=1, center, anchor, spin=0, orient=UP) =
|
||||
[3,7,4], [3,4,0], //LEFT
|
||||
[6,4,7], [6,5,4] //TOP
|
||||
]
|
||||
) [reorient(anchor,spin,orient, size=siz, p=verts), faces];
|
||||
) [reorient(anchor,spin,orient, size=size, p=verts), faces];
|
||||
|
||||
|
||||
|
||||
@ -192,7 +191,7 @@ function cube(size=1, center, anchor, spin=0, orient=UP) =
|
||||
// cuboid(40) show_anchors();
|
||||
|
||||
module cuboid(
|
||||
size=[1,1,1],
|
||||
size,
|
||||
p1, p2,
|
||||
chamfer,
|
||||
rounding,
|
||||
@ -331,21 +330,22 @@ module cuboid(
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size = scalar_vec3(size);
|
||||
sizecheck = assert(num_defined([size,p1,p2])!=3, "\nCannot give size if p2 is given (did you forget brackets on the size argument?)")
|
||||
assert(is_def(p1) || is_undef(p2), "If p2 is given you must also give p1");
|
||||
size = force_list(default(size,1),3);
|
||||
edges = _edges(edges, except=first_defined([except_edges,except]));
|
||||
teardrop = is_bool(teardrop)&&teardrop? 45 : teardrop;
|
||||
chamfer = approx(chamfer,0) ? undef : chamfer;
|
||||
rounding = approx(rounding,0) ? undef : rounding;
|
||||
checks =
|
||||
assert(is_vector(size,3))
|
||||
assert(is_vector(size,3),"Size must be a scalar or 3-vector")
|
||||
assert(all_nonnegative(size), "All components of size= must be >=0")
|
||||
assert(is_undef(chamfer) || is_finite(chamfer),"chamfer must be a finite value")
|
||||
assert(is_undef(rounding) || is_finite(rounding),"rounding must be a finite value")
|
||||
assert(is_undef(rounding) || is_undef(chamfer), "Cannot specify nonzero value for both chamfer and rounding")
|
||||
assert(teardrop==false || (is_finite(teardrop) && teardrop>0 && teardrop<=90), "teardrop must be either false or an angle number between 0 and 90")
|
||||
assert(is_undef(p1) || is_vector(p1))
|
||||
assert(is_undef(p2) || is_vector(p2))
|
||||
assert(is_undef(p1) || is_vector(p1,3), "p1 must be a 3-vector")
|
||||
assert(is_undef(p2) || is_vector(p2,3), "p2 must be a 3-vector")
|
||||
assert(is_bool(trimcorners));
|
||||
if (!is_undef(p1)) {
|
||||
if (!is_undef(p2)) {
|
||||
@ -803,7 +803,7 @@ function prismoid(
|
||||
// When called as a module, creates an octahedron with axis-aligned points.
|
||||
// When called as a function, creates a [VNF](vnf.scad) of an octahedron with axis-aligned points.
|
||||
// Arguments:
|
||||
// size = Width of the octahedron, tip to tip.
|
||||
// size = Width of the octahedron, tip to tip. Can be a 3-vector. Default: [1,1,1]
|
||||
// ---
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
|
||||
@ -812,6 +812,8 @@ function prismoid(
|
||||
// octahedron(size=40);
|
||||
// Example: Anchors
|
||||
// octahedron(size=40) show_anchors();
|
||||
// Example:
|
||||
// octahedron([10,15,25]);
|
||||
|
||||
module octahedron(size=1, anchor=CENTER, spin=0, orient=UP) {
|
||||
vnf = octahedron(size=size);
|
||||
@ -823,8 +825,8 @@ module octahedron(size=1, anchor=CENTER, spin=0, orient=UP) {
|
||||
|
||||
function octahedron(size=1, anchor=CENTER, spin=0, orient=UP) =
|
||||
let(
|
||||
size = scalar_vec3(size),
|
||||
s = size/2,
|
||||
s = force_list(size,3)/2,
|
||||
dummy=assert(is_vector(s,3) && all_positive(s), "\nsize must be a positive scalar or 3-vector"),
|
||||
vnf = [
|
||||
[ [0,0,s.z], [s.x,0,0], [0,s.y,0], [-s.x,0,0], [0,-s.y,0], [0,0,-s.z] ],
|
||||
[ [0,2,1], [0,3,2], [0,4,3], [0,1,4], [5,1,2], [5,2,3], [5,3,4], [5,4,1] ]
|
||||
@ -1481,7 +1483,7 @@ function rect_tube(
|
||||
// direction of the sloped edge.
|
||||
//
|
||||
// Arguments:
|
||||
// size = [width, thickness, height]
|
||||
// size = [width, thickness, height]. Default: [1,1,1]
|
||||
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=UP`.
|
||||
// ---
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `FRONT+LEFT+BOTTOM`
|
||||
@ -1508,7 +1510,8 @@ function rect_tube(
|
||||
|
||||
module wedge(size=[1, 1, 1], center, anchor, spin=0, orient=UP)
|
||||
{
|
||||
size = scalar_vec3(size);
|
||||
size = force_list(size,3);
|
||||
check=assert(is_vector(size,3) && all_positive(size), "\nsize must be a positive scalar or 3-vector");
|
||||
anchor = get_anchor(anchor, center, -[1,1,1], -[1,1,1]);
|
||||
vnf = wedge(size, anchor="origin");
|
||||
spindir = unit([0,-size.y,size.z]);
|
||||
@ -1532,7 +1535,8 @@ module wedge(size=[1, 1, 1], center, anchor, spin=0, orient=UP)
|
||||
|
||||
function wedge(size=[1,1,1], center, anchor, spin=0, orient=UP) =
|
||||
let(
|
||||
size = scalar_vec3(size),
|
||||
size = force_list(size,3),
|
||||
check=assert(is_vector(size,3) && all_positive(size), "\nsize must be a positive scalar or 3-vector"),
|
||||
anchor = get_anchor(anchor, center, -[1,1,1], -[1,1,1]),
|
||||
pts = [
|
||||
[ 1,1,-1], [ 1,-1,-1], [ 1,-1,1],
|
||||
|
@ -748,8 +748,9 @@ function get_radius(r1, r2, r, d1, d2, d, dflt) =
|
||||
// same way that OpenSCAD expands short vectors in some contexts, e.g. cube(10) or rotate([45,90]).
|
||||
// If `v` is a scalar, and `dflt==undef`, returns `[v, v, v]`.
|
||||
// If `v` is a scalar, and `dflt!=undef`, returns `[v, dflt, dflt]`.
|
||||
// If `v` is a vector and dflt is defined, returns the first 3 items, with any missing values replaced by `dflt`.
|
||||
// If `v` is a vector and dflt is undef, returns the first 3 items, with any missing values replaced by 0.
|
||||
// if `v` is a list of length 3 or more then returns `v`
|
||||
// If `v` is a list and dflt is defined, returns a length 3 list by padding with `dflt`
|
||||
// If `v` is a list and dflt is undef, returns a length 3 list by padding with 0
|
||||
// If `v` is `undef`, returns `undef`.
|
||||
// Arguments:
|
||||
// v = Value to return vector from.
|
||||
|
@ -370,7 +370,7 @@ function vector_perp(v,w) =
|
||||
// Function: pointlist_bounds()
|
||||
// Synopsis: Returns the min and max bounding coordinates for the given list of points.
|
||||
// Topics: Geometry, Bounding Boxes, Bounds
|
||||
// See Also: closest_point()
|
||||
// See Also: closest_point(), vnf_bounds()
|
||||
// Usage:
|
||||
// pt_pair = pointlist_bounds(pts);
|
||||
// Description:
|
||||
|
39
vnf.scad
39
vnf.scad
@ -1245,6 +1245,8 @@ module vnf_wireframe(vnf, width=1)
|
||||
|
||||
// Section: Operations on VNFs
|
||||
|
||||
|
||||
|
||||
// Function: vnf_volume()
|
||||
// Synopsis: Returns the volume of a VNF.
|
||||
// Topics: VNF Manipulation
|
||||
@ -1305,6 +1307,29 @@ function _vnf_centroid(vnf,eps=EPSILON) =
|
||||
assert(!approx(pos[0],0, eps), "The vnf has self-intersections.")
|
||||
pos[1]/pos[0]/4;
|
||||
|
||||
// Function: vnf_bounds()
|
||||
// Synopsis: Returns the min and max bounding coordinates for the VNF.
|
||||
// Topics: VNF Manipulation, Bounding Boxes, Bounds
|
||||
// See Also: pointlist_bounds()
|
||||
// Usage:
|
||||
// min_max = vnf_bounds(vnf, [fast]);
|
||||
// Description:
|
||||
// Finds the bounds of the VNF. By default the calculation skips any points listed in the VNF vertex list
|
||||
// that are not used by the VNF. However, this calculation may be slow on large VNFS. If you set `fast=true`
|
||||
// then the calculation uses all the points listed in the VNF, regardless of whether they appear in the
|
||||
// actual object. The returned list has the form `[[MINX, MINY, MINZ], [MAXX, MAXY, MAXZ]]`.
|
||||
// Arguments:
|
||||
// vnf = vnf to get the bounds of
|
||||
// fast = if true then ignore face data and process all vertices; if false only look at vertices actually used in the geometry. Default: false
|
||||
// Example:
|
||||
// echo(vnf_bounds(cube([2,3,4],center=true))); // Displays [[-1, -1.5, -2], [1, 1.5, 2]]
|
||||
function vnf_bounds(vnf,fast=false) =
|
||||
assert(is_vnf(vnf), "Invalid VNF")
|
||||
fast ? pointlist_bounds(vnf[0])
|
||||
: let(
|
||||
vert = vnf[0]
|
||||
)
|
||||
pointlist_bounds([for(face=vnf[1]) each select(vert,face)]);
|
||||
|
||||
// Function: projection()
|
||||
// Synopsis: Returns projection or intersection of vnf with XY plane
|
||||
@ -1690,9 +1715,10 @@ function vnf_bend(vnf,r,d,axis="Z") =
|
||||
|
||||
// Function&Module: vnf_hull()
|
||||
// Synopsis: Compute convex hull of VNF or 3d path
|
||||
// Usage:
|
||||
// Usage: (as a function)
|
||||
// vnf_hull = hull_vnf(vnf);
|
||||
// hull_vnf(vnf,[fast]);
|
||||
// Usage: (as a module)
|
||||
// vnf_hull(vnf,[fast]);
|
||||
// Description:
|
||||
// Given a VNF or a list of 3d points, compute the convex hull
|
||||
// and return it as a VNF. This differs from {{hull()}} and {{hull3d_faces()}}, which
|
||||
@ -1700,7 +1726,11 @@ function vnf_bend(vnf,r,d,axis="Z") =
|
||||
// point list contains all the points that are actually used in the input
|
||||
// VNF, which may be many more points than are needed to represent the convex hull.
|
||||
// This is not usually a problem, but you can run the somewhat slow {{vnf_drop_unused_points()}}
|
||||
// function to fix this if necessary.
|
||||
// function to fix this if necessary.
|
||||
// .
|
||||
// If you call this as a module with a VNF it invokes hull() on the polyhedron described by the VNF.
|
||||
// The `fast` argument is ignored in this case. If you call this as a module on a list of points then
|
||||
// it calls {{hull_points()}} and passes the `fast` argument.
|
||||
// Arguments:
|
||||
// region = region or path listing points to compute the hull from.
|
||||
// fast = (module only) if input is a point list (not a VNF) use a fasterer cheat that may handle more points, but could emit warnings. Ignored if input is a VNF. Default: false.
|
||||
@ -1718,6 +1748,9 @@ function vnf_bend(vnf,r,d,axis="Z") =
|
||||
// color("red")move_copies(h)
|
||||
// sphere(r=0.5,$fn=12);
|
||||
// vnf_polyhedron(vnf_hull(h));
|
||||
// Example(3D): As a module with a VNF as input
|
||||
// vnf = torus(d_maj=4, d_min=4);
|
||||
// vnf_hull(vnf);
|
||||
function vnf_hull(vnf) =
|
||||
assert(is_vnf(vnf) || is_path(vnf,3),"Input must be a VNF or a 3d path")
|
||||
let(
|
||||
|
@ -193,8 +193,9 @@ module sparse_cuboid(size, dir=RIGHT, strut=5, maxang=30, max_bridge=20,
|
||||
teardrop=false,
|
||||
anchor=CENTER, spin=0, orient=UP)
|
||||
{
|
||||
size = scalar_vec3(size);
|
||||
dummy1=assert(in_list(dir,["X","Y","Z"]) || is_vector(dir,3), "dir must be a 3-vector or one of \"X\", \"Y\", or \"Z\"");
|
||||
size = force_list(size,3);
|
||||
dummy1= assert(is_vector(size,3) && all_positive(size), "size must be a positive number or 3-vector")
|
||||
assert(in_list(dir,["X","Y","Z"]) || is_vector(dir,3), "dir must be a 3-vector or one of \"X\", \"Y\", or \"Z\"");
|
||||
count = len([for(d=dir) if (d!=0) d]);
|
||||
dummy2=assert(is_string(dir) || (count==1 && len(dir)<=3), "vector valued dir must have exactly one non-zero component");
|
||||
dir = is_string(dir) ? dir
|
||||
|
Loading…
x
Reference in New Issue
Block a user