mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
Added linear_solve()
This commit is contained in:
parent
f8fc8cb544
commit
629d1c00b2
88
math.scad
88
math.scad
@ -530,8 +530,94 @@ function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==un
|
||||
function mean(v) = sum(v)/len(v);
|
||||
|
||||
|
||||
// Section: Matrix math
|
||||
|
||||
// Function: qr_factor()
|
||||
// Usage: qr = qr_factor(A)
|
||||
// Description:
|
||||
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R]. This factorization can be
|
||||
// used to solve linear systems of equations.
|
||||
function qr_factor(A) =
|
||||
let(
|
||||
dim = array_dim(A),
|
||||
m = dim[0],
|
||||
n = dim[1]
|
||||
)
|
||||
assert(len(dim)==2)
|
||||
let(
|
||||
qr =_qr_factor(A, column=0, m = m, n=m, Q=ident(m)),
|
||||
Rzero = [for(i=[0:m-1]) [for(j=[0:n-1]) i>j ? 0 : qr[1][i][j]]]
|
||||
)
|
||||
[qr[0],Rzero];
|
||||
|
||||
function _qr_factor(A,Q, column, m, n) =
|
||||
column >= min(m-1,n) ? [Q,A] :
|
||||
let(
|
||||
x = [for(i=[column:1:m-1]) A[i][column]],
|
||||
alpha = (x[0]<=0 ? 1 : -1) * norm(x),
|
||||
u = x - concat([alpha],replist(0,m-1)),
|
||||
v = u / norm(u),
|
||||
Qc = ident(len(x)) - 2*transpose([v])*[v],
|
||||
Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i<column || j<column ? (i==j ? 1 : 0) : Qc[i-column][j-column]]]
|
||||
)
|
||||
_qr_factor(Qf*A, Q*Qf, column+1, m, n);
|
||||
|
||||
|
||||
// Function: submatrix()
|
||||
// Usage: submatrix(M, ind1, ind2)
|
||||
// Description:
|
||||
// Returns a submatrix with the specified index ranges or index sets.
|
||||
function submatrix(M,ind1,ind2) =
|
||||
[for(i=ind1)
|
||||
[for(j=ind2)
|
||||
M[i][j]
|
||||
]
|
||||
];
|
||||
|
||||
|
||||
// Function: linear_solve()
|
||||
// Usage: linear_solve(A,b)
|
||||
// Description:
|
||||
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
|
||||
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
|
||||
// If A is rank deficient or singular then linear_solve returns `undef`.
|
||||
function linear_solve(A,b) =
|
||||
let(
|
||||
dim = array_dim(A),
|
||||
m=dim[0], n=dim[1]
|
||||
)
|
||||
assert(len(b)==m,str("Incompatible matrix and vector",dim,len(b)))
|
||||
let (
|
||||
qr = m<n ? qr_factor(transpose(A)) : qr_factor(A),
|
||||
maxdim = max(n,m),
|
||||
mindim = min(n,m),
|
||||
Q = submatrix(qr[0],[0:maxdim-1], [0:mindim-1]),
|
||||
R = submatrix(qr[1],[0:mindim-1], [0:mindim-1]),
|
||||
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
|
||||
)
|
||||
zeros != [] ? undef :
|
||||
m<n ? Q*back_substitute(R,b,transpose=true) :
|
||||
back_substitute(R, transpose(Q)*b);
|
||||
|
||||
// Function: back_substitute()
|
||||
// Usage: back_substitute(R, b, [transpose])
|
||||
// Description:
|
||||
// Solves the problem Rx=b where R is an upper triangular square matrix. No check is made that the lower triangular entries
|
||||
// are actually zero. If transpose==true then instead solve transpose(R)*x=b.
|
||||
function back_substitute(R, b, x=[],transpose = false) =
|
||||
let(n=len(b))
|
||||
transpose ?
|
||||
reverse(back_substitute(
|
||||
[for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
|
||||
reverse(b), x, false)) :
|
||||
len(x) == n ? x :
|
||||
let(
|
||||
ind = n - len(x) - 1,
|
||||
newvalue = len(x)==0 ? b[ind]/R[ind][ind] :
|
||||
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
|
||||
)
|
||||
back_substitute(R, b, concat([newvalue],x));
|
||||
|
||||
// Section: Determinants
|
||||
|
||||
// Function: det2()
|
||||
// Description:
|
||||
|
Loading…
x
Reference in New Issue
Block a user