mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
Minor edits in is_matrix
This commit is contained in:
parent
84fa648dc5
commit
764420e71d
40
math.scad
40
math.scad
@ -773,26 +773,26 @@ function _qr_factor(A,Q, column, m, n) =
|
||||
// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to
|
||||
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix
|
||||
// is singular (e.g. has a zero on the diagonal) then it returns [].
|
||||
function back_substitute(R, b, x=[],transpose = false) =
|
||||
function back_substitute(R, b, transpose = false) =
|
||||
assert(is_matrix(R, square=true))
|
||||
let(n=len(R))
|
||||
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
|
||||
!is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i),transpose=transpose)]) :
|
||||
transpose?
|
||||
reverse(back_substitute(
|
||||
[for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
|
||||
reverse(b), x, false
|
||||
)) :
|
||||
len(x) == n ? x :
|
||||
let(
|
||||
ind = n - len(x) - 1
|
||||
)
|
||||
R[ind][ind] == 0 ? [] :
|
||||
let(
|
||||
newvalue =
|
||||
len(x)==0? b[ind]/R[ind][ind] :
|
||||
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
|
||||
) back_substitute(R, b, concat([newvalue],x));
|
||||
transpose
|
||||
? reverse(_back_substitute([for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
|
||||
reverse(b)))
|
||||
: _back_substitute(R,b);
|
||||
|
||||
function _back_substitute(R, b, x=[]) =
|
||||
let(n=len(R))
|
||||
len(x) == n ? x
|
||||
: let(ind = n - len(x) - 1)
|
||||
R[ind][ind] == 0 ? []
|
||||
: let(
|
||||
newvalue = len(x)==0
|
||||
? b[ind]/R[ind][ind]
|
||||
: (b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
|
||||
)
|
||||
_back_substitute(R, b, concat([newvalue],x));
|
||||
|
||||
|
||||
// Function: det2()
|
||||
@ -865,8 +865,10 @@ function determinant(M) =
|
||||
// n = optional width of matrix
|
||||
// square = set to true to require a square matrix. Default: false
|
||||
function is_matrix(A,m,n,square=false) =
|
||||
is_list(A[0])
|
||||
&& ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers
|
||||
is_list(A)
|
||||
&& len(A)>0
|
||||
&& is_vector(A[0])
|
||||
&& is_vector(A*A[0]) // a matrix of finite numbers
|
||||
&& (is_undef(n) || len(A[0])==n )
|
||||
&& (is_undef(m) || len(A)==m )
|
||||
&& ( !square || len(A)==len(A[0]));
|
||||
|
Loading…
x
Reference in New Issue
Block a user