mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
make all_zero, etc, non-recursive, just work on vectors
This commit is contained in:
parent
14804421b7
commit
934b3c7b04
110
comparisons.scad
110
comparisons.scad
@ -6,7 +6,7 @@
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
// Section: Comparing lists to zero
|
||||
// Section: List comparison operations
|
||||
|
||||
// Function: approx()
|
||||
// Usage:
|
||||
@ -34,7 +34,7 @@ function approx(a,b,eps=EPSILON) =
|
||||
// x = all_zero(x, [eps]);
|
||||
// Description:
|
||||
// Returns true if the finite number passed to it is approximately zero, to within `eps`.
|
||||
// If passed a list, recursively checks if all items in the list are approximately zero.
|
||||
// If passed a list returns true if all its entries are approximately zero.
|
||||
// Otherwise, returns false.
|
||||
// Arguments:
|
||||
// x = The value to check.
|
||||
@ -45,17 +45,16 @@ function approx(a,b,eps=EPSILON) =
|
||||
// c = all_zero([0,0,0]); // Returns: true.
|
||||
// d = all_zero([0,0,1e-3]); // Returns: false.
|
||||
function all_zero(x, eps=EPSILON) =
|
||||
is_finite(x)? approx(x,eps) :
|
||||
is_list(x)? (x != [] && [for (xx=x) if(!all_zero(xx,eps=eps)) 1] == []) :
|
||||
false;
|
||||
is_finite(x)? abs(x)<eps :
|
||||
is_vector(x) && [for (xx=x) if(abs(xx)>eps) 1] == [];
|
||||
|
||||
|
||||
// Function: all_nonzero()
|
||||
// Usage:
|
||||
// test = all_nonzero(x, [eps]);
|
||||
// Description:
|
||||
// Returns true if the finite number passed to it is not almost zero, to within `eps`.
|
||||
// If passed a list, recursively checks if all items in the list are not almost zero.
|
||||
// Returns true if the finite number passed to it is different from zero by `eps`.
|
||||
// If passed a list returns true if all the entries of the list are different from zero by `eps`.
|
||||
// Otherwise, returns false.
|
||||
// Arguments:
|
||||
// x = The value to check.
|
||||
@ -67,20 +66,20 @@ function all_zero(x, eps=EPSILON) =
|
||||
// d = all_nonzero([0,0,1e-3]); // Returns: false.
|
||||
// e = all_nonzero([1e-3,1e-3,1e-3]); // Returns: true.
|
||||
function all_nonzero(x, eps=EPSILON) =
|
||||
is_finite(x)? !approx(x,eps) :
|
||||
is_list(x)? (x != [] && [for (xx=x) if(!all_nonzero(xx,eps=eps)) 1] == []) :
|
||||
false;
|
||||
is_finite(x)? abs(x)>eps :
|
||||
is_vector(x) && [for (xx=x) if(abs(xx)<eps) 1] == [];
|
||||
|
||||
|
||||
// Function: all_positive()
|
||||
// Usage:
|
||||
// test = all_positive(x);
|
||||
// test = all_positive(x,[eps]);
|
||||
// Description:
|
||||
// Returns true if the finite number passed to it is greater than zero.
|
||||
// If passed a list, recursively checks if all items in the list are positive.
|
||||
// If passed a list returns true if all the entries are positive.
|
||||
// Otherwise, returns false.
|
||||
// Arguments:
|
||||
// x = The value to check.
|
||||
// eps = Tolerance. Default: 0
|
||||
// Example:
|
||||
// a = all_positive(-2); // Returns: false.
|
||||
// b = all_positive(0); // Returns: false.
|
||||
@ -89,21 +88,21 @@ function all_nonzero(x, eps=EPSILON) =
|
||||
// e = all_positive([0,1,2]); // Returns: false.
|
||||
// f = all_positive([3,1,2]); // Returns: true.
|
||||
// g = all_positive([3,-1,2]); // Returns: false.
|
||||
function all_positive(x) =
|
||||
is_num(x)? x>0 :
|
||||
is_list(x)? (x != [] && [for (xx=x) if(!all_positive(xx)) 1] == []) :
|
||||
false;
|
||||
function all_positive(x,eps=0) =
|
||||
is_num(x)? x>eps :
|
||||
is_vector(x) && [for (xx=x) if(xx<=0) 1] == [];
|
||||
|
||||
|
||||
// Function: all_negative()
|
||||
// Usage:
|
||||
// test = all_negative(x);
|
||||
// test = all_negative(x, [eps]);
|
||||
// Description:
|
||||
// Returns true if the finite number passed to it is less than zero.
|
||||
// If passed a list, recursively checks if all items in the list are negative.
|
||||
// Otherwise, returns false.
|
||||
// Arguments:
|
||||
// x = The value to check.
|
||||
// eps = tolerance. Default: 0
|
||||
// Example:
|
||||
// a = all_negative(-2); // Returns: true.
|
||||
// b = all_negative(0); // Returns: false.
|
||||
@ -113,21 +112,21 @@ function all_positive(x) =
|
||||
// f = all_negative([3,1,2]); // Returns: false.
|
||||
// g = all_negative([3,-1,2]); // Returns: false.
|
||||
// h = all_negative([-3,-1,-2]); // Returns: true.
|
||||
function all_negative(x) =
|
||||
is_num(x)? x<0 :
|
||||
is_list(x)? (x != [] && [for (xx=x) if(!all_negative(xx)) 1] == []) :
|
||||
false;
|
||||
function all_negative(x, eps=0) =
|
||||
is_num(x)? x<-eps :
|
||||
is_vector(x) && [for (xx=x) if(xx>=-eps) 1] == [];
|
||||
|
||||
|
||||
// Function: all_nonpositive()
|
||||
// Usage:
|
||||
// all_nonpositive(x);
|
||||
// all_nonpositive(x, [eps]);
|
||||
// Description:
|
||||
// Returns true if the finite number passed to it is less than or equal to zero.
|
||||
// If passed a list, recursively checks if all items in the list are nonpositive.
|
||||
// Otherwise, returns false.
|
||||
// Otherwise, returns false.
|
||||
// Arguments:
|
||||
// x = The value to check.
|
||||
// eps = tolerance. Default: 0
|
||||
// Example:
|
||||
// a = all_nonpositive(-2); // Returns: true.
|
||||
// b = all_nonpositive(0); // Returns: true.
|
||||
@ -137,21 +136,21 @@ function all_negative(x) =
|
||||
// f = all_nonpositive([3,1,2]); // Returns: false.
|
||||
// g = all_nonpositive([3,-1,2]); // Returns: false.
|
||||
// h = all_nonpositive([-3,-1,-2]); // Returns: true.
|
||||
function all_nonpositive(x) =
|
||||
is_num(x)? x<=0 :
|
||||
is_list(x)? (x != [] && [for (xx=x) if(!all_nonpositive(xx)) 1] == []) :
|
||||
false;
|
||||
function all_nonpositive(x,eps=0) =
|
||||
is_num(x)? x<=eps :
|
||||
is_vector(x) && [for (xx=x) if(xx>eps) 1] == [];
|
||||
|
||||
|
||||
// Function: all_nonnegative()
|
||||
// Usage:
|
||||
// all_nonnegative(x);
|
||||
// all_nonnegative(x, [eps]);
|
||||
// Description:
|
||||
// Returns true if the finite number passed to it is greater than or equal to zero.
|
||||
// If passed a list, recursively checks if all items in the list are nonnegative.
|
||||
// Otherwise, returns false.
|
||||
// Arguments:
|
||||
// x = The value to check.
|
||||
// eps = tolerance. Default: 0
|
||||
// Example:
|
||||
// a = all_nonnegative(-2); // Returns: false.
|
||||
// b = all_nonnegative(0); // Returns: true.
|
||||
@ -162,10 +161,9 @@ function all_nonpositive(x) =
|
||||
// g = all_nonnegative([3,1,2]); // Returns: true.
|
||||
// h = all_nonnegative([3,-1,2]); // Returns: false.
|
||||
// i = all_nonnegative([-3,-1,-2]); // Returns: false.
|
||||
function all_nonnegative(x) =
|
||||
is_num(x)? x>=0 :
|
||||
is_list(x)? (x != [] && [for (xx=x) if(!all_nonnegative(xx)) 1] == []) :
|
||||
false;
|
||||
function all_nonnegative(x,eps=0) =
|
||||
is_num(x)? x>=-eps :
|
||||
is_vector(x) && [for (xx=x) if(xx<-eps) 1] == [];
|
||||
|
||||
|
||||
// Function: all_equal()
|
||||
@ -280,30 +278,6 @@ function compare_lists(a, b) =
|
||||
cmps==[]? (len(a)-len(b)) : cmps[0];
|
||||
|
||||
|
||||
// Function: list_smallest()
|
||||
// Usage:
|
||||
// small = list_smallest(list, k)
|
||||
// Description:
|
||||
// Returns a set of the k smallest items in list in arbitrary order. The items must be
|
||||
// mutually comparable with native OpenSCAD comparison operations. You will get "undefined operation"
|
||||
// errors if you provide invalid input.
|
||||
// Arguments:
|
||||
// list = list to process
|
||||
// k = number of items to return
|
||||
function list_smallest(list, k) =
|
||||
assert(is_list(list))
|
||||
assert(is_finite(k) && k>=0, "k must be nonnegative")
|
||||
let(
|
||||
v = list[rand_int(0,len(list)-1,1)[0]],
|
||||
smaller = [for(li=list) if(li<v) li ],
|
||||
equal = [for(li=list) if(li==v) li ]
|
||||
)
|
||||
len(smaller) == k ? smaller :
|
||||
len(smaller)<k && len(smaller)+len(equal) >= k ? [ each smaller, for(i=[1:k-len(smaller)]) v ] :
|
||||
len(smaller) > k ? list_smallest(smaller, k) :
|
||||
let( bigger = [for(li=list) if(li>v) li ] )
|
||||
concat(smaller, equal, list_smallest(bigger, k-len(smaller) -len(equal)));
|
||||
|
||||
|
||||
|
||||
// Section: Dealing with duplicate list entries
|
||||
@ -780,3 +754,27 @@ function group_data(groups, values) =
|
||||
];
|
||||
|
||||
|
||||
// Function: list_smallest()
|
||||
// Usage:
|
||||
// small = list_smallest(list, k)
|
||||
// Description:
|
||||
// Returns a set of the k smallest items in list in arbitrary order. The items must be
|
||||
// mutually comparable with native OpenSCAD comparison operations. You will get "undefined operation"
|
||||
// errors if you provide invalid input.
|
||||
// Arguments:
|
||||
// list = list to process
|
||||
// k = number of items to return
|
||||
function list_smallest(list, k) =
|
||||
assert(is_list(list))
|
||||
assert(is_finite(k) && k>=0, "k must be nonnegative")
|
||||
let(
|
||||
v = list[rand_int(0,len(list)-1,1)[0]],
|
||||
smaller = [for(li=list) if(li<v) li ],
|
||||
equal = [for(li=list) if(li==v) li ]
|
||||
)
|
||||
len(smaller) == k ? smaller :
|
||||
len(smaller)<k && len(smaller)+len(equal) >= k ? [ each smaller, for(i=[1:k-len(smaller)]) v ] :
|
||||
len(smaller) > k ? list_smallest(smaller, k) :
|
||||
let( bigger = [for(li=list) if(li>v) li ] )
|
||||
concat(smaller, equal, list_smallest(bigger, k-len(smaller) -len(equal)));
|
||||
|
||||
|
@ -145,7 +145,7 @@ test_deduplicate_indexed();
|
||||
module test_all_zero() {
|
||||
assert(all_zero(0));
|
||||
assert(all_zero([0,0,0]));
|
||||
assert(all_zero([[0,0,0],[0,0]]));
|
||||
assert(!all_zero([[0,0,0],[0,0]]));
|
||||
assert(all_zero([EPSILON/2,EPSILON/2,EPSILON/2]));
|
||||
assert(!all_zero(1e-3));
|
||||
assert(!all_zero([0,0,1e-3]));
|
||||
@ -215,7 +215,7 @@ module test_all_negative() {
|
||||
assert(!all_negative([3,-1,2]));
|
||||
assert(all_negative([-3,-1,-2]));
|
||||
assert(!all_negative([-3,1,-2]));
|
||||
assert(all_negative([[-5,-7],[-3,-1,-2]]));
|
||||
assert(!all_negative([[-5,-7],[-3,-1,-2]]));
|
||||
assert(!all_negative([[-5,-7],[-3,1,-2]]));
|
||||
assert(!all_negative([]));
|
||||
assert(!all_negative(true));
|
||||
@ -256,7 +256,7 @@ module test_all_nonnegative() {
|
||||
assert(!all_nonnegative([[-5,-7],[-3,-1,-2]]));
|
||||
assert(!all_nonnegative([[-5,-7],[-3,1,-2]]));
|
||||
assert(!all_nonnegative([[5,7],[3,-1,2]]));
|
||||
assert(all_nonnegative([[5,7],[3,1,2]]));
|
||||
assert(!all_nonnegative([[5,7],[3,1,2]]));
|
||||
assert(!all_nonnegative([]));
|
||||
assert(!all_nonnegative(true));
|
||||
assert(!all_nonnegative(false));
|
||||
|
@ -136,7 +136,7 @@ module test_null_space(){
|
||||
|
||||
function nullcheck(A,dim) =
|
||||
let(v=null_space(A))
|
||||
len(v)==dim && all_zero(A*transpose(v),eps=1e-12);
|
||||
len(v)==dim && all_zero(flatten(A*transpose(v)),eps=1e-12);
|
||||
|
||||
A = [[-1, 2, -5, 2],[-3,-1,3,-3],[5,0,5,0],[3,-4,11,-4]];
|
||||
assert(nullcheck(A,1));
|
||||
|
Loading…
x
Reference in New Issue
Block a user