Merge pull request #1157 from revarbat/revarbat_dev

Synopses, etc for math.scad
This commit is contained in:
Revar Desmera 2023-05-01 21:51:06 -07:00 committed by GitHub
commit 9c7f04e330
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

205
math.scad
View File

@ -14,18 +14,30 @@
// Section: Math Constants
// Constant: PHI
// Description: The golden ratio phi.
// Synopsis: The golden ratio φ (phi). Approximately 1.6180339887
// Topics: Constants, Math
// See Also: EPSILON, INF, NAN
// Description: The golden ratio φ (phi). Approximately 1.6180339887
PHI = (1+sqrt(5))/2;
// Constant: EPSILON
// Description: A really small value useful in comparing floating point numbers. ie: abs(a-b)<EPSILON
// Synopsis: A tiny value to compare floating point values. `1e-9`
// Topics: Constants, Math
// See Also: PHI, EPSILON, INF, NAN
// Description: A really small value useful in comparing floating point numbers. ie: abs(a-b)<EPSILON `1e-9`
EPSILON = 1e-9;
// Constant: INF
// Synopsis: The floating point value for Infinite.
// Topics: Constants, Math
// See Also: PHI, EPSILON, INF, NAN
// Description: The value `inf`, useful for comparisons.
INF = 1/0;
// Constant: NAN
// Synopsis: The floating point value for Not a Number.
// Topics: Constants, Math
// See Also: PHI, EPSILON, INF, NAN
// Description: The value `nan`, useful for comparisons.
NAN = acos(2);
@ -35,6 +47,9 @@ NAN = acos(2);
// Function: count()
// Synopsis: Creates a list of incrementing numbers.
// Topics: Math, Indexing
// See Also: idx()
// Usage:
// list = count(n, [s], [step], [reverse]);
// Description:
@ -45,7 +60,6 @@ NAN = acos(2);
// s = The starting value of the list of numbers.
// step = The amount to increment successive numbers in the list.
// reverse = Reverse the list. Default: false.
// See Also: idx()
// Example:
// nl1 = count(5); // Returns: [0,1,2,3,4]
// nl2 = count(5,3); // Returns: [3,4,5,6,7]
@ -58,6 +72,9 @@ function count(n,s=0,step=1,reverse=false) = let(n=is_list(n) ? len(n) : n)
// Function: lerp()
// Synopsis: Linearly interpolates between two values.
// Topics: Interpolation, Math
// See Also: v_lookup(), lerpn()
// Usage:
// x = lerp(a, b, u);
// l = lerp(a, b, LIST);
@ -95,6 +112,9 @@ function lerp(a,b,u) =
// Function: lerpn()
// Synopsis: Returns exactly `n` values, linearly interpolated between `a` and `b`.
// Topics: Interpolation, Math
// See Also: v_lookup(), lerp()
// Usage:
// x = lerpn(a, b, n);
// x = lerpn(a, b, n, [endpoint]);
@ -124,6 +144,9 @@ function lerpn(a,b,n,endpoint=true) =
// Section: Miscellaneous Functions
// Function: sqr()
// Synopsis: Returns the square of the given value.
// Topics: Math
// See Also: hypot(), log2()
// Usage:
// x2 = sqr(x);
// Description:
@ -141,6 +164,9 @@ function sqr(x) =
// Function: log2()
// Synopsis: Returns the log base 2 of the given value.
// Topics: Math
// See Also: hypot(), sqr()
// Usage:
// val = log2(x);
// Description:
@ -156,6 +182,9 @@ function log2(x) =
// this may return NAN or INF; should it check x>0 ?
// Function: hypot()
// Synopsis: Returns the hypotenuse length of a 2D or 3D triangle.
// Topics: Math
// See Also: hypot(), sqr(), log2()
// Usage:
// l = hypot(x, y, [z]);
// Description:
@ -173,6 +202,9 @@ function hypot(x,y,z=0) =
// Function: factorial()
// Synopsis: Returns the factorial of the given integer.
// Topics: Math
// See Also: hypot(), sqr(), log2()
// Usage:
// x = factorial(n, [d]);
// Description:
@ -191,6 +223,9 @@ function factorial(n,d=0) =
// Function: binomial()
// Synopsis: Returns the binomial coefficients of the integer `n`.
// Topics: Math
// See Also: hypot(), sqr(), log2(), factorial()
// Usage:
// x = binomial(n);
// Description:
@ -210,10 +245,13 @@ function binomial(n) =
// Function: binomial_coefficient()
// Synopsis: Returns the `k`-th binomial coefficient of the integer `n`.
// Topics: Math
// See Also: hypot(), sqr(), log2(), factorial()
// Usage:
// x = binomial_coefficient(n, k);
// Description:
// Returns the k-th binomial coefficient of the integer `n`.
// Returns the `k`-th binomial coefficient of the integer `n`.
// Arguments:
// n = The integer to get the binomial coefficient of
// k = The binomial coefficient index
@ -233,6 +271,9 @@ function binomial_coefficient(n,k) =
// Function: gcd()
// Synopsis: Returns the Greatest Common Divisor/Factor of two integers.
// Topics: Math
// See Also: hypot(), sqr(), log2(), factorial(), binomial(), gcd(), lcm()
// Usage:
// x = gcd(a,b)
// Description:
@ -256,6 +297,9 @@ function _lcmlist(a) =
// Function: lcm()
// Synopsis: Returns the Least Common Multiple of two or more integers.
// Topics: Math
// See Also: hypot(), sqr(), log2(), factorial(), binomial(), gcd(), lcm()
// Usage:
// div = lcm(a, b);
// divs = lcm(list);
@ -276,6 +320,9 @@ function lcm(a,b=[]) =
// Section: Hyperbolic Trigonometry
// Function: sinh()
// Synopsis: Returns the hyperbolic sine of the given value.
// Topics: Math, Trigonometry
// See Also: sinh(), cosh(), tanh(), asinh(), acosh(), atanh()
// Usage:
// a = sinh(x);
// Description: Takes a value `x`, and returns the hyperbolic sine of it.
@ -285,6 +332,9 @@ function sinh(x) =
// Function: cosh()
// Synopsis: Returns the hyperbolic cosine of the given value.
// Topics: Math, Trigonometry
// See Also: sinh(), cosh(), tanh(), asinh(), acosh(), atanh()
// Usage:
// a = cosh(x);
// Description: Takes a value `x`, and returns the hyperbolic cosine of it.
@ -294,6 +344,9 @@ function cosh(x) =
// Function: tanh()
// Synopsis: Returns the hyperbolic tangent of the given value.
// Topics: Math, Trigonometry
// See Also: sinh(), cosh(), tanh(), asinh(), acosh(), atanh()
// Usage:
// a = tanh(x);
// Description: Takes a value `x`, and returns the hyperbolic tangent of it.
@ -303,6 +356,9 @@ function tanh(x) =
// Function: asinh()
// Synopsis: Returns the hyperbolic arc-sine of the given value.
// Topics: Math, Trigonometry
// See Also: sinh(), cosh(), tanh(), asinh(), acosh(), atanh()
// Usage:
// a = asinh(x);
// Description: Takes a value `x`, and returns the inverse hyperbolic sine of it.
@ -312,6 +368,9 @@ function asinh(x) =
// Function: acosh()
// Synopsis: Returns the hyperbolic arc-cosine of the given value.
// Topics: Math, Trigonometry
// See Also: sinh(), cosh(), tanh(), asinh(), acosh(), atanh()
// Usage:
// a = acosh(x);
// Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it.
@ -321,6 +380,9 @@ function acosh(x) =
// Function: atanh()
// Synopsis: Returns the hyperbolic arc-tangent of the given value.
// Topics: Math, Trigonometry
// See Also: sinh(), cosh(), tanh(), asinh(), acosh(), atanh()
// Usage:
// a = atanh(x);
// Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it.
@ -332,6 +394,9 @@ function atanh(x) =
// Section: Quantization
// Function: quant()
// Synopsis: Returns `x` quantized to the nearest integer multiple of `y`.
// Topics: Math, Quantization
// See Also: quant(), quantdn(), quantup()
// Usage:
// num = quant(x, y);
// Description:
@ -370,6 +435,9 @@ function _roundall(data) =
// Function: quantdn()
// Synopsis: Returns `x` quantized down to an integer multiple of `y`.
// Topics: Math, Quantization
// See Also: quant(), quantdn(), quantup()
// Usage:
// num = quantdn(x, y);
// Description:
@ -408,6 +476,9 @@ function _floorall(data) =
// Function: quantup()
// Synopsis: Returns `x` quantized uo to an integer multiple of `y`.
// Topics: Math, Quantization
// See Also: quant(), quantdn(), quantup()
// Usage:
// num = quantup(x, y);
// Description:
@ -448,6 +519,9 @@ function _ceilall(data) =
// Section: Constraints and Modulos
// Function: constrain()
// Synopsis: Returns a value constrained between `minval` and `maxval`, inclusive.
// Topics: Math
// See Also: posmod(), modang()
// Usage:
// val = constrain(v, minval, maxval);
// Description:
@ -468,6 +542,9 @@ function constrain(v, minval, maxval) =
// Function: posmod()
// Synopsis: Returns the positive modulo of a value.
// Topics: Math
// See Also: constrain(), posmod(), modang()
// Usage:
// mod = posmod(x, m)
// Description:
@ -489,6 +566,9 @@ function posmod(x,m) =
// Function: modang()
// Synopsis: Returns an angle normalized to between -180º and 180º.
// Topics: Math
// See Also: constrain(), posmod(), modang()
// Usage:
// ang = modang(x);
// Description:
@ -509,6 +589,9 @@ function modang(x) =
// Section: Operations on Lists (Sums, Mean, Products)
// Function: sum()
// Synopsis: Returns the sum of a list of values.
// Topics: Math
// See Also: mean(), median(), product(), cumsum()
// Usage:
// x = sum(v, [dflt]);
// Description:
@ -534,6 +617,9 @@ function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1);
// Function: mean()
// Synopsis: Returns the mean value of a list of values.
// Topics: Math, Statistics
// See Also: sum(), mean(), median(), product()
// Usage:
// x = mean(v);
// Description:
@ -551,6 +637,9 @@ function mean(v) =
// Function: median()
// Synopsis: Returns the median value of a list of values.
// Topics: Math, Statistics
// See Also: sum(), mean(), median(), product()
// Usage:
// middle = median(v)
// Description:
@ -567,6 +656,9 @@ function median(v) =
// Function: deltas()
// Synopsis: Returns the deltas between a list of values.
// Topics: Math, Statistics
// See Also: sum(), mean(), median(), product()
// Usage:
// delts = deltas(v,[wrap]);
// Description:
@ -585,6 +677,9 @@ function deltas(v, wrap=false) =
// Function: cumsum()
// Synopsis: Returns the running cumulative sum of a list of values.
// Topics: Math, Statistics
// See Also: sum(), mean(), median(), product()
// Usage:
// sums = cumsum(v);
// Description:
@ -609,6 +704,9 @@ function _cumsum(v,_i=0,_acc=[]) =
// Function: product()
// Synopsis: Returns the multiplicative product of a list of values.
// Topics: Math, Statistics
// See Also: sum(), mean(), median(), product(), cumsum()
// Usage:
// x = product(v);
// Description:
@ -634,6 +732,9 @@ function _product(v, i=0, _tot) =
// Function: cumprod()
// Synopsis: Returns the running cumulative product of a list of values.
// Topics: Math, Statistics
// See Also: sum(), mean(), median(), product(), cumsum()
// Description:
// Returns a list where each item is the cumulative product of all items up to and including the corresponding entry in the input list.
// If passed an array of vectors, returns a list of elementwise vector products. If passed a list of square matrices returns matrix
@ -673,6 +774,9 @@ function _cumprod_vec(v,_i=0,_acc=[]) =
// Function: convolve()
// Synopsis: Returns the convolution of `p` and `q`.
// Topics: Math, Statistics
// See Also: sum(), mean(), median(), product(), cumsum()
// Usage:
// x = convolve(p,q);
// Description:
@ -706,13 +810,20 @@ function convolve(p,q) =
// Function: sum_of_sines()
// Synopsis: Returns the sum of one or more sine waves at a given angle.
// Topics: Math, Statistics
// See Also: sum(), mean(), median(), product(), cumsum()
// Usage:
// sum_of_sines(a,sines)
// Description:
// Gives the sum of a series of sines, at a given angle.
// Given a list of sine waves, returns the sum of the sines at the given angle.
// Each sine wave is given as an `[AMPLITUDE, FREQUENCY, PHASE_ANGLE]` triplet.
// - `AMPLITUDE` is the height of the sine wave above (and below) `0`.
// - `FREQUENCY` is the number of times the sine wave repeats in 360º.
// - `PHASE_ANGLE` is the offset in degrees of the sine wave.
// Arguments:
// a = Angle to get the value for.
// sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle.
// sines = List of [amplitude, frequency, phase_angle] items, where the frequency is the number of times the cycle repeats around the circle.
// Example:
// v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]);
function sum_of_sines(a, sines) =
@ -729,6 +840,9 @@ function sum_of_sines(a, sines) =
// Section: Random Number Generation
// Function: rand_int()
// Synopsis: Returns a random integer.
// Topics: Random
// See Also: rand_int(), random_points(), gaussian_rands(), random_polygon(), spherical_random_points(), exponential_rands()
// Usage:
// rand_int(minval, maxval, n, [seed]);
// Description:
@ -749,10 +863,11 @@ function rand_int(minval, maxval, n, seed=undef) =
// Function: random_points()
// Synopsis: Returns a list of random points.
// Topics: Random, Points
// See Also: rand_int(), random_points(), random_polygon(), spherical_random_points()
// Usage:
// points = random_points(n, dim, [scale], [seed]);
// See Also: random_polygon(), spherical_random_points()
// Topics: Random, Points
// Description:
// Generate `n` uniform random points of dimension `dim` with data ranging from -scale to +scale.
// The `scale` may be a number, in which case the random data lies in a cube,
@ -776,6 +891,9 @@ function random_points(n, dim, scale=1, seed) =
// Function: gaussian_rands()
// Synopsis: Returns a list of random numbers with a gaussian distribution.
// Topics: Random, Statistics
// See Also: rand_int(), random_points(), gaussian_rands(), random_polygon(), spherical_random_points(), exponential_rands()
// Usage:
// arr = gaussian_rands([n],[mean], [cov], [seed]);
// Description:
@ -806,6 +924,9 @@ function gaussian_rands(n=1, mean=0, cov=1, seed=undef) =
// Function: exponential_rands()
// Synopsis: Returns a list of random numbers with an exponential distribution.
// Topics: Random, Statistics
// See Also: rand_int(), random_points(), gaussian_rands(), random_polygon(), spherical_random_points()
// Usage:
// arr = exponential_rands([n], [lambda], [seed])
// Description:
@ -821,11 +942,13 @@ function exponential_rands(n=1, lambda=1, seed) =
)
-(1/lambda) * [for(x=unif) x==1 ? 708.3964185322641 : ln(1-x)]; // Use ln(min_float) when x is 1
// Function: spherical_random_points()
// Synopsis: Returns a list of random points on the surface of a sphere.
// Topics: Random, Points
// See Also: rand_int(), random_points(), gaussian_rands(), random_polygon(), spherical_random_points()
// Usage:
// points = spherical_random_points([n], [radius], [seed]);
// See Also: random_polygon(), random_points()
// Topics: Random, Points
// Description:
// Generate `n` 3D uniformly distributed random points lying on a sphere centered at the origin with radius equal to `radius`.
// Arguments:
@ -849,10 +972,11 @@ function spherical_random_points(n=1, radius=1, seed) =
// Function: random_polygon()
// Synopsis: Returns the CCW path of a simple random polygon.
// Topics: Random, Polygon
// See Also: random_points(), spherical_random_points()
// Usage:
// points = random_polygon([n], [size], [seed]);
// See Also: random_points(), spherical_random_points()
// Topics: Random, Polygon
// Description:
// Generate the `n` vertices of a random counter-clockwise simple 2d polygon
// inside a circle centered at the origin with radius `size`.
@ -876,6 +1000,9 @@ function random_polygon(n=3,size=1, seed) =
// Section: Calculus
// Function: deriv()
// Synopsis: Returns the first derivative estimate of a list of data.
// Topics: Math, Calculus
// See Also: deriv(), deriv2(), deriv3()
// Usage:
// x = deriv(data, [h], [closed])
// Description:
@ -941,6 +1068,9 @@ function _deriv_nonuniform(data, h, closed) =
// Function: deriv2()
// Synopsis: Returns the second derivative estimate of a list of data.
// Topics: Math, Calculus
// See Also: deriv(), deriv2(), deriv3()
// Usage:
// x = deriv2(data, [h], [closed])
// Description:
@ -985,6 +1115,9 @@ function deriv2(data, h=1, closed=false) =
// Function: deriv3()
// Synopsis: Returns the third derivative estimate of a list of data.
// Topics: Math, Calculus
// See Also: deriv(), deriv2(), deriv3()
// Usage:
// x = deriv3(data, [h], [closed])
// Description:
@ -1030,6 +1163,9 @@ function deriv3(data, h=1, closed=false) =
// Function: complex()
// Synopsis: Replaces scalars in a list or matrix with complex number 2-vectors.
// Topics: Math, Complex Numbers
// See Also: c_mul(), c_div(), c_conj(), c_real(), c_imag(), c_ident(), c_norm()
// Usage:
// z = complex(list)
// Description:
@ -1041,6 +1177,9 @@ function complex(list) =
// Function: c_mul()
// Synopsis: Multiplies two complex numbers.
// Topics: Math, Complex Numbers
// See Also: complex(), c_mul(), c_div(), c_conj(), c_real(), c_imag(), c_ident(), c_norm()
// Usage:
// c = c_mul(z1,z2)
// Description:
@ -1077,6 +1216,9 @@ function _c_mul(z1,z2) =
// Function: c_div()
// Synopsis: Divides two complex numbers.
// Topics: Math, Complex Numbers
// See Also: complex(), c_mul(), c_div(), c_conj(), c_real(), c_imag(), c_ident(), c_norm()
// Usage:
// x = c_div(z1,z2)
// Description:
@ -1093,6 +1235,9 @@ function c_div(z1,z2) =
// Function: c_conj()
// Synopsis: Returns the complex conjugate of the input.
// Topics: Math, Complex Numbers
// See Also: complex(), c_mul(), c_div(), c_conj(), c_real(), c_imag(), c_ident(), c_norm()
// Usage:
// w = c_conj(z)
// Description:
@ -1104,6 +1249,9 @@ function c_conj(z) =
// Function: c_real()
// Synopsis: Returns the real part of a complex number, vector or matrix..
// Topics: Math, Complex Numbers
// See Also: complex(), c_mul(), c_div(), c_conj(), c_real(), c_imag(), c_ident(), c_norm()
// Usage:
// x = c_real(z)
// Description:
@ -1115,6 +1263,9 @@ function c_real(z) =
// Function: c_imag()
// Synopsis: Returns the imaginary part of a complex number, vector or matrix..
// Topics: Math, Complex Numbers
// See Also: complex(), c_mul(), c_div(), c_conj(), c_real(), c_imag(), c_ident(), c_norm()
// Usage:
// x = c_imag(z)
// Description:
@ -1126,6 +1277,9 @@ function c_imag(z) =
// Function: c_ident()
// Synopsis: Returns an n by n complex identity matrix.
// Topics: Math, Complex Numbers
// See Also: complex(), c_mul(), c_div(), c_conj(), c_real(), c_imag(), c_ident(), c_norm()
// Usage:
// I = c_ident(n)
// Description:
@ -1134,6 +1288,9 @@ function c_ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?[1,0]:[0,
// Function: c_norm()
// Synopsis: Returns the norm of a complex number or vector.
// Topics: Math, Complex Numbers
// See Also: complex(), c_mul(), c_div(), c_conj(), c_real(), c_imag(), c_ident(), c_norm()
// Usage:
// n = c_norm(z)
// Description:
@ -1144,6 +1301,9 @@ function c_norm(z) = norm_fro(z);
// Section: Polynomials
// Function: quadratic_roots()
// Synopsis: Computes roots for the quadratic equation.
// Topics: Math, Geometry, Complex Numbers
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add()
// Usage:
// roots = quadratic_roots(a, b, c, [real])
// Description:
@ -1177,6 +1337,9 @@ function quadratic_roots(a,b,c,real=false) =
// Function: polynomial()
// Synopsis: Calculates a polynomial equation at a given value.
// Topics: Math, Complex Numbers
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add(), poly_roots()
// Usage:
// x = polynomial(p, z)
// Description:
@ -1194,6 +1357,9 @@ function polynomial(p,z,k,total) =
// Function: poly_mult()
// Synopsis: Returns the polynomial result of multiplying two polynomial equations.
// Topics: Math
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add(), poly_roots()
// Usage:
// x = polymult(p,q)
// x = polymult([p1,p2,p3,...])
@ -1213,6 +1379,9 @@ function poly_mult(p,q) =
// Function: poly_div()
// Synopsis: Returns the polynomial quotient and remainder results of dividing two polynomial equations.
// Topics: Math
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add(), poly_roots()
// Usage:
// [quotient,remainder] = poly_div(n,d)
// Description:
@ -1251,6 +1420,9 @@ function _poly_trim(p,eps=0) =
// Function: poly_add()
// Synopsis: Returns the polynomial sum of adding two polynomial equations.
// Topics: Math
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add(), poly_roots()
// Usage:
// sum = poly_add(p,q)
// Description:
@ -1266,6 +1438,9 @@ function poly_add(p,q) =
// Function: poly_roots()
// Synopsis: Returns all complex number roots of the given real polynomial.
// Topics: Math, Complex Numbers
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add(), poly_roots()
// Usage:
// roots = poly_roots(p, [tol]);
// Description:
@ -1336,6 +1511,9 @@ function _poly_roots(p, pderiv, s, z, tol, i=0) =
// Function: real_roots()
// Synopsis: Returns all real roots of the given real polynomial.
// Topics: Math, Complex Numbers
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add(), poly_roots()
// Usage:
// roots = real_roots(p, [eps], [tol])
// Description:
@ -1378,6 +1556,9 @@ function real_roots(p,eps=undef,tol=1e-14) =
// Section: Operations on Functions
// Function: root_find()
// Synopsis: Finds a root of the given continuous function.
// Topics: Math
// See Also: quadratic_roots(), polynomial(), poly_mult(), poly_div(), poly_add(), poly_roots()
// Usage:
// x = root_find(f, x0, x1, [tol])
// Description: