Refactored 2D masks to support mask_angle and flat_top

This commit is contained in:
Revar Desmera 2023-11-17 22:12:47 -08:00
parent 87d8e6a3d4
commit a03d47d5cc

View File

@ -20,14 +20,16 @@
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
// See Also: corner_profile(), edge_profile(), face_profile(), fillet()
// Usage: As module
// mask2d_roundover(r|d=, [inset], [mask_angle], [excess]) [ATTACHMENTS];
// mask2d_roundover(r|d=|h=|cut=|joint=, [inset], [mask_angle], [excess], [flat_top=]) [ATTACHMENTS];
// Usage: As function
// path = mask2d_roundover(r|d=, [inset], [mask_angle], [excess]);
// path = mask2d_roundover(r|d=|h=|cut=|joint=, [inset], [mask_angle], [excess], [flat_top=]);
// Description:
// Creates a 2D roundover/bead mask shape that is useful for extruding into a 3D mask for an edge.
// Conversely, you can use that same extruded shape to make an interior fillet between two walls.
// As a 2D mask, this is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant.
// If called as a function, this just returns a 2D path of the outline of the mask shape.
// The roundover can be specified by radius, diameter, height, cut, or joint length.
// ![Types of Roundovers](images/rounding/section-types-of-roundovers_fig1.png)
// Arguments:
// r = Radius of the roundover.
// inset = Optional bead inset size. Default: 0
@ -35,24 +37,34 @@
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01
// ---
// d = Diameter of the roundover.
// h = Mask height. Given instead of r or d when you want a consistent mask height, no matter what the mask angle.
// cut = Cut distance. IE: How much of the corner to cut off. See [Types of Roundovers](rounding.scad#section-types-of-roundovers).
// joint = Joint distance. IE: How far from the edge the roundover should start. See [Types of Roundovers](rounding.scad#section-types-of-roundovers).
// flat_top = If true, the top inset of the mask will be horizontal instead of angled by the mask_angle. Default: true.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// Side Effects:
// Tags the children with "remove" (and hence sets `$tag`) if no tag is already set.
//
// Example(2D): 2D Roundover Mask
// Example(2D): 2D Roundover Mask by Radius
// mask2d_roundover(r=10);
// Example(2D): 2D Bead Mask
// mask2d_roundover(r=10,inset=2);
// Example(2D): 2D Bead Mask by Height
// mask2d_roundover(h=10,inset=2);
// Example(2D): 2D Bead Mask for a Non-Right Edge.
// mask2d_roundover(r=10, inset=2, mask_angle=75);
// Example(2D): Disabling flat_top=
// mask2d_roundover(r=10, inset=2, flat_top=false, mask_angle=75);
// Example(2D): 2D Angled Bead Mask by Joint Length
// mask2d_roundover(joint=10, inset=2, mask_angle=75);
// Example(2D): Increasing the Excess
// mask2d_roundover(r=10, inset=2, mask_angle=75, excess=2);
// Example: Masking by Edge Attachment
// diff()
// cube([50,60,70],center=true)
// edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT])
// mask2d_roundover(r=10, inset=2);
// mask2d_roundover(h=12, inset=2);
// Example: Making an interior fillet
// %render() difference() {
// move(-[5,0,5]) cube(30, anchor=BOT+LEFT);
@ -61,8 +73,8 @@
// xrot(90)
// linear_extrude(height=30, center=true)
// mask2d_roundover(r=10);
module mask2d_roundover(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENTER,spin=0) {
path = mask2d_roundover(r=r, d=d, inset=inset, mask_angle=mask_angle, excess=excess);
module mask2d_roundover(r, inset=0, mask_angle=90, excess=0.01, flat_top=true, d, h, cut, joint, anchor=CENTER,spin=0) {
path = mask2d_roundover(r=r, d=d, h=h, cut=cut, joint=joint, inset=inset, flat_top=flat_top, mask_angle=mask_angle, excess=excess);
default_tag("remove") {
attachable(anchor,spin, two_d=true, path=path) {
polygon(path);
@ -71,40 +83,127 @@ module mask2d_roundover(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENTER
}
}
function mask2d_roundover(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENTER, spin=0) =
assert(is_finite(r)||is_finite(d))
function mask2d_roundover(r, inset=0, mask_angle=90, excess=0.01, flat_top=true, d, h, cut, joint, anchor=CENTER, spin=0) =
assert(one_defined([r,d,h,cut,joint],"r,d,h,cut,joint"))
assert(is_undef(r) || is_finite(r))
assert(is_undef(d) || is_finite(d))
assert(is_undef(h) || is_finite(h))
assert(is_undef(cut) || is_finite(cut))
assert(is_undef(joint) || is_finite(joint))
assert(is_finite(excess))
assert(is_finite(mask_angle) && mask_angle>0 && mask_angle<180)
assert(is_finite(inset)||(is_vector(inset)&&len(inset)==2))
assert(is_bool(flat_top))
let(
inset = is_list(inset)? inset : [inset,inset],
r = get_radius(r=r,d=d,dflt=1),
avec = polar_to_xy(inset.x,mask_angle-90),
line1 = [[0,inset.y], [100,inset.y]],
line2 = [avec, polar_to_xy(100,mask_angle)+avec],
corner = line_intersection(line1,line2),
arcpts = arc(r=r, corner=[line2.y, corner, line1.y]),
ipath = [
arcpts[0] + polar_to_xy(inset.x+excess, mask_angle+90),
r = is_finite(joint)? adj_ang_to_opp(joint, mask_angle/2) :
is_finite(h)? (
mask_angle==90? h-inset.y :
mask_angle < 90 ? adj_ang_to_opp(opp_ang_to_hyp(h-inset.y,mask_angle), mask_angle/2) :
adj_ang_to_opp(adj_ang_to_hyp(h-inset.y,mask_angle-90), mask_angle/2)
) :
is_finite(cut)
? let(
o = adj_ang_to_opp(cut, mask_angle/2),
h = adj_ang_to_hyp(cut, mask_angle/2)
) adj_ang_to_opp(o+h, mask_angle/2)
: get_radius(r=r,d=d,dflt=undef),
pts = _inset_isect(inset,mask_angle,flat_top,excess,-r),
arcpts = arc(r=r, corner=[pts[4],pts[5],pts[0]]),
path = [
each select(pts, 1, 3),
each arcpts,
last(arcpts) + polar_to_xy(inset.y+excess, -90),
[0,-excess],
[-excess,-excess],
[-excess,0]
],
path = deduplicate(ipath)
]
) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path);
function _inset_isect(inset,mask_angle,flat_top,excess,r,size) =
assert(one_defined([size,r],"size,r"))
let(
lft_n = polar_to_xy(1, mask_angle-90),
rgt_n = [1,0],
top_n = flat_top? [1,0] : lft_n,
bot_n = [0,1],
line_lft = [[0,0], polar_to_xy(100, mask_angle)],
line_bot = [[0,0], [100,0]],
ex_line_lft = move(-excess*lft_n, p=line_lft),
ex_line_bot = move(-excess*bot_n, p=line_bot),
in_line_lft = move(inset.x*top_n, p=line_lft),
in_line_bot = move(inset.y*bot_n, p=line_bot),
ex_pt = line_intersection(ex_line_lft, ex_line_bot),
in_pt = line_intersection(in_line_lft, in_line_bot),
pos_r = r==undef || r >= 0,
r = r==undef? undef : abs(r),
x = is_undef(size)? r : size.x,
y = is_undef(size)? r : size.y,
base_pt = !flat_top && is_num(r)? in_pt :
in_pt + [y*cos(mask_angle)/sin(mask_angle), 0],
line_top = !flat_top && is_num(r)
? let( pt = in_pt + polar_to_xy(r/(pos_r?1:tan(mask_angle/2)), mask_angle) )
[pt, pt - top_n]
: [base_pt + [0,y], base_pt + [0,y] - top_n],
line_rgt = !flat_top && is_num(r)
? pos_r
? [in_pt + [r,0], in_pt + [r,1]]
: [in_pt + [r/tan(mask_angle/2),0], in_pt + [r/tan(mask_angle/2),1]]
: [base_pt + [x,0], base_pt + [x,1]],
top_pt = line_intersection(ex_line_lft, line_top),
path = is_vector(size)? [
// All size based
base_pt + [size.x,0],
[base_pt.x + size.x, -excess],
ex_pt,
top_pt,
base_pt + [0,size.y],
base_pt,
base_pt + size,
] : flat_top? [
// flat_top radius
base_pt + [r,0],
[base_pt.x + r, -excess],
ex_pt,
top_pt,
base_pt + [0,r],
base_pt,
base_pt + [r,r],
] : let(
cp_pt = line_intersection(line_rgt, line_top)
) pos_r? [
// non-flat_top radius from inside
in_pt + [r,0],
[in_pt.x + r, -excess],
ex_pt,
top_pt,
in_pt + polar_to_xy(r,mask_angle),
in_pt,
cp_pt,
] : [
// non-flat_top radius from outside
line_rgt[0],
[cp_pt.x, -excess],
ex_pt,
top_pt,
in_pt + polar_to_xy(r/tan(mask_angle/2),mask_angle),
in_pt,
cp_pt,
]
) path;
// Function&Module: mask2d_cove()
// Synopsis: Creates a 2D cove (quarter-round) mask shape.
// SynTags: Geom, Path
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
// See Also: corner_profile(), edge_profile(), face_profile()
// Usage: As module
// mask2d_cove(r|d=, [inset], [mask_angle], [excess]) [ATTACHMENTS];
// mask2d_cove(r|d=|h=, [inset], [mask_angle], [excess], [flat_top=]) [ATTACHMENTS];
// Usage: As function
// path = mask2d_cove(r|d=, [inset], [mask_angle], [excess]);
// path = mask2d_cove(r|d=|h=, [inset], [mask_angle], [excess], [flat_top=]);
// Description:
// Creates a 2D cove mask shape that is useful for extruding into a 3D mask for an edge.
// Conversely, you can use that same extruded shape to make an interior rounded shelf decoration between two walls.
@ -117,23 +216,31 @@ function mask2d_roundover(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENT
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01
// ---
// d = Diameter of the cove.
// h = Mask height. Given instead of r or d when you want a consistent mask height, no matter what the mask angle.
// flat_top = If true, the top inset of the mask will be horizontal instead of angled by the mask_angle. Default: true.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// Side Effects:
// Tags the children with "remove" (and hence sets `$tag`) if no tag is already set.
// Example(2D): 2D Cove Mask
// Example(2D): 2D Cove Mask by Radius
// mask2d_cove(r=10);
// Example(2D): 2D Inset Cove Mask
// mask2d_cove(r=10,inset=3);
// Example(2D): 2D Inset Cove Mask by Height
// mask2d_cove(h=10,inset=2);
// Example(2D): 2D Inset Cove Mask for a Non-Right Edge
// mask2d_cove(r=10,inset=3,mask_angle=75);
// Example(2D): Disabling flat_top=
// mask2d_cove(r=10, inset=3, flat_top=false, mask_angle=75);
// Example(2D): 2D Angled Inset Cove Mask by Joint Length
// mask2d_cove(joint=10, inset=3, mask_angle=75);
// Example(2D): Increasing the Excess
// mask2d_cove(r=10,inset=3,mask_angle=75, excess=2);
// Example: Masking by Edge Attachment
// diff()
// cube([50,60,70],center=true)
// edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT])
// mask2d_cove(r=10, inset=2);
// mask2d_cove(h=10, inset=3);
// Example: Making an interior rounded shelf
// %render() difference() {
// move(-[5,0,5]) cube(30, anchor=BOT+LEFT);
@ -142,8 +249,8 @@ function mask2d_roundover(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENT
// xrot(90)
// linear_extrude(height=30, center=true)
// mask2d_cove(r=5, inset=5);
module mask2d_cove(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENTER, spin=0) {
path = mask2d_cove(r=r, d=d, inset=inset, mask_angle=mask_angle, excess=excess);
module mask2d_cove(r, inset=0, mask_angle=90, excess=0.01, flat_top=true, d, h, anchor=CENTER, spin=0) {
path = mask2d_cove(r=r, d=d, h=h, flat_top=flat_top, inset=inset, mask_angle=mask_angle, excess=excess);
default_tag("remove") {
attachable(anchor,spin, two_d=true, path=path) {
polygon(path);
@ -152,26 +259,27 @@ module mask2d_cove(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENTER, spi
}
}
function mask2d_cove(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENTER, spin=0) =
assert(is_finite(r)||is_finite(d))
function mask2d_cove(r, inset=0, mask_angle=90, excess=0.01, flat_top=true, d, h, anchor=CENTER, spin=0) =
assert(one_defined([r,d,h],"r,d,h"))
assert(is_undef(r) || is_finite(r))
assert(is_undef(d) || is_finite(d))
assert(is_undef(h) || is_finite(h))
assert(is_finite(mask_angle) && mask_angle>0 && mask_angle<180)
assert(is_finite(excess))
assert(is_finite(inset)||(is_vector(inset)&&len(inset)==2))
assert(is_bool(flat_top))
let(
inset = is_list(inset)? inset : [inset,inset],
r = get_radius(r=r,d=d,dflt=1),
avec = polar_to_xy(inset.x,mask_angle-90),
line1 = [[0,inset.y], [100,inset.y]],
line2 = [avec, polar_to_xy(100,mask_angle)+avec],
corner = line_intersection(line1,line2),
arcpts = arc(r=r, cp=corner, start=mask_angle, angle=-mask_angle),
r = is_finite(h)? (
mask_angle==90? h-inset.y :
mask_angle < 90 ? adj_ang_to_opp(opp_ang_to_hyp(h-inset.y,mask_angle), mask_angle/2) :
adj_ang_to_opp(adj_ang_to_hyp(h-inset.y,mask_angle-90), mask_angle/2)
) : get_radius(r=r,d=d,dflt=undef),
pts = _inset_isect(inset,mask_angle,flat_top,excess,r),
arcpts = arc(r=r, corner=[pts[4],pts[6],pts[0]]),
ipath = [
arcpts[0] + polar_to_xy(inset.x+excess, mask_angle+90),
each select(pts, 1, 3),
each arcpts,
last(arcpts) + polar_to_xy(inset.y+excess, -90),
[0,-excess],
[-excess,-excess],
[-excess,0]
],
path = deduplicate(ipath)
) reorient(anchor,spin, two_d=true, path=path, p=path);
@ -201,10 +309,12 @@ function mask2d_cove(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENTER, s
// edge = The length of the edge of the chamfer.
// angle = The angle of the chamfer edge, away from vertical. Default: 45.
// inset = Optional amount to inset code from corner. Default: 0
// mask_angle = Number of degrees in the corner angle to mask. Default: 90
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01
// ---
// x = The width of the chamfer.
// y = The height of the chamfer.
// flat_top = If true, the top inset of the mask will be horizontal instead of angled by the mask_angle. Default: true.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// Side Effects:
@ -230,8 +340,8 @@ function mask2d_cove(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENTER, s
// xrot(90)
// linear_extrude(height=30, center=true)
// mask2d_chamfer(edge=10);
module mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTER,spin=0) {
path = mask2d_chamfer(x=x, y=y, edge=edge, angle=angle, excess=excess, inset=inset);
module mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, mask_angle=90, flat_top=true, x, y, anchor=CENTER,spin=0) {
path = mask2d_chamfer(x=x, y=y, edge=edge, angle=angle, excess=excess, inset=inset, mask_angle=mask_angle, flat_top=flat_top);
default_tag("remove") {
attachable(anchor,spin, two_d=true, path=path, extent=true) {
polygon(path);
@ -240,10 +350,11 @@ module mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTER,
}
}
function mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTER,spin=0) =
function mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, mask_angle=90, flat_top=true, x, y, anchor=CENTER,spin=0) =
let(dummy=one_defined([x,y,edge],["x","y","edge"]))
assert(is_finite(angle))
assert(is_finite(excess))
assert(is_finite(mask_angle) && mask_angle>0 && mask_angle<180)
assert(is_finite(inset)||(is_vector(inset)&&len(inset)==2))
let(
inset = is_list(inset)? inset : [inset,inset],
@ -251,12 +362,10 @@ function mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTE
is_def(y)? adj_ang_to_opp(adj=y,ang=angle) :
hyp_ang_to_opp(hyp=edge,ang=angle),
y = opp_ang_to_adj(opp=x,ang=angle),
pts = _inset_isect(inset,mask_angle,flat_top,excess,size=[x,y]),
path = [
[x+inset.x, -excess],
[-excess, -excess],
[-excess, y+inset.y],
[inset.x, y+inset.y],
[x+inset.x, inset.y]
each select(pts, 1, 4),
pts[0],
]
) reorient(anchor,spin, two_d=true, path=path, extent=true, p=path);
@ -267,9 +376,9 @@ function mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTE
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
// See Also: corner_profile(), edge_profile(), face_profile()
// Usage: As Module
// mask2d_rabbet(size, [mask_angle], [excess]) [ATTACHMENTS];
// mask2d_rabbet(size, [mask_angle], [excess], [flat_top=]) [ATTACHMENTS];
// Usage: As Function
// path = mask2d_rabbet(size, [mask_angle], [excess]);
// path = mask2d_rabbet(size, [mask_angle], [excess], [flat_top=]);
// Description:
// Creates a 2D rabbet mask shape that is useful for extruding into a 3D mask for an edge.
// Conversely, you can use that same extruded shape to make an interior shelf decoration between two walls.
@ -277,9 +386,11 @@ function mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTE
// If called as a function, this just returns a 2D path of the outline of the mask shape.
// Arguments:
// size = The size of the rabbet, either as a scalar or an [X,Y] list.
// inset = Optional bead inset size. Default: 0
// mask_angle = Number of degrees in the corner angle to mask. Default: 90
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01
// ---
// flat_top = If true, the top inset of the mask will be horizontal instead of angled by the mask_angle. Default: true.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// Side Effects:
@ -289,7 +400,9 @@ function mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTE
// Example(2D): 2D Asymmetrical Rabbet Mask
// mask2d_rabbet(size=[5,10]);
// Example(2D): 2D Mask for a Non-Right Edge
// mask2d_rabbet(size=10,mask_angle=75);
// mask2d_rabbet(size=10, mask_angle=75);
// Example(2D): Disabling flat_top=
// mask2d_rabbet(size=10, flat_top=false, mask_angle=75);
// Example: Masking by Edge Attachment
// diff()
// cube([50,60,70],center=true)
@ -303,8 +416,8 @@ function mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTE
// xrot(90)
// linear_extrude(height=30, center=true)
// mask2d_rabbet(size=[5,10]);
module mask2d_rabbet(size, mask_angle=90, excess=0.01, anchor=CTR, spin=0) {
path = mask2d_rabbet(size=size, mask_angle=mask_angle, excess=excess);
module mask2d_rabbet(size, inset=[0,0], mask_angle=90, excess=0.01, flat_top=true, anchor=CTR, spin=0) {
path = mask2d_rabbet(size=size, inset=inset, mask_angle=mask_angle, excess=excess, flat_top=flat_top);
default_tag("remove") {
attachable(anchor,spin, two_d=true, path=path, extent=false) {
polygon(path);
@ -313,23 +426,18 @@ module mask2d_rabbet(size, mask_angle=90, excess=0.01, anchor=CTR, spin=0) {
}
}
function mask2d_rabbet(size, mask_angle=90, excess=0.01, anchor=CTR, spin=0) =
function mask2d_rabbet(size, inset=[0,0], mask_angle=90, excess=0.01, flat_top=true, anchor=CTR, spin=0) =
assert(is_finite(size)||(is_vector(size)&&len(size)==2))
assert(is_finite(mask_angle) && mask_angle>0 && mask_angle<180)
assert(is_finite(excess))
assert(is_bool(flat_top))
let(
size = is_list(size)? size : [size,size],
avec = polar_to_xy(size.x,mask_angle-90),
line1 = [[0,size.y], [100,size.y]],
line2 = [avec, polar_to_xy(100,mask_angle)+avec],
cp = line_intersection(line1,line2),
pts = _inset_isect(inset,mask_angle,flat_top,excess,size=size),
path = [
cp + polar_to_xy(size.x+excess, mask_angle+90),
cp,
cp + polar_to_xy(size.y+excess, -90),
[0,-excess],
[-excess,-excess],
[-excess,0]
each select(pts, 1, 4),
pts[6],
pts[0],
]
) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path);
@ -353,12 +461,14 @@ function mask2d_rabbet(size, mask_angle=90, excess=0.01, anchor=CTR, spin=0) =
// Arguments:
// edge = The length of the edge of the dovetail.
// angle = The angle of the chamfer edge, away from vertical. Default: 30.
// inset = Optional amount to inset code from corner. Default: 0
// shelf = The extra height to add to the inside corner of the dovetail. Default: 0
// inset = Optional amount to inset code from corner. Default: 0
// mask_angle = Number of degrees in the corner angle to mask. Default: 90
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01
// ---
// x = The width of the dovetail.
// y = The height of the dovetail.
// flat_top = If true, the top inset of the mask will be horizontal instead of angled by the mask_angle. Default: true.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// Side Effects:
@ -384,8 +494,8 @@ function mask2d_rabbet(size, mask_angle=90, excess=0.01, anchor=CTR, spin=0) =
// xrot(90)
// linear_extrude(height=30, center=true)
// mask2d_dovetail(x=10);
module mask2d_dovetail(edge, angle=30, inset=0, shelf=0, excess=0.01, x, y, anchor=CENTER, spin=0) {
path = mask2d_dovetail(x=x, y=y, edge=edge, angle=angle, inset=inset, shelf=shelf, excess=excess);
module mask2d_dovetail(edge, angle=30, shelf=0, inset=0, mask_angle=90, excess=0.01, flat_top=true, x, y, anchor=CENTER, spin=0) {
path = mask2d_dovetail(x=x, y=y, edge=edge, angle=angle, inset=inset, shelf=shelf, excess=excess, flat_top=flat_top, mask_angle=mask_angle);
default_tag("remove") {
attachable(anchor,spin, two_d=true, path=path) {
polygon(path);
@ -394,7 +504,7 @@ module mask2d_dovetail(edge, angle=30, inset=0, shelf=0, excess=0.01, x, y, anch
}
}
function mask2d_dovetail(edge, angle=30, inset=0, shelf=0, excess=0.01, x, y, anchor=CENTER, spin=0) =
function mask2d_dovetail(edge, angle=30, shelf=0, inset=0, mask_angle=90, excess=0.01, flat_top=true, x, y, anchor=CENTER, spin=0) =
assert(num_defined([x,y,edge])==1)
assert(is_finite(first_defined([x,y,edge])))
assert(is_finite(angle))
@ -406,13 +516,13 @@ function mask2d_dovetail(edge, angle=30, inset=0, shelf=0, excess=0.01, x, y, an
!is_undef(y)? adj_ang_to_opp(adj=y,ang=angle) :
hyp_ang_to_opp(hyp=edge,ang=angle),
y = opp_ang_to_adj(opp=x,ang=angle),
pts = _inset_isect(inset,mask_angle,flat_top,excess,size=[x,y+shelf]),
path = [
[inset.x,0],
[-excess, 0],
[-excess, y+inset.y+shelf],
inset+[x,y+shelf],
inset+[x,y],
inset
[max(0,pts[5].x),-excess],
each select(pts, 2, 4),
pts[6],
pts[6]-[0,shelf],
pts[5],
]
) reorient(anchor,spin, two_d=true, path=path, p=path);
@ -432,13 +542,20 @@ function mask2d_dovetail(edge, angle=30, inset=0, shelf=0, excess=0.01, x, y, an
// As a 2D mask, this is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant.
// If called as a function, this just returns a 2D path of the outline of the mask shape.
// This is particularly useful to make partially rounded bottoms, that don't need support to print.
// The roundover can be specified by radius, diameter, height, cut, or joint length.
// ![Types of Roundovers](images/rounding/section-types-of-roundovers_fig1.png)
// Arguments:
// r = Radius of the rounding.
// angle = The maximum angle from vertical.
// inset = Optional bead inset size. Default: 0
// mask_angle = Number of degrees in the corner angle to mask. Default: 90
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01
// ---
// d = Diameter of the rounding.
// h = Mask height. Given instead of r or d when you want a consistent mask height, no matter what the mask angle.
// cut = Cut distance. IE: How much of the corner to cut off. See [Types of Roundovers](rounding.scad#section-types-of-roundovers).
// joint = Joint distance. IE: How far from the edge the roundover should start. See [Types of Roundovers](rounding.scad#section-types-of-roundovers).
// flat_top = If true, the top inset of the mask will be horizontal instead of angled by the mask_angle. Default: true.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// Side Effects:
@ -464,34 +581,50 @@ function mask2d_dovetail(edge, angle=30, inset=0, shelf=0, excess=0.01, x, y, an
// xrot(90)
// linear_extrude(height=30, center=true)
// mask2d_teardrop(r=10);
function mask2d_teardrop(r, angle=45, mask_angle=90, excess=0.01, d, anchor=CENTER, spin=0) =
function mask2d_teardrop(r, angle=45, inset=[0,0], mask_angle=90, excess=0.01, flat_top=true, d, h, cut, joint, anchor=CENTER, spin=0) =
assert(one_defined([r,d,h,cut,joint],"r,d,h,cut,joint"))
assert(is_undef(r) || is_finite(r))
assert(is_undef(d) || is_finite(d))
assert(is_undef(h) || is_finite(h))
assert(is_undef(cut) || is_finite(cut))
assert(is_undef(joint) || is_finite(joint))
assert(is_finite(angle))
assert(angle>0 && angle<90)
assert(is_finite(mask_angle) && mask_angle>0 && mask_angle<180)
assert(is_finite(excess))
let(
r = get_radius(r=r, d=d, dflt=1),
avec = polar_to_xy(r,mask_angle-90),
line1 = [[0,r], [100,r]],
line2 = [avec, polar_to_xy(100,mask_angle)+avec],
cp = line_intersection(line1,line2),
tp = cp + polar_to_xy(r,180+angle),
bp = [tp.x+adj_ang_to_opp(tp.y,angle), 0],
arcpts = arc(r=r, cp=cp, angle=[mask_angle+90,180+angle]),
ipath = [
arcpts[0] + polar_to_xy(excess, mask_angle+90),
each arcpts,
bp,
bp + [0,-excess],
[0,-excess],
[-excess,-excess],
[-excess,0]
r = is_finite(joint)? adj_ang_to_opp(joint, mask_angle/2) :
is_finite(h)? (
mask_angle==90? h :
mask_angle < 90 ? adj_ang_to_opp(opp_ang_to_hyp(h,mask_angle), mask_angle/2) :
adj_ang_to_opp(adj_ang_to_hyp(h,mask_angle-90), mask_angle/2)
) :
is_finite(cut)
? let(
o = adj_ang_to_opp(cut, mask_angle/2),
h = adj_ang_to_hyp(cut, mask_angle/2)
) adj_ang_to_opp(o+h, mask_angle/2)
: get_radius(r=r,d=d,dflt=undef),
pts = _inset_isect(inset,mask_angle,flat_top,excess,-r),
arcpts = arc(r=r, corner=[pts[4],pts[5],pts[0]]),
arcpts2 = [
for (i = idx(arcpts))
if(i==0 || v_theta(arcpts[i]-arcpts[i-1]) <= angle-90)
arcpts[i]
],
path = deduplicate(ipath)
line1 = [last(arcpts2), last(arcpts2) + polar_to_xy(1, angle-90)],
line2 = [[0,inset.y], [100,inset.y]],
ipt = line_intersection(line1,line2),
path = [
[ipt.x, -excess],
each select(pts, 2, 3),
each arcpts2,
ipt,
]
) reorient(anchor,spin, two_d=true, path=path, p=path);
module mask2d_teardrop(r, angle=45, mask_angle=90, excess=0.01, d, anchor=CENTER, spin=0) {
path = mask2d_teardrop(r=r, d=d, angle=angle, mask_angle=mask_angle, excess=excess);
module mask2d_teardrop(r, angle=45, mask_angle=90, excess=0.01, flat_top=true, d, h, cut, joint, anchor=CENTER, spin=0) {
path = mask2d_teardrop(r=r, d=d, h=h, cut=cut, joint=joint, angle=angle, mask_angle=mask_angle, excess=excess);
default_tag("remove") {
attachable(anchor,spin, two_d=true, path=path) {
polygon(path);