improve speed of quantizing functions

This commit is contained in:
Adrian Mariano 2023-03-13 16:15:22 -04:00
parent b813881d26
commit a7f4a72d31

View File

@ -339,8 +339,8 @@ function atanh(x) =
// The value of `y` does NOT have to be an integer. If `x` is a list, then every item
// in that list will be recursively quantized.
// Arguments:
// x = The value to quantize.
// y = The non-zero integer quantum of the quantization.
// x = The value or list to quantize.
// y = Positive quantum to quantize to
// Example:
// a = quant(12,4); // Returns: 12
// b = quant(13,4); // Returns: 12
@ -361,11 +361,12 @@ function atanh(x) =
// q = quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
// r = quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
function quant(x,y) =
assert( is_finite(y) && y>0, "The quantum `y` must be a non zero integer.")
is_list(x)
? [for (v=x) quant(v,y)]
: assert( is_finite(x), "The input to quantize is not a number nor a list of numbers.")
floor(x/y+0.5)*y;
assert( is_finite(y) && y>0, "The quantum `y` must be a positive value.")
is_num(x) ? round(x/y)*y
: _roundall(x/y)*y;
function _roundall(data) =
[for(x=data) is_list(x) ? _roundall(x) : round(x)];
// Function: quantdn()
@ -376,8 +377,8 @@ function quant(x,y) =
// The value of `y` does NOT have to be an integer. If `x` is a list, then every item in that
// list will be recursively quantized down.
// Arguments:
// x = The value to quantize.
// y = The non-zero integer quantum of the quantization.
// x = The value or list to quantize.
// y = Postive quantum to quantize to.
// Example:
// a = quantdn(12,4); // Returns: 12
// b = quantdn(13,4); // Returns: 12
@ -398,11 +399,12 @@ function quant(x,y) =
// q = quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
// r = quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
function quantdn(x,y) =
assert( is_finite(y) && y>0, "The quantum `y` must be a non zero integer.")
is_list(x)
? [for (v=x) quantdn(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
floor(x/y)*y;
assert( is_finite(y) && y>0, "The quantum `y` must be a positive value.")
is_num(x) ? floor(x/y)*y
: _floorall(x/y)*y;
function _floorall(data) =
[for(x=data) is_list(x) ? _floorall(x) : floor(x)];
// Function: quantup()
@ -413,8 +415,8 @@ function quantdn(x,y) =
// The value of `y` does NOT have to be an integer. If `x` is a list, then every item in
// that list will be recursively quantized up.
// Arguments:
// x = The value to quantize.
// y = The non-zero integer quantum of the quantization.
// x = The value or list to quantize.
// y = Positive quantum to quantize to.
// Example:
// a = quantup(12,4); // Returns: 12
// b = quantup(13,4); // Returns: 16
@ -435,11 +437,12 @@ function quantdn(x,y) =
// q = quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
// r = quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
function quantup(x,y) =
assert( is_finite(y) && y>0, "The quantum `y` must be a non zero integer.")
is_list(x)
? [for (v=x) quantup(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
ceil(x/y)*y;
assert( is_finite(y) && y>0, "The quantum `y` must be a positive value.")
is_num(x) ? ceil(x/y)*y
: _ceilall(x/y)*y;
function _ceilall(data) =
[for(x=data) is_list(x) ? ceilall(x) : ceil(x)];
// Section: Constraints and Modulos