Fixed rounded_sweep() docs formatting.

This commit is contained in:
Revar Desmera 2019-07-12 18:44:11 -07:00
parent 5d7fdf6334
commit b662a6b295
3 changed files with 27 additions and 368 deletions

View File

@ -1,341 +0,0 @@
//////////////////////////////////////////////////////////////////////
// LibFile: roundcorners.scad
// Routines to create rounded corners, with either circular rounding,
// or continuous curvature rounding with no sudden curvature transitions.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// include <BOSL2/roundcorners.scad>
// ```
//////////////////////////////////////////////////////////////////////
include <BOSL2/beziers.scad>
// CommonCode:
// $fn=36;
// Section: Functions
// Function: round_corners()
//
// Description:
// Takes a 2D or 3D point list as input (a path or the points of a polygon) and rounds each corner
// by a specified amount. The rounding at each point can be different and some points can have zero
// rounding. The `round_corners()` function supports two types of rounding: circular rounding and
// continuous curvature rounding using 4th order bezier curves. Circular rounding can produce a
// tactile "bump" where the curvature changes from flat to circular.
// See https://hackernoon.com/apples-icons-have-that-shape-for-a-very-good-reason-720d4e7c8a14
//
// You select the type of rounding using the `curve` option, which should be either `"smooth"` to
// get continuous curvature rounding or `"circle"` to get circular rounding. The default is circle
// rounding. Each rounding method has two options for how you measure the amount of rounding, which
// you specify using the `measure` argument. Both rounding methods accept `measure="cut"`, which is
// the default. This mode specifies the amount of rounding as the minimum distance from the corner
// to the curve. This can be easier to understand than setting a circular radius, which can be
// unexpectedly extreme when the corner is very sharp. It also allows a systematic specification of
// curves that is the same for both `"circle"` and `"smooth"`.
//
// The second `measure` setting for circular rounding is `"radius"`, which sets a circular rounding
// radius. The second `measure` setting for smooth rounding is `"joint"` which specifies the distance
// away from the corner along the path where the roundover should start. The figure below shows
// the cut and joint distances for a given roundover.
//
// The `"smooth"` type rounding also has a parameter that specifies how smooth the curvature match
// is. This parameter, `k`, ranges from 0 to 1, with a default of 0.5. Larger values give a more
// abrupt transition and smaller ones a more gradual transition. If you set the value much higher
// than 0.8 the curvature changes abruptly enough that though it is theoretically continuous, it may
// not be continous in practice. If you set it very small then the transition is so gradual that
// the length of the roundover may be extremely long.
//
// If you select curves that are too large to fit the function will fail with an error. It displays
// a set of scale factors that you can apply to the (first) smoothing parameter that will reduce the
// size of the curves so that they will fit on your path. If the scale factors are larger than one
// then they indicate how much you can increase the curve sizes before collisions will occur.
//
// To specify rounding parameters you can use the `size` option to round every point in a path.
//
// Examples:
// * `curve="circle", measure="radius", size=2`:
// Rounds every point with circular, radius 2 roundover
// * `curve="smooth", measure="cut", size=2`:
// Rounds every point with continuous curvature rounding with a cut of 2, and a default 0.5 smoothing parameter
// * `curve="smooth", measure="cut", size=[2,.3]`:
// Rounds every point with continuous curvature rounding with a cut of 2, and a very gentle 0.3 smoothness setting
//
// The path is a list of 2D or 3D points, possibly with an extra coordinate giving smoothing
// parameters. It is important to specify if the path is a closed path or not using the `closed`
// parameter. The default is a closed path for making polygons.
//
// Path examples:
// * `[[0,0],[0,1],[1,1],[0,1]]`:
// 2D point list (a square), `size` was given to set rounding
// * `[[0,0,0], [0,1,1], [1,1,2], [0,1,3]]`:
// 3D point list, `size` was given to set rounding
// * `[[0,0,0.2],[0,1,0.1],[1,1,0],[0,1,0.3]]`:
// 2D point list with smoothing parameters different at every corner, `size` not given
// * `[[0,0,0,.2], [0,1,1,.1], [1,1,2,0], [0,1,3,.3]]`:
// 3D point list with smoothing parameters, `size` not given
// * `[[0,0,[.3,.7], [4,0,[.2,.6]], [4,4,0], [0,4,1]]`:
// 3D point list with smoothing parameters for the `"smooth"` type roundover, `size` not given.
// Note the third entry is sometimes a pair giving both smoothing parameters, sometimes it's zero
// specifying no smoothing, and sometimes a single number, specifying the amount of smoothing but
// using the default smoothness parameter.
//
// The number of segments used for roundovers is determined by `$fa`, `$fs` and `$fn` as usual for
// circular roundovers. For continuous curvature roundovers `$fs` and `$fn` are used and `$fa` is
// ignored. When doing continuous curvature rounding be sure to use lots of segments or the effect
// will be hidden by the discretization.
//
// Figure(2DMed):
// h = 18;
// w = 12.6;
// example = [[0,0],[w,h],[2*w,0]];
// color("red")stroke(round_corners(example, size=18, measure="joint", curve="smooth",closed=false),width=.1);
// stroke(example, width=.1);
// color("green")stroke([[w,h], [w,h-cos(vector_angle(example)/2) *3/8*h]], width=.1);
// ll=lerp([w,h], [0,0],18/norm([w,h]-[0,0]) );
// color("blue")stroke(_shift_segment([[w,h], ll], -.7), width=.1);
// color("green")translate([w-.3,h-4])scale(.1)rotate(90)text("cut");
// color("blue")translate([w/2-1.1,h/2+.6]) scale(.1)rotate(90-vector_angle(example)/2)text("joint");
//
// Arguments:
// path = list of points defining the path to be rounded. Can be 2D or 3D, and may have an extra coordinate giving rounding parameters. If you specify rounding parameters you must do so on every point.
// curve = rounding method to use. Set to "circle" for circular rounding and "smooth" for continuous curvature 4th order bezier rounding
// measure = how to measure the amount of rounding. Set to "cut" to specify the cut back with either "smooth" or "circle" rounding curves. Set to "radius" with `curve="circle"` to set circular radius rounding. Set to "joint" with `curve="smooth"` for joint type rounding. (See above for details on these rounding options.)
// size = curvature parameter(s). Set this to a single curvature parameter or parameter pair to apply uniform roundovers to every corner. Alternatively set this to a list of curvature parameters with the same length as `path` to specify the curvature at every corner. If you set this then all values given in `path` are treated as geometric coordinates. If you don't set this then the last value of each entry in `path` is treated as a rounding parameter.
// closed = if true treat the path as a closed polygon, otherwise treat it as open. Default: true.
// k = continuous curvature smoothness parameter default value. This value will apply with `curve=="smooth"` if you don't otherwise specify a smoothness parameter for a corner. Default: 0.5.
//
// Example(Med2D): Standard circular roundover with radius the same at every point. Compare results at the different corners.
// shape = [[0,0], [10,0], [15,12], [6,6], [6, 12], [-3,7]];
// polygon(round_corners(shape, curve="circle", measure="radius", size=1));
// color("red") down(.1) polygon(shape);
// Example(Med2D): Circular roundover using the "cut" specification, the same at every corner.
// shape = [[0,0], [10,0], [15,12], [6,6], [6, 12], [-3,7]];
// polygon(round_corners(shape, curve="circle", measure="cut", size=1));
// color("red") down(.1) polygon(shape);
// Example(Med2D): Continous curvature roundover using "cut", still the same at every corner. The default smoothness parameter of 0.5 was too gradual for these roundovers to fit, but 0.7 works.
// shape = [[0,0], [10,0], [15,12], [6,6], [6, 12], [-3,7]];
// polygon(round_corners(shape, curve="smooth", measure="cut", size=[1,.7]));
// color("red") down(.1) polygon(shape);
// Example(Med2D): Continuous curvature roundover using "joint", for the last time the same at every corner. Notice how small the roundovers are.
// shape = [[0,0], [10,0], [15,12], [6,6], [6, 12], [-3,7]];
// polygon(round_corners(shape, curve="smooth", measure="joint", size=[1,.7]));
// color("red") down(.1) polygon(shape);
// Example(Med2D): Circular rounding, different at every corner, some corners left unrounded
// shape = [[0,0,1.8], [10,0,0], [15,12,2], [6,6,.3], [6, 12,1.2], [-3,7,0]];
// polygon(round_corners(shape, curve="circle", measure="radius"));
// color("red") down(.1) polygon(subindex(shape,[0:1]));
// Example(Med2D): Continuous curvature rounding, different at every corner, with varying smoothness parameters as well, and `$fs` set very small
// shape = [[0,0,[1.5,.6]], [10,0,0], [15,12,2], [6,6,[.3,.7]], [6, 12,[1.2,.3]], [-3,7,0]];
// polygon(round_corners(shape, curve="smooth", measure="cut", $fs=0.1));
// color("red") down(.1) polygon(subindex(shape,[0:1]));
// Example(Med3D): 3D printing test pieces to display different curvature shapes. You can see the discontinuity in the curvature on the "C" piece in the rendered image.
// ten = [[0,0,5],[50,0,5],[50,50,5],[0,50,5]];
// linear_extrude(height=14){
// translate([25,25,0])text("C",size=30, valign="center", halign="center");
// translate([85,25,0])text("5",size=30, valign="center", halign="center");
// translate([85,85,0])text("3",size=30, valign="center", halign="center");
// translate([25,85,0])text("7",size=30, valign="center", halign="center");
// }
// linear_extrude(height=13)
// {
// polygon(round_corners(ten, curve="circle", measure="cut"));
// translate([60,0,0])polygon(round_corners(ten, curve="smooth", measure="cut"));
// translate([60,60,0])polygon(round_corners([[0,0],[50,0],[50,50],[0,50]],size=[5,.32],$fs=5,$fa=0,
// curve="smooth", measure="cut"));
// translate([0,60,0])polygon(round_corners([[0,0],[50,0],[50,50],[0,50]],size=[5,.7],
// curve="smooth", measure="cut"));
// }
// Example(Med2D): Rounding a path that is not closed in a three different ways.
// $fs=.25;
// $fa=1;
// zigzagx = [-10, 0, 10, 20, 29, 38, 46, 52, 59, 66, 72, 78, 83, 88, 92, 96, 99, 102, 112];
// zigzagy = concat([0], flatten(replist([-10,10],8)), [-10,0]);
// zig = zip(zigzagx,zigzagy);
// stroke(zig,width=1); // Original shape
// fwd(20) // Smooth size corners with a cut of 4 and curvature parameter 0.6
// stroke(round_corners(zig,size=[4,0.6],closed=false, curve="smooth", measure="cut"),width=1);
// fwd(40) // Smooth size corners with circular arcs and a cut of 4
// stroke(round_corners(zig,size=4,closed=false, curve="circle", measure="cut"),width=1);
// // Smooth size corners with a circular arc and radius 1.5 (close to maximum possible)
// fwd(60) // Note how the different points are cut back by different amounts
// stroke(round_corners(zig,size=1.5,closed=false, curve="circle", measure="radius"),width=1);
// Example(FlatSpin): Rounding some random 3D paths
// list1= [
// [2.887360, 4.03497, 6.372090],
// [5.682210, 9.37103, 0.783548],
// [7.808460, 4.39414, 1.843770],
// [0.941085, 5.30548, 4.467530],
// [1.860540, 9.81574, 6.497530],
// [6.938180, 7.21163, 5.794530]
// ];
// list2= [
// [1.079070, 4.74091, 6.900390],
// [8.775850, 4.42248, 6.651850],
// [5.947140, 9.17137, 6.156420],
// [0.662660, 6.95630, 5.884230],
// [6.564540, 8.86334, 9.953110],
// [5.420150, 4.91874, 3.866960]
// ];
// path_sweep(regular_ngon(n=36,or=.1),round_corners(list1,closed=false, curve="smooth", measure="cut", size=.65));
// right(6)
// path_sweep(regular_ngon(n=36,or=.1),round_corners(list2,closed=false, curve="circle", measure="cut", size=.75));
// Example(FlatSpin): Rounding a spiral with increased rounding along the length
// // Construct a square spiral path in 3D
// square = [[0,0],[1,0],[1,1],[0,1]];
// spiral = flatten(replist(concat(square,reverse(square)),5)); // Squares repeat 10 times, forward and backward
// squareind = [for(i=[0:9]) each [i,i,i,i]]; // Index of the square for each point
// z = list_range(40)*.2+squareind;
// path3d = zip(spiral,z); // 3D spiral
// rounding = squareind/20; // Rounding parameters get larger up the spiral
// // Setting k=1 means curvature won't be continuous, but curves are as round as possible
// // Try changing the value to see the effect.
// rpath = round_corners(path3d, size=rounding, k=1, curve="smooth", measure="joint",closed=false);
// path_sweep( regular_ngon(n=36, or=.1), rpath);
function round_corners(path, curve="circle", measure="cut", size=undef, k=0.5, closed=true) =
let(
default_curvature = k, // default curvature for "smooth" curves
measureok = (
measure == "cut" ||
(curve=="circle" && measure=="radius") ||
(curve=="smooth" && measure=="joint")
),
path = is_region(path) ?
assert(len(path)==1, "Region supplied as path does not have exactly one component")
path[0] : path,
pathdim = array_dim(path,1),
have_size = size==undef ? 0 : 1,
pathsize_ok = is_num(pathdim) && pathdim >= 3-have_size && pathdim <= 4-have_size,
size_ok = !have_size || is_num(size) ||
is_list(size) && ((len(size)==2 && curve=="smooth") || len(size)==len(path))
)
assert(curve=="smooth" || curve=="circle", "Unknown 'curve' setting in round_corners")
assert(measureok, curve=="circle"?
"In round_corners curve==\"circle\" requires 'measure' of 'radius' or 'cut'" :
"In round_corners curve==\"smooth\" requires 'measure' of 'joint' or 'cut'"
)
assert(pathdim!=undef, "Input 'path' has entries with inconsistent length")
assert(pathsize_ok, str(
"Input 'path' must have entries with length ",
2+have_size, " or ", 3+have_size,
have_size ? " when 'size' is specified" : "when 'all' is not specified"
))
assert(len(path)>2,str("Path has length ",len(path),". Length must be 3 or more."))
assert(size_ok, is_list(size)?
(str("Input `size` has length ", len(size),". Length must be ",
(curve=="smooth"?"2 or ":""), len(path))) :
str("Input `size` is ",size," which is not a number"))
let(
dim = pathdim - 1 + have_size,
points = have_size ? path : subindex(path, [0:dim-1]),
parm = have_size && is_list(size) && len(size)>2 ? size :
have_size ? replist(size, len(path)) :
subindex(path, dim),
// dk will be a list of parameters, for the "smooth" curve the distance and curvature parameter pair,
// and for the "circle" curve, distance and radius.
dk = [
for(i=[0:1:len(points)-1]) let(
angle = vector_angle(select(points,i-1,i+1))/2,
fkd=echo(angle=angle),
parm0 = is_list(parm[i]) ? parm[i][0] : parm[i],
k = (curve=="circle" && measure=="radius")? parm0 :
(curve=="circle" && measure=="cut")? parm0 / (1/sin(angle) - 1) :
(is_list(parm[i]) && len(parm[i])==2)? parm[i][1] :
default_curvature
)
(!closed && (i==0 || i==len(points)-1))? [0,0] :
(curve=="circle")? [k/tan(angle), k] :
(curve=="smooth" && measure=="joint")? [parm0,k] :
[8*parm0/cos(angle)/(1+4*k),k]
],
lengths = [for(i=[0:1:len(points)]) norm(select(points,i)-select(points,i-1))],
scalefactors = [
for(i=[0:1:len(points)-1])
min(
lengths[i]/sum(subindex(select(dk,i-1,i),0)),
lengths[i+1]/sum(subindex(select(dk,i,i+1),0))
)
]
)
echo("Roundover scale factors:",scalefactors)
assert(min(scalefactors)>=1,"Curves are too big for the path")
[
for(i=[0:1:len(points)-1]) each
(dk[i][0] == 0)? [points[i]] :
(curve=="smooth")? _bezcorner(select(points,i-1,i+1), dk[i]) :
_circlecorner(select(points,i-1,i+1), dk[i])
];
// Computes the continuous curvature control points for a corner when given as
// input three points in a list defining the corner. The points must be
// equidistant from each other to produce the continuous curvature result.
// The output control points will include the 3 input points plus two
// interpolated points.
//
// k is the curvature parameter, ranging from 0 for very slow transition
// up to 1 for a sharp transition that doesn't have continuous curvature any more
function _smooth_bez_fill(points,k) =
[
points[0],
lerp(points[1],points[0],k),
points[1],
lerp(points[1],points[2],k),
points[2],
];
// Computes the points of a continuous curvature roundover given as input
// the list of 3 points defining the corner and a parameter specification
//
// If parm is a scalar then it is treated as the curvature and the control
// points are calculated using _smooth_bez_fill. Otherwise, parm is assumed
// to be a pair [d,k] where d is the length of the curve. The length is
// calculated from the input point list and the control point list will not
// necessarily include points[0] or points[2] on its output.
//
// The number of points output is $fn if it is set. Otherwise $fs is used
// to calculate the point count.
function _bezcorner(points, parm) =
let(
P = is_list(parm) ?
let(
d = parm[0],
k = parm[1],
prev = normalize(points[0]-points[1]),
next = normalize(points[2]-points[1]))
[
points[1]+d*prev,
points[1]+k*d*prev,
points[1],
points[1]+k*d*next,
points[1]+d*next
] :
_smooth_bez_fill(points,parm),
N = $fn>0 ? max(3,$fn) : ceil(bezier_segment_length(P)/$fs)
)
bezier_curve(P,N);
function _circlecorner(points, parm) =
let(
angle = vector_angle(points)/2,
d = parm[0],
r = parm[1],
prev = normalize(points[0]-points[1]),
next = normalize(points[2]-points[1]),
center = r/sin(angle) * normalize(prev+next)+points[1],
start = points[1]+prev*d,
end = points[1]+next*d
)
arc(segs(norm(start-center)), cp=center, points=[start,end]);
function bezier_curve(P,N) =
[for(i=[0:1:N-1]) bez_point(P, i/(N-1))];
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View File

@ -347,13 +347,33 @@ function bezier_curve(P,N) =
// If your shape doesn't develop corners you may be able to save a lot of time by setting `check_valid=false`.
// Multiple rounding shapes are available, including circular rounding, teardrop rounding, and chamfer "rounding".
// Also note that if the rounding radius is negative then the rounding will flare outwards.
//
//
// Rounding options:
// * "circle": Circular rounding with radius as specified
// * "teardrop": Rounding using a 1/8 circle that then changes to a 45 degree chamfer. The chamfer is at the end, and enables the object to be 3d printed without support. The radius gives the radius of the circular part.
// * "chamfer": Chamfer the edge at 45 degrees. The radius specifies the height of the chamfer.
// * "smooth": Continuous curvature rounding, with "cut" and "joint" as for round_corners
// * "custom": Specify "points",[list] to get a custom "roundover". The first point must be [0,0] and the roundover should rise in the positive y direction, with positive x values for inward motion (standard roundover) and negative x values for flaring outward.
// - "circle": Circular rounding with radius as specified
// - "teardrop": Rounding using a 1/8 circle that then changes to a 45 degree chamfer. The chamfer is at the end, and enables the object to be 3d printed without support. The radius gives the radius of the circular part.
// - "chamfer": Chamfer the edge at 45 degrees. The radius specifies the height of the chamfer.
// - "smooth": Continuous curvature rounding, with "cut" and "joint" as for round_corners
// - "custom": Specify "points",[list] to get a custom "roundover". The first point must be [0,0] and the roundover should rise in the positive y direction, with positive x values for inward motion (standard roundover) and negative x values for flaring outward.
//
// The rounding spec is a list of pairs of keywords and values, e.g. ["r",12, type, "circle"]
// The keywords are
// - "r" - the radius of the roundover, which may be zero for no roundover, or negative to round or flare outward (Default: 0)
// - "extra" - extra height added for unions/differences (Default: 0)
// - "type" - type of rounding to apply, one of "circle", "teardrop", "chamfer", "smooth", or "custom" (Default: "circle")
// - "check_valid" - passed to offset. Default: true.
// - "quality" - passed to offset. Default: 1.
// - "steps" - number of steps to use for the roundover. Default: 16.
// - "offset" - select "round" (r=) or "delta" (delta=) offset type for offset. Default: "round"
// You can change the some of the defaults by passing an argument to the function, which is more convenient if you want
// a setting to be the same at both ends.
//
// You can use several helper functions to provide the rounding spec:
// - rs_circle(r,cut,extra,check_valid, quality,steps, offset_maxstep, offset)
// - rs_teardrop(r,cut,extra,check_valid, quality,steps, offset_maxstep, offset)
// - rs_chamfer(height, cut, extra,check_valid, quality,steps, offset_maxstep, offset)
// - rs_smooth(cut, joint, extra,check_valid, quality,steps, offset_maxstep, offset)
// - rs_custom(points, extra,check_valid, quality,steps, offset_maxstep, offset)
// For example, you could round a path using `rounded_sweep(path, top=rs_teardrop(r=10), bottom=rs_chamfer(height=-10,extra=1))`
//
// Arguments:
// path = 2d path (list of points) to extrude
@ -365,26 +385,6 @@ function bezier_curve(P,N) =
// quality = default quality (see below)
// check_valid = default check_valid (see below)
//
// The rounding spec is a list of pairs of keywords and values, e.g. ["r",12, type, "circle"]
// The keywords are
// "r" - the radius of the roundover, which may be zero for no roundover, or negative to round or flare outward (Default: 0)
// "extra" - extra height added for unions/differences (Default: 0)
// "type" - type of rounding to apply, one of "circle", "teardrop", "chamfer", "smooth", or "custom" (Default: "circle")
// "check_valid" - passed to offset. Default: true.
// "quality" - passed to offset. Default: 1.
// "steps" - number of steps to use for the roundover. Default: 16.
// "offset" - select "round" (r=) or "delta" (delta=) offset type for offset. Default: "round"
// You can change the some of the defaults by passing an argument to the function, which is more convenient if you want
// a setting to be the same at both ends.
//
// You can use several helper functions to provide the rounding spec:
// rs_circle(r,cut,extra,check_valid, quality,steps, offset_maxstep, offset)
// rs_teardrop(r,cut,extra,check_valid, quality,steps, offset_maxstep, offset)
// rs_chamfer(height, cut, extra,check_valid, quality,steps, offset_maxstep, offset)
// rs_smooth(cut, joint, extra,check_valid, quality,steps, offset_maxstep, offset)
// rs_custom(points, extra,check_valid, quality,steps, offset_maxstep, offset)
// For example, you could round a path using `rounded_sweep(path, top=rs_teardrop(r=10), bottom=rs_chamfer(height=-10,extra=1))`
//
// Example: Rounding a star shaped prism with postive radius values
// star = star(5, r=22, ir=13);
// rounded_star = round_corners(zip(star, flatten(replist([.5,0],5))), curve="circle", measure="cut", $fn=12);

View File

@ -14,7 +14,7 @@ done
if [[ "$FILES" != "" ]]; then
PREVIEW_LIBS="$FILES"
else
PREVIEW_LIBS="common errors attachments math arrays vectors affine coords geometry triangulation quaternions strings structs hull constants edges transforms primitives shapes masks shapes2d paths beziers roundcorners walls cubetruss metric_screws threading partitions involute_gears sliders joiners linear_bearings nema_steppers wiring phillips_drive torx_drive polyhedra knurling cubetruss debug"
PREVIEW_LIBS="common errors attachments math arrays vectors affine coords geometry triangulation quaternions strings structs hull constants edges transforms primitives shapes masks shapes2d paths beziers rounding walls cubetruss metric_screws threading partitions involute_gears sliders joiners linear_bearings nema_steppers wiring phillips_drive torx_drive polyhedra knurling cubetruss debug"
fi
dir="$(basename $PWD)"