mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
commit
c9e81cfadc
393
WRITING_DOCS.md
393
WRITING_DOCS.md
@ -56,6 +56,11 @@ All files must have either a `// File:` block or a `// LibFile:` block at the st
|
||||
// denote a paragraph break with a comment line with three
|
||||
// trailing spaces, or just a period.
|
||||
// .
|
||||
// You can have links in this text to functions, modules, or
|
||||
// constants in other files by putting the name in double-
|
||||
// braces like {{cyl()}} or {{lerp()}} or {{DOWN}}. If you want to
|
||||
// link to another file, or section in another file you can use
|
||||
// a manual markdown link like [Section: Cuboids](shapes.scad#section-cuboids).
|
||||
// The end of the block is denoted by a line without a comment.
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
@ -67,9 +72,15 @@ Which outputs Markdown code that renders like:
|
||||
> denote a paragraph break with a comment line with three
|
||||
> trailing spaces, or just a period.
|
||||
>
|
||||
> You can have links in this text to functions, modules, or
|
||||
> constants in other files by putting the name in double-
|
||||
> braces like [cyl()](shapes.scad#functionmodule-cyl) or [lerp()](math.scad#function-lerp) or [DOWN](constants.scad-down). If you want to
|
||||
> link to another file, or section in another file you can use
|
||||
> a manual markdown link like [Section: Cuboids](shapes.scad#section-cuboids).
|
||||
> The end of the block is denoted by a line without a comment.
|
||||
|
||||
Or:
|
||||
You can use `// File:` instead of `// LibFile:`, if it seems more apropriate for
|
||||
your particular context::
|
||||
|
||||
// File: Foobar.scad
|
||||
// This file contains a collection of metasyntactical nonsense.
|
||||
@ -129,20 +140,32 @@ Section blocks take a title, and an optional body that will be shown as the desc
|
||||
// denote a paragraph break with a comment line with three
|
||||
// trailing spaces, or just a period.
|
||||
// .
|
||||
// You can have links in this text to functions, modules, or
|
||||
// constants in other files by putting the name in double-
|
||||
// braces like {{cyl()}} or {{lerp()}} or {{DOWN}}. If you want to
|
||||
// link to another file, or section in another file you can use
|
||||
// a manual markdown link like [Section: Cuboids](shapes.scad#section-cuboids).
|
||||
// .
|
||||
// The end of the block is denoted by a line without a comment.
|
||||
// or a line that is unindented after the comment.
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
>## Section: Foobar
|
||||
>You can have several lines of markdown formatted text here.
|
||||
>You just need to make sure that each line is indented, with
|
||||
>at least three spaces after the comment marker. You can
|
||||
>denote a paragraph break with a comment line with three
|
||||
>trailing spaces, or just a period.
|
||||
> ## Section: Foobar
|
||||
> You can have several lines of markdown formatted text here.
|
||||
> You just need to make sure that each line is indented, with
|
||||
> at least three spaces after the comment marker. You can
|
||||
> denote a paragraph break with a comment line with three
|
||||
> trailing spaces, or just a period.
|
||||
>
|
||||
>The end of the block is denoted by a line without a comment.
|
||||
>or a line that is unindented after the comment.
|
||||
> You can have links in this text to functions, modules, or
|
||||
> constants in other files by putting the name in double-
|
||||
> braces like [cyl()](shapes.scad#functionmodule-cyl) or [lerp()](math.scad#function-lerp) or [DOWN](constants.scad-down). If you want to
|
||||
> link to another file, or section in another file you can use
|
||||
> a manual markdown link like [Section: Cuboids](shapes.scad#section-cuboids).
|
||||
>
|
||||
> The end of the block is denoted by a line without a comment.
|
||||
> or a line that is unindented after the comment.
|
||||
|
||||
Sections can also include Figures; images generated from code that is not shown in a code block.
|
||||
|
||||
@ -160,9 +183,9 @@ The `Constant` header is used to document a code constant. It should have a Des
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
>### Constant: PHI
|
||||
>**Description:**
|
||||
>The golden ration phi.
|
||||
> ### Constant: PHI
|
||||
> **Description:**
|
||||
> The golden ration phi.
|
||||
|
||||
|
||||
The `Module` header is used to document a module. It should have a Description sub-block. It is recommended to also have Usage, Arguments, and Example/Examples sub-blocks:
|
||||
@ -183,23 +206,23 @@ The `Module` header is used to document a module. It should have a Description
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
>### Module: cross()
|
||||
>**Usage:**
|
||||
>- cross(size);
|
||||
>
|
||||
>**Description:**
|
||||
>Creates a 2D cross/plus shape.
|
||||
>
|
||||
>**Arguments:**
|
||||
>Positional Arg | What it does
|
||||
>-------------------- | -------------------
|
||||
>size | The scalar size of the cross.
|
||||
>
|
||||
>**Example:**
|
||||
>```openscad
|
||||
>cross(size=100);
|
||||
>```
|
||||
>GENERATED IMAGE GOES HERE
|
||||
> ### Module: cross()
|
||||
> **Usage:**
|
||||
> - cross(size);
|
||||
>
|
||||
> **Description:**
|
||||
> Creates a 2D cross/plus shape.
|
||||
>
|
||||
> **Arguments:**
|
||||
> Positional Arg | What it does
|
||||
> -------------------- | -------------------
|
||||
> size | The scalar size of the cross.
|
||||
>
|
||||
> **Example:**
|
||||
> ```openscad
|
||||
> cross(size=100);
|
||||
> ```
|
||||
> GENERATED IMAGE GOES HERE
|
||||
|
||||
|
||||
The `Function` header is used to document a function. It should have a Description sub-block. It is recommended to also have Usage, Arguments, and Example/Examples sub-blocks. By default, Examples will not generate images for function blocks:
|
||||
@ -222,26 +245,26 @@ The `Function` header is used to document a function. It should have a Descript
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
>### Function: vector_angle()
|
||||
>**Usage:**
|
||||
>- ang = vector_angle(v1, v2);
|
||||
>
|
||||
>**Description:**
|
||||
>Calculates the angle between two vectors in degrees.
|
||||
>
|
||||
>**Arguments:**
|
||||
>Positional Arg | What it does
|
||||
>-------------------- | -------------------
|
||||
>`v1` | The first vector.
|
||||
>`v2` | The second vector.
|
||||
>
|
||||
>**Example:**
|
||||
>```openscad
|
||||
>v1 = [1,1,0];
|
||||
>v2 = [1,0,0];
|
||||
>angle = vector_angle(v1, v2);
|
||||
>// Returns: 45
|
||||
>```
|
||||
> ### Function: vector_angle()
|
||||
> **Usage:**
|
||||
> - ang = vector_angle(v1, v2);
|
||||
>
|
||||
> **Description:**
|
||||
> Calculates the angle between two vectors in degrees.
|
||||
>
|
||||
> **Arguments:**
|
||||
> Positional Arg | What it does
|
||||
> -------------------- | -------------------
|
||||
> `v1` | The first vector.
|
||||
> `v2` | The second vector.
|
||||
>
|
||||
> **Example:**
|
||||
> ```openscad
|
||||
> v1 = [1,1,0];
|
||||
> v2 = [1,0,0];
|
||||
> angle = vector_angle(v1, v2);
|
||||
> // Returns: 45
|
||||
> ```
|
||||
|
||||
The `Function&Module` header is used to document a function which has a related module of the same name. It should have a Description sub-block. It is recommended to also have Usage, Arguments, and Example/Examples sub-blocks. You should have Usage blocks for both calling as a function, and calling as a
|
||||
module:
|
||||
@ -271,52 +294,67 @@ module:
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
>### Function&Module: oval()
|
||||
>**Topics:** 2D Shapes, Geometry
|
||||
> ### Function&Module: oval()
|
||||
> **Topics:** 2D Shapes, Geometry
|
||||
>
|
||||
>**Usage:** As a Module
|
||||
> **Usage:** As a Module
|
||||
>
|
||||
>- oval(rx,ry);
|
||||
> - oval(rx,ry);
|
||||
>
|
||||
>**Usage:** As a Function
|
||||
> **Usage:** As a Function
|
||||
>
|
||||
>- path = oval(rx,ry);
|
||||
> - path = oval(rx,ry);
|
||||
>
|
||||
>**Description:**
|
||||
>When called as a function, returns the perimeter path of the oval.
|
||||
>When called as a module, creates a 2D oval shape.
|
||||
> **Description:**
|
||||
> When called as a function, returns the perimeter path of the oval.
|
||||
> When called as a module, creates a 2D oval shape.
|
||||
>
|
||||
>**Arguments:**
|
||||
>Positional Arg | What it does
|
||||
>-------------------- | -------------------
|
||||
>rx | X axis radius.
|
||||
>ry | Y axis radius.
|
||||
> **Arguments:**
|
||||
> Positional Arg | What it does
|
||||
> -------------------- | -------------------
|
||||
> rx | X axis radius.
|
||||
> ry | Y axis radius.
|
||||
>
|
||||
>**Example:** Called as a Function
|
||||
> **Example:** Called as a Function
|
||||
>
|
||||
>```openscad
|
||||
>path = oval(100,60);
|
||||
>polygon(path);
|
||||
>```
|
||||
>GENERATED IMAGE SHOWN HERE
|
||||
> ```openscad
|
||||
> path = oval(100,60);
|
||||
> polygon(path);
|
||||
> ```
|
||||
> GENERATED IMAGE SHOWN HERE
|
||||
>
|
||||
>**Example:** Called as a Module
|
||||
> **Example:** Called as a Module
|
||||
>
|
||||
>```openscad
|
||||
>oval(80,60);
|
||||
>```
|
||||
>GENERATED IMAGE SHOWN HERE
|
||||
> ```openscad
|
||||
> oval(80,60);
|
||||
> ```
|
||||
> GENERATED IMAGE SHOWN HERE
|
||||
|
||||
These Type blocks can have a number of sub-blocks. Most sub-blocks are optional, The available standard sub-blocks are:
|
||||
- `// Aliases: alternatename(), anothername()`
|
||||
- `// Status: DEPRECATED`
|
||||
- `// Topics: Comma, Delimited, Topic, List`
|
||||
- `// Usage:`
|
||||
- `// Description:`
|
||||
- `// Arguments:`
|
||||
- `// Figure:` or `// Figures`
|
||||
- `// See Also: otherfunc(), othermod(), OTHERCONST`
|
||||
- `// Example:` or `// Examples:`
|
||||
|
||||
|
||||
Aliases Block
|
||||
-------------
|
||||
|
||||
The Aliases block is used to give alternate names for a function, module, or
|
||||
constant. This is reflected in the indexes generated. It looks like:
|
||||
|
||||
// Aliases: secondname(), thirdname()
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
> **Aliases:** secondname(), thirdname()
|
||||
|
||||
|
||||
Status Block
|
||||
------------
|
||||
|
||||
@ -326,7 +364,7 @@ The Status block is used to mark a function, module, or constant as deprecated:
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
>**Status:** DEPRECATED, use foo() instead
|
||||
> **Status:** DEPRECATED, use foo() instead
|
||||
|
||||
|
||||
Topics Block
|
||||
@ -338,7 +376,7 @@ The Topics block can associate various topics with the current function or modul
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
>**Topics:** 2D Shapes, Geometry, Masks
|
||||
> **Topics:** 2D Shapes, Geometry, Masks
|
||||
|
||||
|
||||
Usage Block
|
||||
@ -353,12 +391,12 @@ The Usage block describes the various ways that the current function or module c
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
>**Usage:** As a Module
|
||||
>- oval(rx, ry, <spin=>);
|
||||
>
|
||||
>**Usage:** As a Function
|
||||
>
|
||||
>- path = oval(rx, ry, <spin=>);
|
||||
> **Usage:** As a Module
|
||||
> - oval(rx, ry, <spin=>);
|
||||
>
|
||||
> **Usage:** As a Function
|
||||
>
|
||||
> - path = oval(rx, ry, <spin=>);
|
||||
|
||||
|
||||
Description Block
|
||||
@ -369,15 +407,30 @@ The Description block just describes the currect function, module, or constant:
|
||||
// It can be multiple lines long. Markdown syntax code will be used
|
||||
// verbatim in the output markdown file, with the exception of `_`,
|
||||
// which will traslate to `\_`, so that underscores in function/module
|
||||
// names don't get butchered.
|
||||
// names don't get butchered. A line with just a period (`.`) will be
|
||||
// treated as a blank line.
|
||||
// .
|
||||
// You can have links in this text to functions, modules, or
|
||||
// constants in other files by putting the name in double-
|
||||
// braces like {{cyl()}} or {{lerp()}} or {{DOWN}}. If you want to
|
||||
// link to another file, or section in another file you can use
|
||||
// a manual markdown link like [Section: Cuboids](shapes.scad#section-cuboids).
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
>**Description:**
|
||||
>It can be multiple lines long. Markdown syntax code will be used
|
||||
>verbatim in the output markdown file, with the exception of `_`,
|
||||
>which will traslate to `\_`, so that underscores in function/module
|
||||
>names don't get butchered.
|
||||
> **Description:**
|
||||
> It can be multiple lines long. Markdown syntax code will be used
|
||||
> verbatim in the output markdown file, with the exception of `_`,
|
||||
> which will traslate to `\_`, so that underscores in function/module
|
||||
> names don't get butchered. A line with just a period (`.`) will be
|
||||
> treated as a blank line.
|
||||
>
|
||||
> You can have links in this text to functions, modules, or
|
||||
> constants in other files by putting the name in double-
|
||||
> braces like [cyl()](shapes.scad#functionmodule-cyl) or [lerp()](math.scad#function-lerp) or [DOWN](constants.scad-down). If you want to
|
||||
> link to another file, or section in another file you can use
|
||||
> a manual markdown link like [Section: Cuboids](shapes.scad#section-cuboids).
|
||||
|
||||
|
||||
Arguments Block
|
||||
---------------
|
||||
@ -388,22 +441,36 @@ The Arguments block creates a table that describes the positional arguments for
|
||||
// v2 = This supplies the second vector.
|
||||
// ---
|
||||
// fast = Use fast, but less comprehensive calculation method.
|
||||
// bar = Takes an optional `bar` struct. See {{bar()}}.
|
||||
// dflt = Default value.
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
>**Arguments:**
|
||||
>Positional Arg | What it Does
|
||||
>-------------------- | ---------------------------------
|
||||
>`v1` | This supplies the first vector.
|
||||
>`v2` | The supplies the second vector.
|
||||
>
|
||||
>Named Arg | What it Does
|
||||
>------------------ | ---------------------------------
|
||||
>`fast` | If true, use fast, but less accurate calculation method.
|
||||
>`dflt` | Default value.
|
||||
> **Arguments:**
|
||||
> Positional Arg | What it Does
|
||||
> -------------- | ---------------------------------
|
||||
> `v1` | This supplies the first vector.
|
||||
> `v2` | The supplies the second vector.
|
||||
>
|
||||
> Named Arg | What it Does
|
||||
> -------------- | ---------------------------------
|
||||
> `fast` | If true, use fast, but less accurate calculation method.
|
||||
> `bar` | Takes an optional `bar` struct. See [bar()](foobar.scad#function-bar).
|
||||
> `dflt` | Default value.
|
||||
|
||||
|
||||
See Also Block
|
||||
--------------
|
||||
|
||||
The See Also block is used to give links to related functions, modules, or
|
||||
constants. It looks like:
|
||||
|
||||
// See Also: relatedfunc(), similarmodule()
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
> **See Also:** [relatedfunc()](otherfile.scad#relatedfunc), [similarmodule()](otherfile.scad#similarmodule)
|
||||
|
||||
---
|
||||
|
||||
Figure Block
|
||||
--------------
|
||||
@ -423,20 +490,20 @@ A Figure block generates and shows an image from a script in the multi-line body
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
>**Figure 1:** Figure description
|
||||
>GENERATED IMAGE SHOWN HERE
|
||||
>
|
||||
>**Figure 2:** Animated figure that spins to show all faces.
|
||||
>GENERATED IMAGE SHOWN HERE
|
||||
>
|
||||
>**Figure 3:**
|
||||
>GENERATED IMAGE OF CUBE SHOWN HERE
|
||||
>
|
||||
>**Figure 4:**
|
||||
>GENERATED IMAGE OF CYLINDER SHOWN HERE
|
||||
>
|
||||
>**Figure 5:**
|
||||
>GENERATED IMAGE OF SPHERE SHOWN HERE
|
||||
> **Figure 1:** Figure description
|
||||
> GENERATED IMAGE SHOWN HERE
|
||||
>
|
||||
> **Figure 2:** Animated figure that spins to show all faces.
|
||||
> GENERATED IMAGE SHOWN HERE
|
||||
>
|
||||
> **Figure 3:**
|
||||
> GENERATED IMAGE OF CUBE SHOWN HERE
|
||||
>
|
||||
> **Figure 4:**
|
||||
> GENERATED IMAGE OF CYLINDER SHOWN HERE
|
||||
>
|
||||
> **Figure 5:**
|
||||
> GENERATED IMAGE OF SPHERE SHOWN HERE
|
||||
|
||||
The metadata of the Figure block can contain various directives to alter how
|
||||
the image will be generated. These can be comma separated to give multiple
|
||||
@ -452,6 +519,7 @@ metadata directives:
|
||||
- `Spin`: Animate camera orbit around the `[0,1,1]` axis to display all sides of an object.
|
||||
- `FlatSpin`: Animate camera orbit around the Z axis, above the XY plane.
|
||||
- `Anim`: Make an animation where `$t` varies from `0.0` to almost `1.0`.
|
||||
- `Frames=36`: Number of animation frames to make.
|
||||
- `FrameMS=250`: Sets the number of milliseconds per frame for spins and animation.
|
||||
- `Small`: Make the image small sized.
|
||||
- `Med`: Make the image medium sized.
|
||||
@ -461,6 +529,7 @@ metadata directives:
|
||||
- `Render`: Force full rendering from OpenSCAD, instead of the normal preview.
|
||||
- `Edges`: Highlight face edges.
|
||||
- `NoAxes`: Hides the axes and scales.
|
||||
- `ScriptUnder`: Display script text under image, rather than beside it.
|
||||
|
||||
|
||||
Example Block
|
||||
@ -484,37 +553,37 @@ Any images, if generated, will be created by running it in OpenSCAD:
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
>**Example 1:** Example description
|
||||
>```openscad
|
||||
>cylinder(h=100, d1=75, d2=50);
|
||||
>up(100) cylinder(h=100, d1=50, d2=75);
|
||||
>```
|
||||
>GENERATED IMAGE SHOWN HERE
|
||||
>
|
||||
>**Example 2:** Animated shape that spins to show all faces.
|
||||
>```openscad
|
||||
>cube([10,100,50], center=true);
|
||||
>cube([100,10,30], center=true);
|
||||
>```
|
||||
>GENERATED IMAGE SHOWN HERE
|
||||
>
|
||||
>**Example 3:**
|
||||
>```openscad
|
||||
>cube(100);
|
||||
>```
|
||||
>GENERATED IMAGE OF CUBE SHOWN HERE
|
||||
>
|
||||
>**Example 4:**
|
||||
>```openscad
|
||||
>cylinder(h=100,d=50);
|
||||
>```
|
||||
>GENERATED IMAGE OF CYLINDER SHOWN HERE
|
||||
>
|
||||
>**Example 5:**
|
||||
>```openscad
|
||||
>sphere(d=100);
|
||||
>```
|
||||
>GENERATED IMAGE OF SPHERE SHOWN HERE
|
||||
> **Example 1:** Example description
|
||||
> ```openscad
|
||||
> cylinder(h=100, d1=75, d2=50);
|
||||
> up(100) cylinder(h=100, d1=50, d2=75);
|
||||
> ```
|
||||
> GENERATED IMAGE SHOWN HERE
|
||||
>
|
||||
> **Example 2:** Animated shape that spins to show all faces.
|
||||
> ```openscad
|
||||
> cube([10,100,50], center=true);
|
||||
> cube([100,10,30], center=true);
|
||||
> ```
|
||||
> GENERATED IMAGE SHOWN HERE
|
||||
>
|
||||
> **Example 3:**
|
||||
> ```openscad
|
||||
> cube(100);
|
||||
> ```
|
||||
> GENERATED IMAGE OF CUBE SHOWN HERE
|
||||
>
|
||||
> **Example 4:**
|
||||
> ```openscad
|
||||
> cylinder(h=100,d=50);
|
||||
> ```
|
||||
> GENERATED IMAGE OF CYLINDER SHOWN HERE
|
||||
>
|
||||
> **Example 5:**
|
||||
> ```openscad
|
||||
> sphere(d=100);
|
||||
> ```
|
||||
> GENERATED IMAGE OF SPHERE SHOWN HERE
|
||||
|
||||
The metadata of the Example block can contain various directives to alter how
|
||||
the image will be generated. These can be comma separated to give multiple
|
||||
@ -531,6 +600,7 @@ metadata directives:
|
||||
- `FlatSpin`: Animate camera orbit around the Z axis, above the XY plane.
|
||||
- `Anim`: Make an animation where `$t` varies from `0.0` to almost `1.0`.
|
||||
- `FrameMS=250`: Sets the number of milliseconds per frame for spins and animation.
|
||||
- `Frames=36`: Number of animation frames to make.
|
||||
- `Small`: Make the image small sized.
|
||||
- `Med`: Make the image medium sized.
|
||||
- `Big`: Make the image big sized.
|
||||
@ -539,6 +609,7 @@ metadata directives:
|
||||
- `Render`: Force full rendering from OpenSCAD, instead of the normal preview.
|
||||
- `Edges`: Highlight face edges.
|
||||
- `NoAxes`: Hides the axes and scales.
|
||||
- `ScriptUnder`: Display script text under image, rather than beside it.
|
||||
|
||||
Modules will default to generating and displaying the image as if the `3D`
|
||||
directive is given. Functions and constants will default to not generating
|
||||
@ -586,6 +657,7 @@ The Generic block header type takes both title and body lines and generates a ma
|
||||
// Result: For Typical Cases
|
||||
// Does typical things.
|
||||
// Or something like that.
|
||||
// Refer to {{stuff()}} for more info.
|
||||
// Result: For Atypical Cases
|
||||
// Performs an atypical thing.
|
||||
|
||||
@ -595,6 +667,7 @@ Which outputs Markdown code that renders like:
|
||||
>
|
||||
> Does typical things.
|
||||
> Or something like that.
|
||||
> Refer to [stuff()](foobar.scad#function-stuff) for more info.
|
||||
>
|
||||
> **Result:** For Atypical Cases
|
||||
>
|
||||
@ -614,6 +687,7 @@ line blocks:
|
||||
// Reason: This is a complex reason.
|
||||
// It is a multi-line explanation
|
||||
// about why this does what it does.
|
||||
// Refer to {{nonsense()}} for more info.
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
@ -626,6 +700,7 @@ Which outputs Markdown code that renders like:
|
||||
> This is a complex reason.
|
||||
> It is a multi-line explanation
|
||||
> about why this does what it does.
|
||||
> Refer to [nonsense()](foobar.scad#function-nonsense) for more info.
|
||||
|
||||
|
||||
Label Block Type
|
||||
@ -652,7 +727,7 @@ numbered list block:
|
||||
// DefineHeader(NumList): Steps
|
||||
// Steps: How to handle being on fire.
|
||||
// Stop running around and panicing.
|
||||
// Drop to the ground.
|
||||
// Drop to the ground. Refer to {{drop()}}.
|
||||
// Roll on the ground to smother the flames.
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
@ -660,7 +735,7 @@ Which outputs Markdown code that renders like:
|
||||
> **Steps:** How to handle being on fire.
|
||||
>
|
||||
> 1. Stop running around and panicing.
|
||||
> 2. Drop to the ground.
|
||||
> 2. Drop to the ground. Refer to [drop()](foobar.scad#function-drop).
|
||||
> 3. Roll on the ground to smother the flames.
|
||||
>
|
||||
|
||||
@ -672,14 +747,14 @@ The BulletList block header type takes both title and body lines:
|
||||
|
||||
// DefineHeader(BulletList): Side Effects
|
||||
// Side Effects: For Typical Uses
|
||||
// The variable `foo` gets set.
|
||||
// The variable {{$foo}} gets set.
|
||||
// The default for subsequent calls is updated.
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
> **Side Effects:** For Typical Uses
|
||||
>
|
||||
> - The variable $foo gets set.
|
||||
> - The variable [$foo](foobar.scad#function-foo) gets set.
|
||||
> - The default for subsequent calls is updated.
|
||||
>
|
||||
|
||||
@ -698,17 +773,17 @@ separated by `=` (equals signs):
|
||||
|
||||
// DefineHeader(Table:^Link Name|Description): Anchors
|
||||
// Anchors: by Name
|
||||
// "link1" = Anchor for the joiner Located at the back side of the shape.
|
||||
// "a"/"b" = Anchor for the joiner Located at the front side of the shape.
|
||||
// "link1" = Anchor for the joiner Located at the {{BACK}} side of the shape.
|
||||
// "a"/"b" = Anchor for the joiner Located at the {{FRONT}} side of the shape.
|
||||
|
||||
Which outputs Markdown code that renders like:
|
||||
|
||||
> **Anchors:** by Name
|
||||
>
|
||||
> Link Name | Description
|
||||
> ----------------------- | --------------------
|
||||
> `"link1"` | Anchor for the joiner at the back side of the shape.
|
||||
> `"a"` / `"b"` | Anchor for the joiner at the front side of the shape.
|
||||
> Link Name | Description
|
||||
> -------------- | --------------------
|
||||
> `"link1"` | Anchor for the joiner at the [BACK](constants.scad#constant-back) side of the shape.
|
||||
> `"a"` / `"b"` | Anchor for the joiner at the [FRONT](constants.scad#constant-front) side of the shape.
|
||||
>
|
||||
|
||||
You can have multiple subtables, separated by a line with only three dashes: `---`:
|
||||
@ -726,14 +801,14 @@ Which outputs Markdown code that renders like:
|
||||
> **Args:**
|
||||
>
|
||||
> Pos Arg | What it Does
|
||||
> -------------- | --------------------
|
||||
> ----------- | --------------------
|
||||
> `foo` | The foo argument.
|
||||
> `bar` | The bar argument.
|
||||
>
|
||||
> Named Arg | What it Does
|
||||
> -------------------- | --------------------
|
||||
> `baz` | The baz argument.
|
||||
> `qux` | The qux argument.
|
||||
> Named Arg | What it Does
|
||||
> ----------- | --------------------
|
||||
> `baz` | The baz argument.
|
||||
> `qux` | The qux argument.
|
||||
>
|
||||
|
||||
Defaults Configuration
|
||||
|
53
affine.scad
53
affine.scad
@ -11,6 +11,7 @@
|
||||
// Function: ident()
|
||||
// Usage:
|
||||
// mat = ident(n);
|
||||
// Topics: Affine, Matrices
|
||||
// Description:
|
||||
// Create an `n` by `n` square identity matrix.
|
||||
// Arguments:
|
||||
@ -42,6 +43,8 @@ function ident(n) = [
|
||||
// Function: is_affine()
|
||||
// Usage:
|
||||
// bool = is_affine(x,<dim>);
|
||||
// Topics: Affine, Matrices, Transforms
|
||||
// See Also: is_matrix()
|
||||
// Description:
|
||||
// Tests if the given value is an affine matrix, possibly also checking it's dimenstion.
|
||||
// Arguments:
|
||||
@ -64,6 +67,8 @@ function is_affine(x,dim=[2,3]) =
|
||||
// Function: is_2d_transform()
|
||||
// Usage:
|
||||
// x = is_2d_transform(t);
|
||||
// Topics: Affine, Matrices, Transforms
|
||||
// See Also: is_affine(), is_matrix()
|
||||
// Description:
|
||||
// Checks if the input is a 3D transform that does not act on the z coordinate, except possibly
|
||||
// for a simple scaling of z. Note that an input which is only a zscale returns false.
|
||||
@ -84,6 +89,8 @@ function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][
|
||||
// Function: affine2d_to_3d()
|
||||
// Usage:
|
||||
// mat = affine2d_to_3d(m);
|
||||
// Topics: Affine, Matrices, Transforms
|
||||
// See Also: affine3d_to_2d()
|
||||
// Description:
|
||||
// Takes a 3x3 affine2d matrix and returns its 4x4 affine3d equivalent.
|
||||
// Example:
|
||||
@ -106,6 +113,8 @@ function affine2d_to_3d(m) = [
|
||||
// Function: affine3d_to_2d()
|
||||
// Usage:
|
||||
// mat = affine3d_to_2d(m);
|
||||
// Topics: Affine, Matrices
|
||||
// See Also: affine2d_to_3d()
|
||||
// Description:
|
||||
// Takes a 4x4 affine3d matrix and returns its 3x3 affine2d equivalent. 3D transforms that would alter the Z coordinate are disallowed.
|
||||
// Example:
|
||||
@ -128,6 +137,7 @@ function affine3d_to_2d(m) =
|
||||
// Function: apply()
|
||||
// Usage:
|
||||
// pts = apply(transform, points);
|
||||
// Topics: Affine, Matrices, Transforms
|
||||
// Description:
|
||||
// Applies the specified transformation matrix to a point, pointlist, bezier patch or VNF.
|
||||
// Both inputs can be 2D or 3D, and it is also allowed to supply 3D transformations with 2D
|
||||
@ -176,12 +186,13 @@ function apply(transform,points) =
|
||||
// Function: rot_decode()
|
||||
// Usage:
|
||||
// info = rot_decode(rotation); // Returns: [angle,axis,cp,translation]
|
||||
// Topics: Affine, Matrices, Transforms
|
||||
// Description:
|
||||
// Given an input 3D rigid transformation operator (one composed of just rotations and translations) represented
|
||||
// as a 4x4 matrix, compute the rotation and translation parameters of the operator. Returns a list of the
|
||||
// four parameters, the angle, in the interval [0,180], the rotation axis as a unit vector, a centerpoint for
|
||||
// the rotation, and a translation. If you set `parms=rot_decode(rotation)` then the transformation can be
|
||||
// reconstructed from parms as `move(parms[3])*rot(a=parms[0],v=parms[1],cp=parms[2])`. This decomposition
|
||||
// the rotation, and a translation. If you set `parms = rot_decode(rotation)` then the transformation can be
|
||||
// reconstructed from parms as `move(parms[3]) * rot(a=parms[0],v=parms[1],cp=parms[2])`. This decomposition
|
||||
// makes it possible to perform interpolation. If you construct a transformation using `rot` the decoding
|
||||
// may flip the axis (if you gave an angle outside of [0,180]). The returned axis will be a unit vector, and
|
||||
// the centerpoint lies on the plane through the origin that is perpendicular to the axis. It may be different
|
||||
@ -230,6 +241,7 @@ function rot_decode(M) =
|
||||
// Function: affine2d_identity()
|
||||
// Usage:
|
||||
// mat = affine2d_identify();
|
||||
// Topics: Affine, Matrices, Transforms
|
||||
// Description:
|
||||
// Create a 3x3 affine2d identity matrix.
|
||||
// Example:
|
||||
@ -246,6 +258,8 @@ function affine2d_identity() = ident(3);
|
||||
// Function: affine2d_translate()
|
||||
// Usage:
|
||||
// mat = affine2d_translate(v);
|
||||
// Topics: Affine, Matrices, Transforms, Translation
|
||||
// See Also: translate(), move(), affine3d_translate()
|
||||
// Description:
|
||||
// Returns the 3x3 affine2d matrix to perform a 2D translation.
|
||||
// Arguments:
|
||||
@ -270,6 +284,8 @@ function affine2d_translate(v=[0,0]) =
|
||||
// Function: affine2d_scale()
|
||||
// Usage:
|
||||
// mat = affine2d_scale(v);
|
||||
// Topics: Affine, Matrices, Transforms, Scaling
|
||||
// See Also: scale(), xscale(), yscale(), zscale(), affine3d_scale()
|
||||
// Description:
|
||||
// Returns the 3x3 affine2d matrix to perform a 2D scaling transformation.
|
||||
// Arguments:
|
||||
@ -294,6 +310,8 @@ function affine2d_scale(v=[1,1]) =
|
||||
// Function: affine2d_zrot()
|
||||
// Usage:
|
||||
// mat = affine2d_zrot(ang);
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), yrot(), zrot(), affine3d_zrot()
|
||||
// Description:
|
||||
// Returns the 3x3 affine2d matrix to perform a rotation of a 2D vector around the Z axis.
|
||||
// Arguments:
|
||||
@ -318,6 +336,8 @@ function affine2d_zrot(ang=0) =
|
||||
// Function: affine2d_mirror()
|
||||
// Usage:
|
||||
// mat = affine2d_mirror(v);
|
||||
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
|
||||
// See Also: mirror(), xflip(), yflip(), zflip(), affine3d_mirror()
|
||||
// Description:
|
||||
// Returns the 3x3 affine2d matrix to perform a reflection of a 2D vector across the line given by its normal vector.
|
||||
// Arguments:
|
||||
@ -361,6 +381,8 @@ function affine2d_mirror(v) =
|
||||
// mat = affine2d_skew(xa);
|
||||
// mat = affine2d_skew(ya=);
|
||||
// mat = affine2d_skew(xa, ya);
|
||||
// Topics: Affine, Matrices, Transforms, Skewing
|
||||
// See Also: skew(), affine3d_skew()
|
||||
// Description:
|
||||
// Returns the 3x3 affine2d matrix to skew a 2D vector along the XY plane.
|
||||
// Arguments:
|
||||
@ -391,6 +413,7 @@ function affine2d_skew(xa=0, ya=0) =
|
||||
// Function: affine3d_identity()
|
||||
// Usage:
|
||||
// mat = affine3d_identity();
|
||||
// Topics: Affine, Matrices, Transforms
|
||||
// Description:
|
||||
// Create a 4x4 affine3d identity matrix.
|
||||
// Example:
|
||||
@ -408,6 +431,8 @@ function affine3d_identity() = ident(4);
|
||||
// Function: affine3d_translate()
|
||||
// Usage:
|
||||
// mat = affine3d_translate(v);
|
||||
// Topics: Affine, Matrices, Transforms, Translation
|
||||
// See Also: translate(), move(), affine2d_translate()
|
||||
// Description:
|
||||
// Returns the 4x4 affine3d matrix to perform a 3D translation.
|
||||
// Arguments:
|
||||
@ -435,6 +460,8 @@ function affine3d_translate(v=[0,0,0]) =
|
||||
// Function: affine3d_scale()
|
||||
// Usage:
|
||||
// mat = affine3d_scale(v);
|
||||
// Topics: Affine, Matrices, Transforms, Scaling
|
||||
// See Also: scale(), affine2d_scale()
|
||||
// Description:
|
||||
// Returns the 4x4 affine3d matrix to perform a 3D scaling transformation.
|
||||
// Arguments:
|
||||
@ -462,6 +489,8 @@ function affine3d_scale(v=[1,1,1]) =
|
||||
// Function: affine3d_xrot()
|
||||
// Usage:
|
||||
// mat = affine3d_xrot(ang);
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
||||
// Description:
|
||||
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the X axis.
|
||||
// Arguments:
|
||||
@ -488,6 +517,8 @@ function affine3d_xrot(ang=0) =
|
||||
// Function: affine3d_yrot()
|
||||
// Usage:
|
||||
// mat = affine3d_yrot(ang);
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
||||
// Description:
|
||||
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Y axis.
|
||||
// Arguments:
|
||||
@ -514,6 +545,8 @@ function affine3d_yrot(ang=0) =
|
||||
// Function: affine3d_zrot()
|
||||
// Usage:
|
||||
// mat = affine3d_zrot(ang);
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
||||
// Description:
|
||||
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Z axis.
|
||||
// Arguments:
|
||||
@ -540,6 +573,8 @@ function affine3d_zrot(ang=0) =
|
||||
// Function: affine3d_rot_by_axis()
|
||||
// Usage:
|
||||
// mat = affine3d_rot_by_axis(u, ang);
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
||||
// Description:
|
||||
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around an axis.
|
||||
// Arguments:
|
||||
@ -574,6 +609,8 @@ function affine3d_rot_by_axis(u=UP, ang=0) =
|
||||
// Function: affine3d_rot_from_to()
|
||||
// Usage:
|
||||
// mat = affine3d_rot_from_to(from, to);
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
||||
// Description:
|
||||
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector from one vector direction to another.
|
||||
// Arguments:
|
||||
@ -616,6 +653,8 @@ function affine3d_rot_from_to(from, to) =
|
||||
// map = affine3d_frame_map(x=VECTOR1, y=VECTOR2, <reverse>);
|
||||
// map = affine3d_frame_map(x=VECTOR1, z=VECTOR2, <reverse>);
|
||||
// map = affine3d_frame_map(y=VECTOR1, z=VECTOR2, <reverse>);
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
||||
// Description:
|
||||
// Returns a transformation that maps one coordinate frame to another. You must specify two or
|
||||
// three of `x`, `y`, and `z`. The specified axes are mapped to the vectors you supplied. If you
|
||||
@ -672,6 +711,8 @@ function affine3d_frame_map(x,y,z, reverse=false) =
|
||||
// Function: affine3d_mirror()
|
||||
// Usage:
|
||||
// mat = affine3d_mirror(v);
|
||||
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
|
||||
// See Also: mirror(), xflip(), yflip(), zflip(), affine2d_mirror()
|
||||
// Description:
|
||||
// Returns the 4x4 affine3d matrix to perform a reflection of a 3D vector across the plane given by its normal vector.
|
||||
// Arguments:
|
||||
@ -710,6 +751,8 @@ function affine3d_mirror(v) =
|
||||
// Function: affine3d_skew()
|
||||
// Usage:
|
||||
// mat = affine3d_skew(<sxy>, <sxz>, <syx>, <syz>, <szx>, <szy>);
|
||||
// Topics: Affine, Matrices, Transforms, Skewing
|
||||
// See Also: skew(), affine3d_skew_xy(), affine3d_skew_xz(), affine3d_skew_yz(), affine2d_skew()
|
||||
// Description:
|
||||
// Returns the 4x4 affine3d matrix to perform a skew transformation.
|
||||
// Arguments:
|
||||
@ -741,6 +784,8 @@ function affine3d_skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0) = [
|
||||
// mat = affine3d_skew_xy(xa);
|
||||
// mat = affine3d_skew_xy(ya=);
|
||||
// mat = affine3d_skew_xy(xa, ya);
|
||||
// Topics: Affine, Matrices, Transforms, Skewing
|
||||
// See Also: skew(), affine3d_skew(), affine3d_skew_xz(), affine3d_skew_yz(), affine2d_skew()
|
||||
// Description:
|
||||
// Returns the 4x4 affine3d matrix to perform a skew transformation along the XY plane.
|
||||
// Arguments:
|
||||
@ -771,6 +816,8 @@ function affine3d_skew_xy(xa=0, ya=0) =
|
||||
// mat = affine3d_skew_xz(xa);
|
||||
// mat = affine3d_skew_xz(za=);
|
||||
// mat = affine3d_skew_xz(xa, za);
|
||||
// Topics: Affine, Matrices, Transforms, Skewing
|
||||
// See Also: skew(), affine3d_skew(), affine3d_skew_xy(), affine3d_skew_yz(), affine2d_skew()
|
||||
// Description:
|
||||
// Returns the 4x4 affine3d matrix to perform a skew transformation along the XZ plane.
|
||||
// Arguments:
|
||||
@ -801,6 +848,8 @@ function affine3d_skew_xz(xa=0, za=0) =
|
||||
// mat = affine3d_skew_yz(ya);
|
||||
// mat = affine3d_skew_yz(za=);
|
||||
// mat = affine3d_skew_yz(ya, za);
|
||||
// Topics: Affine, Matrices, Transforms, Skewing
|
||||
// See Also: skew(), affine3d_skew(), affine3d_skew_xy(), affine3d_skew_xz(), affine2d_skew()
|
||||
// Description:
|
||||
// Returns the 4x4 affine3d matrix to perform a skew transformation along the YZ plane.
|
||||
// Arguments:
|
||||
|
@ -15,14 +15,14 @@
|
||||
// Topics: Paths (2D), Paths (3D), Drawing Tools
|
||||
// Description:
|
||||
// Draws a 2D or 3D path with a given line width. Endcaps can be specified for each end individually.
|
||||
// Figure(2D,Big): Endcap Types
|
||||
// Figure(Med,NoAxes,VPR=[0,0,0],VPD=250): Endcap Types
|
||||
// endcaps = [
|
||||
// ["butt", "square", "round", "chisel", "tail", "tail2"],
|
||||
// ["line", "cross", "dot", "diamond", "x", "arrow", "arrow2"]
|
||||
// ];
|
||||
// for (x=idx(endcaps), y=idx(endcaps[x])) {
|
||||
// cap = endcaps[x][y];
|
||||
// right(x*60-60+5) fwd(y*10+15) {
|
||||
// right(x*60-60+5) fwd(y*10-30) {
|
||||
// right(28) color("black") text(text=cap, size=5, halign="left", valign="center");
|
||||
// stroke([[0,0], [20,0]], width=3, endcap_width=3, endcap1=false, endcap2=cap);
|
||||
// color("black") stroke([[0,0], [20,0]], width=0.25, endcaps=false);
|
||||
|
@ -381,7 +381,7 @@ module test_skew() {
|
||||
assert_equal(skew(sxy=2, sxz=3, syx=4, syz=5, szx=6, szy=7), m);
|
||||
assert_equal(skew(sxy=2, sxz=3, syx=4, syz=5, szx=6, szy=7, p=[1,2,3]), apply(m,[1,2,3]));
|
||||
// Verify that module at least doesn't crash.
|
||||
skew(2,3,4,5,6,7) nil();
|
||||
skew(undef,2,3,4,5,6,7) nil();
|
||||
}
|
||||
test_skew();
|
||||
|
||||
|
427
transforms.scad
427
transforms.scad
@ -12,15 +12,20 @@
|
||||
|
||||
|
||||
// Function&Module: move()
|
||||
// Aliases: translate()
|
||||
//
|
||||
// Usage: As Module
|
||||
// move(<x>, <y>, <z>) ...
|
||||
// move(<x=>, <y=>, <z=>) ...
|
||||
// move(v) ...
|
||||
// Usage: Translate Points
|
||||
// pts = move(v, p);
|
||||
// pts = move(<x>, <y>, <z>, p);
|
||||
// pts = move(<x=>, <y=>, <z=>, p=);
|
||||
// Usage: Get Translation Matrix
|
||||
// mat = move(v);
|
||||
// mat = move(<x=>, <y=>, <z=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Translation
|
||||
// See Also: left(), right(), fwd(), back(), down(), up(), affine2d_translate(), affine3d_translate()
|
||||
//
|
||||
// Description:
|
||||
// Translates position by the given amount.
|
||||
@ -35,10 +40,11 @@
|
||||
//
|
||||
// Arguments:
|
||||
// v = An [X,Y,Z] vector to translate by.
|
||||
// p = Either a point, or a list of points to be translated when used as a function.
|
||||
// ---
|
||||
// x = X axis translation.
|
||||
// y = Y axis translation.
|
||||
// z = Z axis translation.
|
||||
// p = Either a point, or a list of points to be translated when used as a function.
|
||||
//
|
||||
// Example:
|
||||
// #sphere(d=10);
|
||||
@ -64,18 +70,18 @@
|
||||
// pt4 = move(y=11, p=[[1,2,3],[4,5,6]]); // Returns: [[1,13,3], [4,16,6]]
|
||||
// mat2d = move([2,3]); // Returns: [[1,0,2],[0,1,3],[0,0,1]]
|
||||
// mat3d = move([2,3,4]); // Returns: [[1,0,0,2],[0,1,0,3],[0,0,1,4],[0,0,0,1]]
|
||||
module move(v=[0,0,0], x=0, y=0, z=0)
|
||||
{
|
||||
module move(v=[0,0,0], p, x=0, y=0, z=0) {
|
||||
assert(is_undef(p), "Module form `move()` does not accept p= argument.");
|
||||
translate(point3d(v)+[x,y,z]) children();
|
||||
}
|
||||
|
||||
function move(v=[0,0,0], p=undef, x=0, y=0, z=0) =
|
||||
function move(v=[0,0,0], p, x=0, y=0, z=0) =
|
||||
is_undef(p)? (
|
||||
len(v)==2? affine2d_translate(v+[x,y]) :
|
||||
affine3d_translate(point3d(v)+[x,y,z])
|
||||
) : (
|
||||
assert(is_list(p))
|
||||
let(v=v+[x,y,z])
|
||||
let(v=point3d(v)+[x,y,z])
|
||||
is_num(p.x)? p+v :
|
||||
is_vnf(p)? [move(v=v,p=p.x), p.y] :
|
||||
[for (l=p) is_vector(l)? l+v : move(v=v, p=l)]
|
||||
@ -93,6 +99,9 @@ function translate(v=[0,0,0], p=undef) = move(v=v, p=p);
|
||||
// Usage: Get Translation Matrix
|
||||
// mat = left(x);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Translation
|
||||
// See Also: move(), right(), fwd(), back(), down(), up(), affine2d_translate(), affine3d_translate()
|
||||
//
|
||||
// Description:
|
||||
// If called as a module, moves/translates all children left (in the X- direction) by the given amount.
|
||||
// If called as a function with the `p` argument, returns the translated point or list of points.
|
||||
@ -111,9 +120,12 @@ function translate(v=[0,0,0], p=undef) = move(v=v, p=p);
|
||||
// pt2 = left(20, p=[15,23,42]); // Returns: [-5,23,42]
|
||||
// pt3 = left(3, p=[[1,2,3],[4,5,6]]); // Returns: [[-2,2,3], [1,5,6]]
|
||||
// mat3d = left(4); // Returns: [[1,0,0,-4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
|
||||
module left(x=0) translate([-x,0,0]) children();
|
||||
module left(x=0, p) {
|
||||
assert(is_undef(p), "Module form `left()` does not accept p= argument.");
|
||||
translate([-x,0,0]) children();
|
||||
}
|
||||
|
||||
function left(x=0,p=undef) = move([-x,0,0],p=p);
|
||||
function left(x=0, p) = move([-x,0,0],p=p);
|
||||
|
||||
|
||||
// Function&Module: right()
|
||||
@ -125,6 +137,9 @@ function left(x=0,p=undef) = move([-x,0,0],p=p);
|
||||
// Usage: Get Translation Matrix
|
||||
// mat = right(x);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Translation
|
||||
// See Also: move(), left(), fwd(), back(), down(), up(), affine2d_translate(), affine3d_translate()
|
||||
//
|
||||
// Description:
|
||||
// If called as a module, moves/translates all children right (in the X+ direction) by the given amount.
|
||||
// If called as a function with the `p` argument, returns the translated point or list of points.
|
||||
@ -143,9 +158,12 @@ function left(x=0,p=undef) = move([-x,0,0],p=p);
|
||||
// pt2 = right(20, p=[15,23,42]); // Returns: [35,23,42]
|
||||
// pt3 = right(3, p=[[1,2,3],[4,5,6]]); // Returns: [[4,2,3], [7,5,6]]
|
||||
// mat3d = right(4); // Returns: [[1,0,0,4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
|
||||
module right(x=0) translate([x,0,0]) children();
|
||||
module right(x=0, p) {
|
||||
assert(is_undef(p), "Module form `right()` does not accept p= argument.");
|
||||
translate([x,0,0]) children();
|
||||
}
|
||||
|
||||
function right(x=0,p=undef) = move([x,0,0],p=p);
|
||||
function right(x=0, p) = move([x,0,0],p=p);
|
||||
|
||||
|
||||
// Function&Module: fwd()
|
||||
@ -157,6 +175,9 @@ function right(x=0,p=undef) = move([x,0,0],p=p);
|
||||
// Usage: Get Translation Matrix
|
||||
// mat = fwd(y);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Translation
|
||||
// See Also: move(), left(), right(), back(), down(), up(), affine2d_translate(), affine3d_translate()
|
||||
//
|
||||
// Description:
|
||||
// If called as a module, moves/translates all children forward (in the Y- direction) by the given amount.
|
||||
// If called as a function with the `p` argument, returns the translated point or list of points.
|
||||
@ -175,9 +196,12 @@ function right(x=0,p=undef) = move([x,0,0],p=p);
|
||||
// pt2 = fwd(20, p=[15,23,42]); // Returns: [15,3,42]
|
||||
// pt3 = fwd(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,-1,3], [4,2,6]]
|
||||
// mat3d = fwd(4); // Returns: [[1,0,0,0],[0,1,0,-4],[0,0,1,0],[0,0,0,1]]
|
||||
module fwd(y=0) translate([0,-y,0]) children();
|
||||
module fwd(y=0, p) {
|
||||
assert(is_undef(p), "Module form `fwd()` does not accept p= argument.");
|
||||
translate([0,-y,0]) children();
|
||||
}
|
||||
|
||||
function fwd(y=0,p=undef) = move([0,-y,0],p=p);
|
||||
function fwd(y=0, p) = move([0,-y,0],p=p);
|
||||
|
||||
|
||||
// Function&Module: back()
|
||||
@ -189,6 +213,9 @@ function fwd(y=0,p=undef) = move([0,-y,0],p=p);
|
||||
// Usage: Get Translation Matrix
|
||||
// mat = back(y);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Translation
|
||||
// See Also: move(), left(), right(), fwd(), down(), up(), affine2d_translate(), affine3d_translate()
|
||||
//
|
||||
// Description:
|
||||
// If called as a module, moves/translates all children back (in the Y+ direction) by the given amount.
|
||||
// If called as a function with the `p` argument, returns the translated point or list of points.
|
||||
@ -207,9 +234,12 @@ function fwd(y=0,p=undef) = move([0,-y,0],p=p);
|
||||
// pt2 = back(20, p=[15,23,42]); // Returns: [15,43,42]
|
||||
// pt3 = back(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,3], [4,8,6]]
|
||||
// mat3d = back(4); // Returns: [[1,0,0,0],[0,1,0,4],[0,0,1,0],[0,0,0,1]]
|
||||
module back(y=0) translate([0,y,0]) children();
|
||||
module back(y=0, ) {
|
||||
assert(is_undef(p), "Module form `back()` does not accept p= argument.");
|
||||
translate([0,y,0]) children();
|
||||
}
|
||||
|
||||
function back(y=0,p=undef) = move([0,y,0],p=p);
|
||||
function back(y=0,p) = move([0,y,0],p=p);
|
||||
|
||||
|
||||
// Function&Module: down()
|
||||
@ -221,6 +251,9 @@ function back(y=0,p=undef) = move([0,y,0],p=p);
|
||||
// Usage: Get Translation Matrix
|
||||
// mat = down(z);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Translation
|
||||
// See Also: move(), left(), right(), fwd(), back(), up(), affine2d_translate(), affine3d_translate()
|
||||
//
|
||||
// Description:
|
||||
// If called as a module, moves/translates all children down (in the Z- direction) by the given amount.
|
||||
// If called as a function with the `p` argument, returns the translated point or list of points.
|
||||
@ -238,9 +271,12 @@ function back(y=0,p=undef) = move([0,y,0],p=p);
|
||||
// pt1 = down(20, p=[15,23,42]); // Returns: [15,23,22]
|
||||
// pt2 = down(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,0], [4,5,3]]
|
||||
// mat3d = down(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,-4],[0,0,0,1]]
|
||||
module down(z=0) translate([0,0,-z]) children();
|
||||
module down(z=0, p) {
|
||||
assert(is_undef(p), "Module form `down()` does not accept p= argument.");
|
||||
translate([0,0,-z]) children();
|
||||
}
|
||||
|
||||
function down(z=0,p=undef) = move([0,0,-z],p=p);
|
||||
function down(z=0, p) = move([0,0,-z],p=p);
|
||||
|
||||
|
||||
// Function&Module: up()
|
||||
@ -252,6 +288,9 @@ function down(z=0,p=undef) = move([0,0,-z],p=p);
|
||||
// Usage: Get Translation Matrix
|
||||
// mat = up(z);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Translation
|
||||
// See Also: move(), left(), right(), fwd(), back(), down(), affine2d_translate(), affine3d_translate()
|
||||
//
|
||||
// Description:
|
||||
// If called as a module, moves/translates all children up (in the Z+ direction) by the given amount.
|
||||
// If called as a function with the `p` argument, returns the translated point or list of points.
|
||||
@ -269,9 +308,12 @@ function down(z=0,p=undef) = move([0,0,-z],p=p);
|
||||
// pt1 = up(20, p=[15,23,42]); // Returns: [15,23,62]
|
||||
// pt2 = up(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,6], [4,5,9]]
|
||||
// mat3d = up(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,4],[0,0,0,1]]
|
||||
module up(z=0) translate([0,0,z]) children();
|
||||
module up(z=0, p) {
|
||||
assert(is_undef(p), "Module form `up()` does not accept p= argument.");
|
||||
translate([0,0,z]) children();
|
||||
}
|
||||
|
||||
function up(z=0,p=undef) = move([0,0,z],p=p);
|
||||
function up(z=0, p) = move([0,0,z],p=p);
|
||||
|
||||
|
||||
|
||||
@ -282,11 +324,24 @@ function up(z=0,p=undef) = move([0,0,z],p=p);
|
||||
|
||||
// Function&Module: rot()
|
||||
//
|
||||
// Usage:
|
||||
// rot(a, <cp>, <reverse>) ...
|
||||
// rot([X,Y,Z], <cp>, <reverse>) ...
|
||||
// rot(a, v, <cp>, <reverse>) ...
|
||||
// rot(from, to, <a>, <reverse>) ...
|
||||
// Usage: As a Module
|
||||
// rot(a, <cp>, <reverse>) {...}
|
||||
// rot([X,Y,Z], <cp>, <reverse>) {...}
|
||||
// rot(a, v, <cp>, <reverse>) {...}
|
||||
// rot(from, to, <a>, <reverse>) {...}
|
||||
// Usage: Get Transformation Matrix
|
||||
// pts = rot(a, <cp=>, <reverse=>, <planar=>);
|
||||
// pts = rot([X,Y,Z], <cp=>, <reverse=>, <planar=>);
|
||||
// pts = rot(a, v, <cp=>, <reverse=>, <planar=>);
|
||||
// pts = rot(from=, to=, <a=>, <reverse=>, <planar=>);
|
||||
// Usage: As a Function
|
||||
// pts = rot(a, p=, <cp=>, <reverse=>);
|
||||
// pts = rot([X,Y,Z], p=, <cp=>, <reverse=>);
|
||||
// pts = rot(a, v, p=, <cp=>, <reverse=>);
|
||||
// pts = rot(<a>, from=, to=, p=, <reverse=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: xrot(), yrot(), zrot(), affine2d_zrot(), affine3d_xrot(), affine3d_yrot(), affine3d_zrot(), affine3d_rot_by_axis(), affine3d_rot_from_to()
|
||||
//
|
||||
// Description:
|
||||
// This is a shorthand version of the built-in `rotate()`, and operates similarly, with a few additional capabilities.
|
||||
@ -310,6 +365,7 @@ function up(z=0,p=undef) = move([0,0,z],p=p);
|
||||
// Arguments:
|
||||
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees. If `planar` is true and `p` is not given, then `a` must be a finite scalar. Default: `0`
|
||||
// v = vector for the axis of rotation. Default: [0,0,1] or UP
|
||||
// ---
|
||||
// cp = centerpoint to rotate around. Default: [0,0,0]
|
||||
// from = Starting vector for vector-based rotations.
|
||||
// to = Target vector for vector-based rotations.
|
||||
@ -333,7 +389,7 @@ function up(z=0,p=undef) = move([0,0,z],p=p);
|
||||
// path = square([50,30], center=true);
|
||||
// #stroke(path, closed=true);
|
||||
// stroke(rot(30,p=path), closed=true);
|
||||
module rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false)
|
||||
module rot(a=0, v, cp, from, to, reverse=false)
|
||||
{
|
||||
m = rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, planar=false);
|
||||
multmatrix(m) children();
|
||||
@ -395,11 +451,14 @@ function rot(a=0, v, cp, from, to, reverse=false, planar=false, p, _m) =
|
||||
// Function&Module: xrot()
|
||||
//
|
||||
// Usage: As Module
|
||||
// xrot(a, <cp>) ...
|
||||
// xrot(a, <cp=>) ...
|
||||
// Usage: Rotate Points
|
||||
// rotated = xrot(a, p, <cp>);
|
||||
// rotated = xrot(a, p, <cp=>);
|
||||
// Usage: Get Rotation Matrix
|
||||
// mat = xrot(a, <cp>);
|
||||
// mat = xrot(a, <cp=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), yrot(), zrot(), affine2d_zrot(), affine3d_xrot(), affine3d_yrot(), affine3d_zrot()
|
||||
//
|
||||
// Description:
|
||||
// Rotates around the X axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
|
||||
@ -413,14 +472,16 @@ function rot(a=0, v, cp, from, to, reverse=false, planar=false, p, _m) =
|
||||
//
|
||||
// Arguments:
|
||||
// a = angle to rotate by in degrees.
|
||||
// cp = centerpoint to rotate around. Default: [0,0,0]
|
||||
// p = If called as a function, this contains a point or list of points to rotate.
|
||||
// ---
|
||||
// cp = centerpoint to rotate around. Default: [0,0,0]
|
||||
//
|
||||
// Example:
|
||||
// #cylinder(h=50, r=10, center=true);
|
||||
// xrot(90) cylinder(h=50, r=10, center=true);
|
||||
module xrot(a=0, cp=undef)
|
||||
module xrot(a=0, p, cp)
|
||||
{
|
||||
assert(is_undef(p), "Module form `xrot()` does not accept p= argument.");
|
||||
if (a==0) {
|
||||
children(); // May be slightly faster?
|
||||
} else if (!is_undef(cp)) {
|
||||
@ -430,17 +491,20 @@ module xrot(a=0, cp=undef)
|
||||
}
|
||||
}
|
||||
|
||||
function xrot(a=0, cp=undef, p=undef) = rot([a,0,0], cp=cp, p=p);
|
||||
function xrot(a=0, p, cp) = rot([a,0,0], cp=cp, p=p);
|
||||
|
||||
|
||||
// Function&Module: yrot()
|
||||
//
|
||||
// Usage: As Module
|
||||
// yrot(a, <cp>) ...
|
||||
// yrot(a, <cp=>) ...
|
||||
// Usage: Rotate Points
|
||||
// rotated = yrot(a, p, <cp>);
|
||||
// rotated = yrot(a, p, <cp=>);
|
||||
// Usage: Get Rotation Matrix
|
||||
// mat = yrot(a, <cp>);
|
||||
// mat = yrot(a, <cp=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), zrot(), affine2d_zrot(), affine3d_xrot(), affine3d_yrot(), affine3d_zrot()
|
||||
//
|
||||
// Description:
|
||||
// Rotates around the Y axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
|
||||
@ -454,14 +518,16 @@ function xrot(a=0, cp=undef, p=undef) = rot([a,0,0], cp=cp, p=p);
|
||||
//
|
||||
// Arguments:
|
||||
// a = angle to rotate by in degrees.
|
||||
// cp = centerpoint to rotate around. Default: [0,0,0]
|
||||
// p = If called as a function, this contains a point or list of points to rotate.
|
||||
// ---
|
||||
// cp = centerpoint to rotate around. Default: [0,0,0]
|
||||
//
|
||||
// Example:
|
||||
// #cylinder(h=50, r=10, center=true);
|
||||
// yrot(90) cylinder(h=50, r=10, center=true);
|
||||
module yrot(a=0, cp=undef)
|
||||
module yrot(a=0, p, cp)
|
||||
{
|
||||
assert(is_undef(p), "Module form `yrot()` does not accept p= argument.");
|
||||
if (a==0) {
|
||||
children(); // May be slightly faster?
|
||||
} else if (!is_undef(cp)) {
|
||||
@ -471,17 +537,20 @@ module yrot(a=0, cp=undef)
|
||||
}
|
||||
}
|
||||
|
||||
function yrot(a=0, cp=undef, p=undef) = rot([0,a,0], cp=cp, p=p);
|
||||
function yrot(a=0, p, cp) = rot([0,a,0], cp=cp, p=p);
|
||||
|
||||
|
||||
// Function&Module: zrot()
|
||||
//
|
||||
// Usage: As Module
|
||||
// zrot(a, <cp>) ...
|
||||
// zrot(a, <cp=>) ...
|
||||
// Usage: Rotate Points
|
||||
// rotated = zrot(a, p, <cp>);
|
||||
// rotated = zrot(a, p, <cp=>);
|
||||
// Usage: Get Rotation Matrix
|
||||
// mat = zrot(a, <cp>);
|
||||
// mat = zrot(a, <cp=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), yrot(), affine2d_zrot(), affine3d_xrot(), affine3d_yrot(), affine3d_zrot()
|
||||
//
|
||||
// Description:
|
||||
// Rotates around the Z axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
|
||||
@ -495,14 +564,16 @@ function yrot(a=0, cp=undef, p=undef) = rot([0,a,0], cp=cp, p=p);
|
||||
//
|
||||
// Arguments:
|
||||
// a = angle to rotate by in degrees.
|
||||
// cp = centerpoint to rotate around. Default: [0,0,0]
|
||||
// p = If called as a function, this contains a point or list of points to rotate.
|
||||
// ---
|
||||
// cp = centerpoint to rotate around. Default: [0,0,0]
|
||||
//
|
||||
// Example:
|
||||
// #cube(size=[60,20,40], center=true);
|
||||
// zrot(90) cube(size=[60,20,40], center=true);
|
||||
module zrot(a=0, cp=undef)
|
||||
module zrot(a=0, p, cp)
|
||||
{
|
||||
assert(is_undef(p), "Module form `zrot()` does not accept p= argument.");
|
||||
if (a==0) {
|
||||
children(); // May be slightly faster?
|
||||
} else if (!is_undef(cp)) {
|
||||
@ -512,17 +583,20 @@ module zrot(a=0, cp=undef)
|
||||
}
|
||||
}
|
||||
|
||||
function zrot(a=0, cp=undef, p=undef) = rot(a, cp=cp, p=p);
|
||||
function zrot(a=0, p, cp) = rot(a, cp=cp, p=p);
|
||||
|
||||
|
||||
// Function&Module: xyrot()
|
||||
//
|
||||
// Usage: As Module
|
||||
// xyrot(a, <cp>) ...
|
||||
// xyrot(a, <cp=>) ...
|
||||
// Usage: Rotate Points
|
||||
// rotated = xyrot(a, p, <cp>);
|
||||
// rotated = xyrot(a, p, <cp=>);
|
||||
// Usage: Get Rotation Matrix
|
||||
// mat = xyrot(a, <cp>);
|
||||
// mat = xyrot(a, <cp=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), yrot(), zrot(), xzrot(), yzrot(), xyzrot(), affine3d_rot_by_axis()
|
||||
//
|
||||
// Description:
|
||||
// Rotates around the [1,1,0] vector axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
|
||||
@ -542,8 +616,9 @@ function zrot(a=0, cp=undef, p=undef) = rot(a, cp=cp, p=p);
|
||||
// Example:
|
||||
// #cylinder(h=50, r=10, center=true);
|
||||
// xyrot(90) cylinder(h=50, r=10, center=true);
|
||||
module xyrot(a=0, cp)
|
||||
module xyrot(a=0, p, cp)
|
||||
{
|
||||
assert(is_undef(p), "Module form `xyrot()` does not accept p= argument.");
|
||||
if (a==0) {
|
||||
children(); // May be slightly faster?
|
||||
} else {
|
||||
@ -558,11 +633,14 @@ function xyrot(a=0, p, cp) = rot(a=a, v=[1,1,0], cp=cp, p=p);
|
||||
// Function&Module: xzrot()
|
||||
//
|
||||
// Usage: As Module
|
||||
// xzrot(a, <cp>) ...
|
||||
// xzrot(a, <cp=>) ...
|
||||
// Usage: Rotate Points
|
||||
// rotated = xzrot(a, p, <cp>);
|
||||
// rotated = xzrot(a, p, <cp=>);
|
||||
// Usage: Get Rotation Matrix
|
||||
// mat = xzrot(a, <cp>);
|
||||
// mat = xzrot(a, <cp=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), yrot(), zrot(), xyrot(), yzrot(), xyzrot(), affine3d_rot_by_axis()
|
||||
//
|
||||
// Description:
|
||||
// Rotates around the [1,0,1] vector axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
|
||||
@ -582,8 +660,9 @@ function xyrot(a=0, p, cp) = rot(a=a, v=[1,1,0], cp=cp, p=p);
|
||||
// Example:
|
||||
// #cylinder(h=50, r=10, center=true);
|
||||
// xzrot(90) cylinder(h=50, r=10, center=true);
|
||||
module xzrot(a=0, cp)
|
||||
module xzrot(a=0, p, cp)
|
||||
{
|
||||
assert(is_undef(p), "Module form `xzrot()` does not accept p= argument.");
|
||||
if (a==0) {
|
||||
children(); // May be slightly faster?
|
||||
} else {
|
||||
@ -598,11 +677,14 @@ function xzrot(a=0, p, cp) = rot(a=a, v=[1,0,1], cp=cp, p=p);
|
||||
// Function&Module: yzrot()
|
||||
//
|
||||
// Usage: As Module
|
||||
// yzrot(a, <cp>) ...
|
||||
// yzrot(a, <cp=>) ...
|
||||
// Usage: Rotate Points
|
||||
// rotated = yzrot(a, p, <cp>);
|
||||
// rotated = yzrot(a, p, <cp=>);
|
||||
// Usage: Get Rotation Matrix
|
||||
// mat = yzrot(a, <cp>);
|
||||
// mat = yzrot(a, <cp=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), yrot(), zrot(), xyrot(), xzrot(), xyzrot(), affine3d_rot_by_axis()
|
||||
//
|
||||
// Description:
|
||||
// Rotates around the [0,1,1] vector axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
|
||||
@ -622,8 +704,9 @@ function xzrot(a=0, p, cp) = rot(a=a, v=[1,0,1], cp=cp, p=p);
|
||||
// Example:
|
||||
// #cylinder(h=50, r=10, center=true);
|
||||
// yzrot(90) cylinder(h=50, r=10, center=true);
|
||||
module yzrot(a=0, cp)
|
||||
module yzrot(a=0, p, cp)
|
||||
{
|
||||
assert(is_undef(p), "Module form `yzrot()` does not accept p= argument.");
|
||||
if (a==0) {
|
||||
children(); // May be slightly faster?
|
||||
} else {
|
||||
@ -638,11 +721,14 @@ function yzrot(a=0, p, cp) = rot(a=a, v=[0,1,1], cp=cp, p=p);
|
||||
// Function&Module: xyzrot()
|
||||
//
|
||||
// Usage: As Module
|
||||
// xyzrot(a, <cp>) ...
|
||||
// xyzrot(a, <cp=>) ...
|
||||
// Usage: Rotate Points
|
||||
// rotated = xyzrot(a, p, <cp>);
|
||||
// rotated = xyzrot(a, p, <cp=>);
|
||||
// Usage: Get Rotation Matrix
|
||||
// mat = xyzrot(a, <cp>);
|
||||
// mat = xyzrot(a, <cp=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Rotation
|
||||
// See Also: rot(), xrot(), yrot(), zrot(), xyrot(), xzrot(), yzrot(), affine3d_rot_by_axis()
|
||||
//
|
||||
// Description:
|
||||
// Rotates around the [1,1,1] vector axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
|
||||
@ -662,8 +748,9 @@ function yzrot(a=0, p, cp) = rot(a=a, v=[0,1,1], cp=cp, p=p);
|
||||
// Example:
|
||||
// #cylinder(h=50, r=10, center=true);
|
||||
// xyzrot(90) cylinder(h=50, r=10, center=true);
|
||||
module xyzrot(a=0, cp)
|
||||
module xyzrot(a=0, p, cp)
|
||||
{
|
||||
assert(is_undef(p), "Module form `xyzrot()` does not accept p= argument.");
|
||||
if (a==0) {
|
||||
children(); // May be slightly faster?
|
||||
} else {
|
||||
@ -682,12 +769,14 @@ function xyzrot(a=0, p, cp) = rot(a=a, v=[1,1,1], cp=cp, p=p);
|
||||
|
||||
// Function&Module: scale()
|
||||
// Usage: As Module
|
||||
// scale(SCALAR, <cp>) ...
|
||||
// scale([X,Y,Z], <cp>) ...
|
||||
// scale(SCALAR) ...
|
||||
// scale([X,Y,Z]) ...
|
||||
// Usage: Scale Points
|
||||
// pts = scale(v, p, <cp>);
|
||||
// pts = scale(v, p, <cp=>);
|
||||
// Usage: Get Scaling Matrix
|
||||
// mat = scale(v, <cp>);
|
||||
// mat = scale(v, <cp=>);
|
||||
// Topics: Affine, Matrices, Transforms, Scaling
|
||||
// See Also: xscale(), yscale(), zscale(), affine2d_scaling(), affine3d_scaling()
|
||||
// Description:
|
||||
// Scales by the [X,Y,Z] scaling factors given in `v`. If `v` is given as a scalar number, all axes are scaled uniformly by that amount.
|
||||
// * Called as the built-in module, scales all children.
|
||||
@ -699,8 +788,9 @@ function xyzrot(a=0, p, cp) = rot(a=a, v=[1,1,1], cp=cp, p=p);
|
||||
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
|
||||
// Arguments:
|
||||
// v = Either a numeric uniform scaling factor, or a list of [X,Y,Z] scaling factors. Default: 1
|
||||
// cp = If given, centers the scaling on the point `cp`.
|
||||
// p = If called as a function, the point or list of points to scale.
|
||||
// ---
|
||||
// cp = If given, centers the scaling on the point `cp`.
|
||||
// Example(NORENDER):
|
||||
// pt1 = scale(3, p=[3,1,4]); // Returns: [9,3,12]
|
||||
// pt2 = scale([2,3,4], p=[3,1,4]); // Returns: [6,3,16]
|
||||
@ -711,9 +801,10 @@ function xyzrot(a=0, p, cp) = rot(a=a, v=[1,1,1], cp=cp, p=p);
|
||||
// path = circle(d=50,$fn=12);
|
||||
// #stroke(path,closed=true);
|
||||
// stroke(scale([1.5,3],p=path),closed=true);
|
||||
function scale(v=1, cp=[0,0,0], p) =
|
||||
function scale(v=1, p, cp=[0,0,0]) =
|
||||
assert(is_num(v) || is_vector(v))
|
||||
assert(is_undef(p) || is_list(p))
|
||||
assert(is_vector(cp))
|
||||
let( v = is_num(v)? [v,v,v] : v )
|
||||
is_undef(p)? (
|
||||
len(v)==2? (
|
||||
@ -745,11 +836,14 @@ function scale(v=1, cp=[0,0,0], p) =
|
||||
//
|
||||
//
|
||||
// Usage: As Module
|
||||
// xscale(x) ...
|
||||
// xscale(x, <cp=>) ...
|
||||
// Usage: Scale Points
|
||||
// scaled = xscale(x, p);
|
||||
// scaled = xscale(x, p, <cp=>);
|
||||
// Usage: Get Affine Matrix
|
||||
// mat = xscale(x);
|
||||
// mat = xscale(x, <cp=>, <planar=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Scaling
|
||||
// See Also: scale(), yscale(), zscale(), affine2d_scaling(), affine3d_scaling()
|
||||
//
|
||||
// Description:
|
||||
// Scales along the X axis by the scaling factor `x`.
|
||||
@ -763,8 +857,9 @@ function scale(v=1, cp=[0,0,0], p) =
|
||||
//
|
||||
// Arguments:
|
||||
// x = Factor to scale by, along the X axis.
|
||||
// cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[cp,0,0]`
|
||||
// p = A point, path, bezier patch, or VNF to scale, when called as a function.
|
||||
// ---
|
||||
// cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[cp,0,0]`
|
||||
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
|
||||
//
|
||||
// Example: As Module
|
||||
@ -774,7 +869,9 @@ function scale(v=1, cp=[0,0,0], p) =
|
||||
// path = circle(d=50,$fn=12);
|
||||
// #stroke(path,closed=true);
|
||||
// stroke(xscale(2,p=path),closed=true);
|
||||
module xscale(x=1, cp=0) {
|
||||
module xscale(x=1, p, cp=0, planar) {
|
||||
assert(is_undef(p), "Module form `xscale()` does not accept p= argument.");
|
||||
assert(is_undef(planar), "Module form `xscale()` does not accept planar= argument.");
|
||||
cp = is_num(cp)? [cp,0,0] : cp;
|
||||
if (cp == [0,0,0]) {
|
||||
scale([x,1,1]) children();
|
||||
@ -783,7 +880,11 @@ module xscale(x=1, cp=0) {
|
||||
}
|
||||
}
|
||||
|
||||
function xscale(x=1, cp=0, p, planar=false) =
|
||||
function xscale(x=1, p, cp=0, planar=false) =
|
||||
assert(is_finite(x))
|
||||
assert(is_undef(p) || is_list(p))
|
||||
assert(is_finite(cp) || is_vector(cp))
|
||||
assert(is_bool(planar))
|
||||
let( cp = is_num(cp)? [cp,0,0] : cp )
|
||||
(planar || (!is_undef(p) && len(p)==2))
|
||||
? scale([x,1], cp=cp, p=p)
|
||||
@ -793,11 +894,14 @@ function xscale(x=1, cp=0, p, planar=false) =
|
||||
// Function&Module: yscale()
|
||||
//
|
||||
// Usage: As Module
|
||||
// yscale(y) ...
|
||||
// yscale(y, <cp=>) ...
|
||||
// Usage: Scale Points
|
||||
// scaled = yscale(y, p);
|
||||
// scaled = yscale(y, p, <cp=>);
|
||||
// Usage: Get Affine Matrix
|
||||
// mat = yscale(y);
|
||||
// mat = yscale(y, <cp=>, <planar=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Scaling
|
||||
// See Also: scale(), xscale(), zscale(), affine2d_scaling(), affine3d_scaling()
|
||||
//
|
||||
// Description:
|
||||
// Scales along the Y axis by the scaling factor `y`.
|
||||
@ -811,8 +915,9 @@ function xscale(x=1, cp=0, p, planar=false) =
|
||||
//
|
||||
// Arguments:
|
||||
// y = Factor to scale by, along the Y axis.
|
||||
// cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[0,cp,0]`
|
||||
// p = A point, path, bezier patch, or VNF to scale, when called as a function.
|
||||
// ---
|
||||
// cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[0,cp,0]`
|
||||
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
|
||||
//
|
||||
// Example: As Module
|
||||
@ -822,7 +927,9 @@ function xscale(x=1, cp=0, p, planar=false) =
|
||||
// path = circle(d=50,$fn=12);
|
||||
// #stroke(path,closed=true);
|
||||
// stroke(yscale(2,p=path),closed=true);
|
||||
module yscale(y=1, cp=0) {
|
||||
module yscale(y=1, p, cp=0, planar) {
|
||||
assert(is_undef(p), "Module form `yscale()` does not accept p= argument.");
|
||||
assert(is_undef(planar), "Module form `yscale()` does not accept planar= argument.");
|
||||
cp = is_num(cp)? [0,cp,0] : cp;
|
||||
if (cp == [0,0,0]) {
|
||||
scale([1,y,1]) children();
|
||||
@ -831,7 +938,11 @@ module yscale(y=1, cp=0) {
|
||||
}
|
||||
}
|
||||
|
||||
function yscale(y=1, cp=0, p, planar=false) =
|
||||
function yscale(y=1, p, cp=0, planar=false) =
|
||||
assert(is_finite(y))
|
||||
assert(is_undef(p) || is_list(p))
|
||||
assert(is_finite(cp) || is_vector(cp))
|
||||
assert(is_bool(planar))
|
||||
let( cp = is_num(cp)? [0,cp,0] : cp )
|
||||
(planar || (!is_undef(p) && len(p)==2))
|
||||
? scale([1,y],p=p)
|
||||
@ -841,11 +952,14 @@ function yscale(y=1, cp=0, p, planar=false) =
|
||||
// Function&Module: zscale()
|
||||
//
|
||||
// Usage: As Module
|
||||
// zscale(z) ...
|
||||
// zscale(z, <cp=>) ...
|
||||
// Usage: Scale Points
|
||||
// scaled = zscale(z, p);
|
||||
// scaled = zscale(z, p, <cp=>);
|
||||
// Usage: Get Affine Matrix
|
||||
// mat = zscale(z);
|
||||
// mat = zscale(z, <cp=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Scaling
|
||||
// See Also: scale(), xscale(), yscale(), affine2d_scaling(), affine3d_scaling()
|
||||
//
|
||||
// Description:
|
||||
// Scales along the Z axis by the scaling factor `z`.
|
||||
@ -859,9 +973,9 @@ function yscale(y=1, cp=0, p, planar=false) =
|
||||
//
|
||||
// Arguments:
|
||||
// z = Factor to scale by, along the Z axis.
|
||||
// cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[0,0,cp]`
|
||||
// p = A point, path, bezier patch, or VNF to scale, when called as a function.
|
||||
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
|
||||
// ---
|
||||
// cp = If given as a point, centers the scaling on the point `cp`. If given as a scalar, centers scaling on the point `[0,0,cp]`
|
||||
//
|
||||
// Example: As Module
|
||||
// zscale(3) sphere(r=10);
|
||||
@ -870,7 +984,8 @@ function yscale(y=1, cp=0, p, planar=false) =
|
||||
// path = xrot(90,p=path3d(circle(d=50,$fn=12)));
|
||||
// #trace_path(path);
|
||||
// trace_path(zscale(2,p=path));
|
||||
module zscale(z=1, cp=0) {
|
||||
module zscale(z=1, p, cp=0) {
|
||||
assert(is_undef(p), "Module form `zscale()` does not accept p= argument.");
|
||||
cp = is_num(cp)? [0,0,cp] : cp;
|
||||
if (cp == [0,0,0]) {
|
||||
scale([1,1,z]) children();
|
||||
@ -879,7 +994,10 @@ module zscale(z=1, cp=0) {
|
||||
}
|
||||
}
|
||||
|
||||
function zscale(z=1, cp=0, p) =
|
||||
function zscale(z=1, p, cp=0) =
|
||||
assert(is_finite(z))
|
||||
assert(is_undef(p) || is_list(p))
|
||||
assert(is_finite(cp) || is_vector(cp))
|
||||
let( cp = is_num(cp)? [0,0,cp] : cp )
|
||||
scale([1,1,z], cp=cp, p=p);
|
||||
|
||||
@ -891,6 +1009,8 @@ function zscale(z=1, cp=0, p) =
|
||||
// pt = mirror(v, p);
|
||||
// Usage: Get Reflection/Mirror Matrix
|
||||
// mat = mirror(v);
|
||||
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
|
||||
// See Also: xflip(), yflip(), zflip(), affine2d_mirror(), affine3d_mirror()
|
||||
// Description:
|
||||
// Mirrors/reflects across the plane or line whose normal vector is given in `v`.
|
||||
// * Called as the built-in module, mirrors all children across the line/plane.
|
||||
@ -959,9 +1079,12 @@ function mirror(v, p) =
|
||||
// Usage: As Module
|
||||
// xflip(<x>) ...
|
||||
// Usage: As Function
|
||||
// pt = xflip(<x>, p);
|
||||
// pt = xflip(p, <x>);
|
||||
// Usage: Get Affine Matrix
|
||||
// pt = xflip(<x>, <planar>);
|
||||
// pt = xflip(<x>, <planar=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
|
||||
// See Also: mirror(), yflip(), zflip(), affine2d_mirror(), affine3d_mirror()
|
||||
//
|
||||
// Description:
|
||||
// Mirrors/reflects across the origin [0,0,0], along the X axis. If `x` is given, reflects across [x,0,0] instead.
|
||||
@ -975,8 +1098,9 @@ function mirror(v, p) =
|
||||
//
|
||||
// Arguments:
|
||||
// x = The X coordinate of the plane of reflection. Default: 0
|
||||
// planar = If true, and p is not given, returns a 2D affine transformation matrix. Function use only. Default: False
|
||||
// p = If given, the point, path, patch, or VNF to mirror. Function use only.
|
||||
// ---
|
||||
// planar = If true, and p is not given, returns a 2D affine transformation matrix. Function use only. Default: False
|
||||
//
|
||||
// Example:
|
||||
// xflip() yrot(90) cylinder(d1=10, d2=0, h=20);
|
||||
@ -987,9 +1111,18 @@ function mirror(v, p) =
|
||||
// xflip(x=-5) yrot(90) cylinder(d1=10, d2=0, h=20);
|
||||
// color("blue", 0.25) left(5) cube([0.01,15,15], center=true);
|
||||
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
|
||||
module xflip(x=0) translate([x,0,0]) mirror([1,0,0]) translate([-x,0,0]) children();
|
||||
module xflip(p, x=0, planar) {
|
||||
assert(is_undef(p), "Module form `zflip()` does not accept p= argument.");
|
||||
assert(is_undef(planar), "Module form `zflip()` does not accept planar= argument.");
|
||||
translate([x,0,0])
|
||||
mirror([1,0,0])
|
||||
translate([-x,0,0]) children();
|
||||
}
|
||||
|
||||
function xflip(x=0,planar=false,p) =
|
||||
function xflip(p, x=0, planar=false) =
|
||||
assert(is_finite(x))
|
||||
assert(is_bool(planar))
|
||||
assert(is_undef(p) || is_list(p))
|
||||
let(
|
||||
v = RIGHT,
|
||||
n = planar? point2d(v) : v
|
||||
@ -1006,9 +1139,12 @@ function xflip(x=0,planar=false,p) =
|
||||
// Usage: As Module
|
||||
// yflip(<y>) ...
|
||||
// Usage: As Function
|
||||
// pt = yflip(<y>, p);
|
||||
// pt = yflip(p, <y>);
|
||||
// Usage: Get Affine Matrix
|
||||
// pt = yflip(<y>, <planar>);
|
||||
// pt = yflip(<y>, <planar=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
|
||||
// See Also: mirror(), xflip(), zflip(), affine2d_mirror(), affine3d_mirror()
|
||||
//
|
||||
// Description:
|
||||
// Mirrors/reflects across the origin [0,0,0], along the Y axis. If `y` is given, reflects across [0,y,0] instead.
|
||||
@ -1021,9 +1157,10 @@ function xflip(x=0,planar=false,p) =
|
||||
// * Called as a function without a `p` argument, and `planar=false`, returns the affine3d 4x4 mirror matrix.
|
||||
//
|
||||
// Arguments:
|
||||
// y = The Y coordinate of the plane of reflection. Default: 0
|
||||
// planar = If true, and p is not given, returns a 2D affine transformation matrix. Function use only. Default: False
|
||||
// p = If given, the point, path, patch, or VNF to mirror. Function use only.
|
||||
// y = The Y coordinate of the plane of reflection. Default: 0
|
||||
// ---
|
||||
// planar = If true, and p is not given, returns a 2D affine transformation matrix. Function use only. Default: False
|
||||
//
|
||||
// Example:
|
||||
// yflip() xrot(90) cylinder(d1=10, d2=0, h=20);
|
||||
@ -1034,9 +1171,18 @@ function xflip(x=0,planar=false,p) =
|
||||
// yflip(y=5) xrot(90) cylinder(d1=10, d2=0, h=20);
|
||||
// color("blue", 0.25) back(5) cube([15,0.01,15], center=true);
|
||||
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
|
||||
module yflip(y=0) translate([0,y,0]) mirror([0,1,0]) translate([0,-y,0]) children();
|
||||
module yflip(p, y=0, planar) {
|
||||
assert(is_undef(p), "Module form `yflip()` does not accept p= argument.");
|
||||
assert(is_undef(planar), "Module form `yflip()` does not accept planar= argument.");
|
||||
translate([0,y,0])
|
||||
mirror([0,1,0])
|
||||
translate([0,-y,0]) children();
|
||||
}
|
||||
|
||||
function yflip(y=0,planar=false,p) =
|
||||
function yflip(p, y=0, planar=false) =
|
||||
assert(is_finite(y))
|
||||
assert(is_bool(planar))
|
||||
assert(is_undef(p) || is_list(p))
|
||||
let(
|
||||
v = BACK,
|
||||
n = planar? point2d(v) : v
|
||||
@ -1053,10 +1199,13 @@ function yflip(y=0,planar=false,p) =
|
||||
// Usage: As Module
|
||||
// zflip(<z>) ...
|
||||
// Usage: As Function
|
||||
// pt = zflip(<z>, p);
|
||||
// pt = zflip(p, <z>);
|
||||
// Usage: Get Affine Matrix
|
||||
// pt = zflip(<z>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
|
||||
// See Also: mirror(), xflip(), yflip(), affine2d_mirror(), affine3d_mirror()
|
||||
//
|
||||
// Description:
|
||||
// Mirrors/reflects across the origin [0,0,0], along the Z axis. If `z` is given, reflects across [0,0,z] instead.
|
||||
// * Called as the built-in module, mirrors all children across the line/plane.
|
||||
@ -1067,8 +1216,8 @@ function yflip(y=0,planar=false,p) =
|
||||
// * Called as a function without a `p` argument, returns the affine3d 4x4 mirror matrix.
|
||||
//
|
||||
// Arguments:
|
||||
// z = The Z coordinate of the plane of reflection. Default: 0
|
||||
// p = If given, the point, path, patch, or VNF to mirror. Function use only.
|
||||
// z = The Z coordinate of the plane of reflection. Default: 0
|
||||
//
|
||||
// Example:
|
||||
// zflip() cylinder(d1=10, d2=0, h=20);
|
||||
@ -1079,9 +1228,16 @@ function yflip(y=0,planar=false,p) =
|
||||
// zflip(z=-5) cylinder(d1=10, d2=0, h=20);
|
||||
// color("blue", 0.25) down(5) cube([15,15,0.01], center=true);
|
||||
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
|
||||
module zflip(z=0) translate([0,0,z]) mirror([0,0,1]) translate([0,0,-z]) children();
|
||||
module zflip(p, z=0) {
|
||||
assert(is_undef(p), "Module form `zflip()` does not accept p= argument.");
|
||||
translate([0,0,z])
|
||||
mirror([0,0,1])
|
||||
translate([0,0,-z]) children();
|
||||
}
|
||||
|
||||
function zflip(z=0,p) =
|
||||
function zflip(p, z=0) =
|
||||
assert(is_finite(z))
|
||||
assert(is_undef(p) || is_list(p))
|
||||
z==0? mirror([0,0,1],p=p) :
|
||||
move([0,0,z],p=mirror([0,0,1],p=move([0,0,-z],p=p)));
|
||||
|
||||
@ -1089,11 +1245,14 @@ function zflip(z=0,p) =
|
||||
// Function&Module: xyflip()
|
||||
//
|
||||
// Usage: As Module
|
||||
// xyflip(<x>) ...
|
||||
// xyflip(<cp>) ...
|
||||
// Usage: As Function
|
||||
// pt = xyflip(<x>, p);
|
||||
// pt = xyflip(p, <cp>);
|
||||
// Usage: Get Affine Matrix
|
||||
// pt = xyflip(<x>);
|
||||
// pt = xyflip(<cp>, <planar=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
|
||||
// See Also: mirror(), xflip(), yflip(), zflip(), xzflip(), yzflip(), affine2d_mirror(), affine3d_mirror()
|
||||
//
|
||||
// Description:
|
||||
// Mirrors/reflects across the origin [0,0,0], along the reflection plane where X=Y. If `cp` is given, the reflection plane passes through that point
|
||||
@ -1106,8 +1265,8 @@ function zflip(z=0,p) =
|
||||
// * Called as a function without a `p` argument, and `planar=false`, returns the affine3d 4x4 mirror matrix.
|
||||
//
|
||||
// Arguments:
|
||||
// cp = The centerpoint of the plane of reflection, given either as a point, or as a scalar distance away from the origin.
|
||||
// p = If given, the point, path, patch, or VNF to mirror. Function use only.
|
||||
// cp = The centerpoint of the plane of reflection, given either as a point, or as a scalar distance away from the origin.
|
||||
// ---
|
||||
// planar = If true, and p is not given, returns a 2D affine transformation matrix. Function use only. Default: False
|
||||
//
|
||||
@ -1131,12 +1290,15 @@ function zflip(z=0,p) =
|
||||
// Example(2D): Called as Function for a 2D matrix
|
||||
// mat = xyflip(planar=true);
|
||||
// multmatrix(mat) text("Foobar", size=20, halign="center");
|
||||
module xyflip(cp=0) {
|
||||
module xyflip(p, cp=0, planar) {
|
||||
assert(is_undef(p), "Module form `xyflip()` does not accept p= argument.");
|
||||
assert(is_undef(planar), "Module form `xyflip()` does not accept planar= argument.");
|
||||
mat = xyflip(cp=cp);
|
||||
multmatrix(mat) children();
|
||||
}
|
||||
|
||||
function xyflip(cp=0, p, planar=false) =
|
||||
function xyflip(p, cp=0, planar=false) =
|
||||
assert(is_finite(cp) || is_vector(cp))
|
||||
let(
|
||||
v = unit([-1,1,0]),
|
||||
n = planar? point2d(v) : v
|
||||
@ -1153,11 +1315,14 @@ function xyflip(cp=0, p, planar=false) =
|
||||
// Function&Module: xzflip()
|
||||
//
|
||||
// Usage: As Module
|
||||
// xzflip(<x>) ...
|
||||
// xzflip(<cp>) ...
|
||||
// Usage: As Function
|
||||
// pt = xzflip(<x>, p);
|
||||
// pt = xzflip(<cp>, p);
|
||||
// Usage: Get Affine Matrix
|
||||
// pt = xzflip(<x>);
|
||||
// pt = xzflip(<cp>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
|
||||
// See Also: mirror(), xflip(), yflip(), zflip(), xyflip(), yzflip(), affine2d_mirror(), affine3d_mirror()
|
||||
//
|
||||
// Description:
|
||||
// Mirrors/reflects across the origin [0,0,0], along the reflection plane where X=Y. If `cp` is given, the reflection plane passes through that point
|
||||
@ -1169,8 +1334,8 @@ function xyflip(cp=0, p, planar=false) =
|
||||
// * Called as a function without a `p` argument, returns the affine3d 4x4 mirror matrix.
|
||||
//
|
||||
// Arguments:
|
||||
// cp = The centerpoint of the plane of reflection, given either as a point, or as a scalar distance away from the origin.
|
||||
// p = If given, the point, path, patch, or VNF to mirror. Function use only.
|
||||
// cp = The centerpoint of the plane of reflection, given either as a point, or as a scalar distance away from the origin.
|
||||
//
|
||||
// Example:
|
||||
// left(10) frame_ref();
|
||||
@ -1185,12 +1350,14 @@ function xyflip(cp=0, p, planar=false) =
|
||||
// Example: Called as Function
|
||||
// mat = xzflip();
|
||||
// multmatrix(mat) frame_ref();
|
||||
module xzflip(cp=0) {
|
||||
module xzflip(p, cp=0) {
|
||||
assert(is_undef(p), "Module form `xzflip()` does not accept p= argument.");
|
||||
mat = xzflip(cp=cp);
|
||||
multmatrix(mat) children();
|
||||
}
|
||||
|
||||
function xzflip(cp=0, p) =
|
||||
function xzflip(p, cp=0) =
|
||||
assert(is_finite(cp) || is_vector(cp))
|
||||
let( n = unit([-1,0,1]) )
|
||||
cp == 0 || cp==[0,0,0]? mirror(n, p=p) :
|
||||
let(
|
||||
@ -1204,11 +1371,14 @@ function xzflip(cp=0, p) =
|
||||
// Function&Module: yzflip()
|
||||
//
|
||||
// Usage: As Module
|
||||
// yzflip(<x>) ...
|
||||
// yzflip(<x=>) ...
|
||||
// Usage: As Function
|
||||
// pt = yzflip(<x>, p);
|
||||
// pt = yzflip(p, <x=>);
|
||||
// Usage: Get Affine Matrix
|
||||
// pt = yzflip(<x>);
|
||||
// pt = yzflip(<x=>);
|
||||
//
|
||||
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
|
||||
// See Also: mirror(), xflip(), yflip(), zflip(), xyflip(), xzflip(), affine2d_mirror(), affine3d_mirror()
|
||||
//
|
||||
// Description:
|
||||
// Mirrors/reflects across the origin [0,0,0], along the reflection plane where X=Y. If `cp` is given, the reflection plane passes through that point
|
||||
@ -1220,8 +1390,8 @@ function xzflip(cp=0, p) =
|
||||
// * Called as a function without a `p` argument, returns the affine3d 4x4 mirror matrix.
|
||||
//
|
||||
// Arguments:
|
||||
// cp = The centerpoint of the plane of reflection, given either as a point, or as a scalar distance away from the origin.
|
||||
// p = If given, the point, path, patch, or VNF to mirror. Function use only.
|
||||
// cp = The centerpoint of the plane of reflection, given either as a point, or as a scalar distance away from the origin.
|
||||
//
|
||||
// Example:
|
||||
// left(10) frame_ref();
|
||||
@ -1236,12 +1406,14 @@ function xzflip(cp=0, p) =
|
||||
// Example: Called as Function
|
||||
// mat = yzflip();
|
||||
// multmatrix(mat) frame_ref();
|
||||
module yzflip(cp=0) {
|
||||
module yzflip(p, cp=0) {
|
||||
assert(is_undef(p), "Module form `yzflip()` does not accept p= argument.");
|
||||
mat = yzflip(cp=cp);
|
||||
multmatrix(mat) children();
|
||||
}
|
||||
|
||||
function yzflip(cp=0, p) =
|
||||
function yzflip(p, cp=0) =
|
||||
assert(is_finite(cp) || is_vector(cp))
|
||||
let( n = unit([0,-1,1]) )
|
||||
cp == 0 || cp==[0,0,0]? mirror(n, p=p) :
|
||||
let(
|
||||
@ -1260,11 +1432,14 @@ function yzflip(cp=0, p) =
|
||||
|
||||
// Function&Module: skew()
|
||||
// Usage: As Module
|
||||
// skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0) ...
|
||||
// skew(<sxy=>, <sxz=>, <syx=>, <syz=>, <szx=>, <szy=>) ...
|
||||
// Usage: As Function
|
||||
// pts = skew(p, <sxy>, <sxz>, <syx>, <syz>, <szx>, <szy>);
|
||||
// pts = skew(p, <sxy=>, <sxz=>, <syx=>, <syz=>, <szx=>, <szy=>);
|
||||
// Usage: Get Affine Matrix
|
||||
// mat = skew(<sxy>, <sxz>, <syx>, <syz>, <szx>, <szy>, <planar>);
|
||||
// mat = skew(<sxy=>, <sxz=>, <syx=>, <syz=>, <szx=>, <szy=>, <planar=>);
|
||||
// Topics: Affine, Matrices, Transforms, Skewing
|
||||
// See Also: affine2d_skew(), affine3d_skew(), affine3d_skew_xy(), affine3d_skew_xz(), affine3d_skew_yz()
|
||||
//
|
||||
// Description:
|
||||
// Skews geometry by the given skew factors.
|
||||
// * Called as the built-in module, skews all children.
|
||||
@ -1276,6 +1451,8 @@ function yzflip(cp=0, p) =
|
||||
// * Called as a function without a `p` argument, and with `planar` false, returns the affine3d 4x4 skew matrix.
|
||||
// Each skew factor is a multiplier. For example, if `sxy=2`, then it will skew along the X axis by 2x the value of the Y axis.
|
||||
// Arguments:
|
||||
// p = If given, the point, path, patch, or VNF to skew. Function use only.
|
||||
// ---
|
||||
// sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0
|
||||
// sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0
|
||||
// syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0
|
||||
@ -1307,14 +1484,22 @@ function yzflip(cp=0, p) =
|
||||
// Example(FlatSpin,VPD=175): Calling as a 3D Function
|
||||
// pts = skew(p=path3d(square(40,center=true)), szx=0.5, szy=0.3);
|
||||
// trace_path(close_path(pts), showpts=true);
|
||||
module skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0)
|
||||
module skew(p, sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0)
|
||||
{
|
||||
assert(is_undef(p), "Module form `skew()` does not accept p= argument.")
|
||||
multmatrix(
|
||||
affine3d_skew(sxy=sxy, sxz=sxz, syx=syx, syz=syz, szx=szx, szy=szy)
|
||||
) children();
|
||||
}
|
||||
|
||||
function skew(p, sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0, planar=false) =
|
||||
assert(is_finite(sxy))
|
||||
assert(is_finite(sxz))
|
||||
assert(is_finite(syx))
|
||||
assert(is_finite(syz))
|
||||
assert(is_finite(szx))
|
||||
assert(is_finite(szy))
|
||||
assert(is_bool(planar))
|
||||
let(
|
||||
planar = planar || (is_list(p) && is_num(p.x) && len(p)==2),
|
||||
m = planar? [
|
||||
|
Loading…
x
Reference in New Issue
Block a user