mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
Docs tweaks and examples images added.
This commit is contained in:
parent
c57c4ed546
commit
cb3a380740
688
beziers.scad
688
beziers.scad
@ -205,297 +205,6 @@ function fillet3pts(p0, p1, p2, r, maxerr=0.1, w=0.5, dw=0.25) = let(
|
||||
|
||||
|
||||
|
||||
// Section: Patch Functions
|
||||
|
||||
|
||||
// Function: bezier_patch_point()
|
||||
// Usage:
|
||||
// bezier_patch_point(patch, u, v)
|
||||
// Description:
|
||||
// Given a square 2-dimensional array of (N+1) by (N+1) points size,
|
||||
// that represents a Bezier Patch of degree N, returns a point on that
|
||||
// surface, at positions `u`, and `v`. A cubic bezier patch will be 4x4
|
||||
// points in size. If given a non-square array, each direction will have
|
||||
// its own degree.
|
||||
// Arguments:
|
||||
// patch = The 2D array of endpoints and control points for this bezier patch.
|
||||
// u = The proportion of the way along the first dimension of the patch to find the point of. 0<=`u`<=1
|
||||
// v = The proportion of the way along the second dimension of the patch to find the point of. 0<=`v`<=1
|
||||
function bezier_patch_point(patch, u, v) = bez_point([for (bez = patch) bez_point(bez, u)], v);
|
||||
|
||||
|
||||
// Function: bezier_triangle_point()
|
||||
// Usage:
|
||||
// bezier_triangle_point(tri, u, v)
|
||||
// Description:
|
||||
// Given a triangular 2-dimensional array of N+1 by (for the first row) N+1 points,
|
||||
// that represents a Bezier triangular patch of degree N, returns a point on
|
||||
// that surface, at positions `u`, and `v`. A cubic bezier triangular patch
|
||||
// will have a list of 4 points in the first row, 3 in the second, 2 in the
|
||||
// third, and 1 in the last row.
|
||||
// Arguments:
|
||||
// tri = Triangular bezier patch to get point on.
|
||||
// u = The proportion of the way along the first dimension of the triangular patch to find the point of. 0<=`u`<=1
|
||||
// v = The proportion of the way along the second dimension of the triangular patch to find the point of. 0<=`v`<=(1-`u`)
|
||||
function bezier_triangle_point(tri, u, v) =
|
||||
len(tri) == 1 ? tri[0][0] :
|
||||
let(
|
||||
n = len(tri)-1,
|
||||
Pu = [for(i=[0:n-1]) [for (j=[1:len(tri[i])-1]) tri[i][j]]],
|
||||
Pv = [for(i=[0:n-1]) [for (j=[0:len(tri[i])-2]) tri[i][j]]],
|
||||
Pw = [for(i=[1:len(tri)-1]) tri[i]]
|
||||
)
|
||||
bezier_triangle_point(u*Pu + v*Pv + (1-u-v)*Pw, u, v);
|
||||
|
||||
|
||||
|
||||
// Internal, not exposed.
|
||||
function _vertex_list_merge(v1, v2) = concat(v1, [for (v=v2) if (!in_list(v,v1)) v]);
|
||||
function _vertex_list_face(v, face) = [for (pt = face) search([pt], v, num_returns_per_match=1)[0]];
|
||||
|
||||
|
||||
// Function: bezier_patch()
|
||||
// Usage:
|
||||
// bezier_patch(patch, [splinesteps], [vertices], [faces]);
|
||||
// Description:
|
||||
// Calculate vertices and faces for forming a partial polyhedron
|
||||
// from the given bezier rectangular patch. Returns a list containing
|
||||
// two elements. The first is the list of unique vertices. The
|
||||
// second is the list of faces, where each face is a list of indices
|
||||
// into the list of vertices. You can chain calls to this, to add
|
||||
// more vertices and faces for multiple bezier patches, to stitch
|
||||
// them together into a complete polyhedron.
|
||||
// Arguments:
|
||||
// patch = The rectangular array of endpoints and control points for this bezier patch.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||
// vertices = Vertex list to add new points to. Default: []
|
||||
// faces = Face list to add new faces to. Default: []
|
||||
function bezier_patch(patch, splinesteps=16, vertices=[], faces=[]) =
|
||||
let(
|
||||
base = len(vertices),
|
||||
pts = [for (v=[0:splinesteps], u=[0:splinesteps]) bezier_patch_point(patch, u/splinesteps, v/splinesteps)],
|
||||
new_vertices = concat(vertices, pts),
|
||||
new_faces = [
|
||||
for (
|
||||
v=[0:splinesteps-1],
|
||||
u=[0:splinesteps-1],
|
||||
i=[0,1]
|
||||
) let (
|
||||
v1 = u+v*(splinesteps+1) + base,
|
||||
v2 = v1 + 1,
|
||||
v3 = v1 + splinesteps + 1,
|
||||
v4 = v3 + 1,
|
||||
face = i? [v1,v3,v2] : [v2,v3,v4]
|
||||
) face
|
||||
]
|
||||
) [new_vertices, concat(faces, new_faces)];
|
||||
|
||||
|
||||
function _tri_count(n) = (n*(1+n))/2;
|
||||
|
||||
|
||||
// Function: bezier_triangle()
|
||||
// Usage:
|
||||
// bezier_triangle(tri, [splinesteps], [vertices], [faces]);
|
||||
// Description:
|
||||
// Calculate vertices and faces for forming a partial polyhedron
|
||||
// from the given bezier triangular patch. Returns a list containing
|
||||
// two elements. The first is the list of unique vertices. The
|
||||
// second is the list of faces, where each face is a list of indices
|
||||
// into the list of vertices. You can chain calls to this, to add
|
||||
// more vertices and faces for multiple bezier patches, to stitch
|
||||
// them together into a complete polyhedron.
|
||||
// Arguments:
|
||||
// tri = The triangular array of endpoints and control points for this bezier patch.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||
// vertices = Vertex list to add new points to. Default: []
|
||||
// faces = Face list to add new faces to. Default: []
|
||||
// Example(3D):
|
||||
// tri = [
|
||||
// [[-50,-33,0], [-25,16,-50], [0,66,0]],
|
||||
// [[0,-33,-50], [25,16,-50]],
|
||||
// [[50,-33,0]]
|
||||
// ];
|
||||
// vnf = bezier_triangle(tri, splinesteps=16);
|
||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
||||
function bezier_triangle(tri, splinesteps=16, vertices=[], faces=[]) =
|
||||
let(
|
||||
base = len(vertices),
|
||||
pts = [
|
||||
for (
|
||||
u=[0:splinesteps],
|
||||
v=[0:splinesteps-u]
|
||||
) bezier_triangle_point(tri, u/splinesteps, v/splinesteps)
|
||||
],
|
||||
new_vertices = concat(vertices, pts),
|
||||
patchlen = len(tri),
|
||||
tricnt = _tri_count(splinesteps+1),
|
||||
new_faces = [
|
||||
for (
|
||||
u=[0:splinesteps-1],
|
||||
v=[0:splinesteps-u-1]
|
||||
) let (
|
||||
v1 = v + (tricnt - _tri_count(splinesteps+1-u)) + base,
|
||||
v2 = v1 + 1,
|
||||
v3 = v + (tricnt - _tri_count(splinesteps-u)) + base,
|
||||
v4 = v3 + 1,
|
||||
allfaces = concat(
|
||||
[[v1,v2,v3]],
|
||||
((u<splinesteps-1 && v<splinesteps-u-1)? [[v2,v4,v3]] : [])
|
||||
)
|
||||
) for (face=allfaces) face
|
||||
]
|
||||
) [new_vertices, concat(faces, new_faces)];
|
||||
|
||||
|
||||
|
||||
// Function: bezier_patch_flat()
|
||||
// Usage:
|
||||
// bezier_patch_flat(size, [N], [orient], [trans]);
|
||||
// Description:
|
||||
// Returns a flat rectangular bezier patch of degree `N`, centered on the XY plane.
|
||||
// Arguments:
|
||||
// size = 2D XY size of the patch.
|
||||
// N = Degree of the patch to generate. Since this is flat, a degree of 1 should usually be sufficient.
|
||||
// orient = The orientation to rotate the edge patch into. Use the `ORIENT` constants in `BOSL/constants.scad`.
|
||||
// trans = Amount to translate patch, after rotating to `orient`.
|
||||
function bezier_patch_flat(size=[100,100], N=4, orient=ORIENT_Z, trans=[0,0,0]) =
|
||||
let(
|
||||
patch = [for (x=[0:N]) [for (y=[0:N]) vmul(point3d(size),[x/N-0.5, 0.5-y/N, 0])]]
|
||||
) [for (row=patch)
|
||||
translate_points(v=trans,
|
||||
rotate_points3d(v=orient,row)
|
||||
)
|
||||
];
|
||||
|
||||
|
||||
|
||||
// Function: patch_reverse()
|
||||
// Usage:
|
||||
// patch_reverse(patch)
|
||||
// Description:
|
||||
// Reverses the patch, so that the faces generated from it are flipped back to front.
|
||||
// Arguments:
|
||||
// patch = The patch to reverse.
|
||||
function patch_reverse(patch) = [for (row=patch) reverse(row)];
|
||||
|
||||
|
||||
|
||||
// Function: patch_translate()
|
||||
// Usage:
|
||||
// patch_translate(patch, v)
|
||||
// Description: Translates all coordinates in a rectangular or triangular patch by a given amount.
|
||||
// Arguments:
|
||||
// patch = The patch to translate.
|
||||
// v = Vector to translate by.
|
||||
function patch_translate(patch, v=[0,0,0]) = [for(row=patch) translate_points(row, v)];
|
||||
|
||||
|
||||
// Function: patch_scale()
|
||||
// Usage:
|
||||
// patch_scale(patch, v, [cp])
|
||||
// Description: Scales all coordinates in a rectangular or triangular patch by a given amount.
|
||||
// Arguments:
|
||||
// patch = The patch to scale.
|
||||
// v = [X,Y,Z] scaling factors.
|
||||
// cp = Centerpoint to scale around.
|
||||
function patch_scale(patch, v=[1,1,1], cp=[0,0,0]) = [for(row=patch) scale_points(row, v, cp)];
|
||||
|
||||
|
||||
// Function: patch_rotate()
|
||||
// Usage:
|
||||
// patch_rotate(patch, a, [cp])
|
||||
// patch_rotate(patch, a, v, [cp])
|
||||
// Description: Rotates all coordinates in a rectangular or triangular patch by a given amount.
|
||||
// Arguments:
|
||||
// patch = The patch to rotate.
|
||||
// a = Rotation angle(s) in degrees.
|
||||
// v = Vector axis to rotate round.
|
||||
// cp = Centerpoint to rotate around.
|
||||
function patch_rotate(patch, a=undef, v=undef, cp=[0,0,0]) =
|
||||
v==undef?
|
||||
[for(row=patch) rotate_points3d(row, a, cp)] :
|
||||
[for(row=patch) rotate_points3d_around_axis(row, a, v, cp)];
|
||||
|
||||
|
||||
// Function: patches_translate()
|
||||
// Usage:
|
||||
// patches_translate(patch, v, [cp])
|
||||
// Description: Translates all coordinates in each of a list of rectangular or triangular patches.
|
||||
// Arguments:
|
||||
// patches = List of patches to translate.
|
||||
// v = Vector to translate by.
|
||||
function patches_translate(patches, v=[0,0,0]) = [for (patch=patches) patch_translate(patch,v)];
|
||||
|
||||
|
||||
// Function: patches_scale()
|
||||
// Usage:
|
||||
// patches_scale(patch, v, [cp])
|
||||
// Description: Scales all coordinates in each of a list of rectangular or triangular patches.
|
||||
// Arguments:
|
||||
// patches = List of patches to scale.
|
||||
// v = [X,Y,Z] scaling factors.
|
||||
// cp = Centerpoint to scale around.
|
||||
function patches_scale(patches, v=[1,1,1], cp=[0,0,0]) = [for (patch=patches) patch_scale(patch,v,cp)];
|
||||
|
||||
|
||||
// Function: patches_rotate()
|
||||
// Usage:
|
||||
// patches_rotate(patch, a, [cp])
|
||||
// patches_rotate(patch, a, v, [cp])
|
||||
// Description: Rotates all coordinates in each of a list of rectangular or triangular patches.
|
||||
// Arguments:
|
||||
// patches = List of patches to rotate.
|
||||
// a = Rotation angle(s) in degrees.
|
||||
// v = Vector axis to rotate round.
|
||||
// cp = Centerpoint to rotate around.
|
||||
function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=patches) patch_rotate(patch, a=a, v=v, cp=cp)];
|
||||
|
||||
|
||||
// Function: bezier_surface_vertices_and_faces()
|
||||
// Usage:
|
||||
// bezier_surface_vertices_and_faces(patches, [splinesteps], [vertices], [faces]);
|
||||
// Description:
|
||||
// Calculate vertices and faces for forming a (possibly partial)
|
||||
// polyhedron from the given rectangular and triangular bezier
|
||||
// patches. Returns a list containing two elements. The first is
|
||||
// the list of unique vertices. The second is the list of faces,
|
||||
// where each face is a list of indices into the list of vertices.
|
||||
// You can chain calls to this, to add more vertices and faces for
|
||||
// multiple bezier patches, to stitch them together into a complete
|
||||
// polyhedron.
|
||||
// Arguments:
|
||||
// patches = A list of rectangular bezier patches.
|
||||
// tris = A list of triangular bezier patches.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||
// vertices = Vertex list to add new points to. Default: []
|
||||
// faces = Face list to add new faces to. Default: []
|
||||
// Example(3D):
|
||||
// patch1 = [
|
||||
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
|
||||
// [[ 0,40,0], [ 0, 0,100], [100, 0, 20], [100, 40,0]],
|
||||
// [[ 0,60,0], [ 0,100,100], [100,100, 20], [100, 60,0]],
|
||||
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
|
||||
// ];
|
||||
// patch2 = [
|
||||
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
|
||||
// [[ 0,40,0], [ 0, 0,-50], [100, 0,-50], [100, 40,0]],
|
||||
// [[ 0,60,0], [ 0,100,-50], [100,100,-50], [100, 60,0]],
|
||||
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
|
||||
// ];
|
||||
// vnf = bezier_surface_vertices_and_faces(patches=[patch1, patch2], splinesteps=16);
|
||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
||||
function bezier_surface_vertices_and_faces(patches=[], tris=[], splinesteps=16, i=0, vertices=[], faces=[]) =
|
||||
let(
|
||||
vnf = (i >= len(patches))? [vertices, faces] :
|
||||
bezier_patch(patches[i], splinesteps=splinesteps, vertices=vertices, faces=faces),
|
||||
vnf2 = (i >= len(tris))? vnf :
|
||||
bezier_triangle(tris[i], splinesteps=splinesteps, vertices=vnf[0], faces=vnf[1])
|
||||
) (i >= len(patches) && i >= len(tris))? vnf2 :
|
||||
bezier_surface_vertices_and_faces(patches=patches, tris=tris, splinesteps=splinesteps, i=i+1, vertices=vnf2[0], faces=vnf2[1]);
|
||||
|
||||
|
||||
|
||||
// Section: Path Functions
|
||||
|
||||
|
||||
@ -693,7 +402,7 @@ function bezier_offset(inset, bezier, N=3, axis="X") =
|
||||
|
||||
|
||||
|
||||
// Section: Modules
|
||||
// Section: Path Modules
|
||||
|
||||
|
||||
// Module: bezier_polygon()
|
||||
@ -721,6 +430,43 @@ module bezier_polygon(bezier, splinesteps=16, N=3) {
|
||||
}
|
||||
|
||||
|
||||
// Module: linear_extrude_bezier()
|
||||
// Usage:
|
||||
// linear_extrude_bezier(bezier, height, [splinesteps], [N], [center], [convexity], [twist], [slices], [scale], [orient], [align]);
|
||||
// Description:
|
||||
// Takes a closed 2D bezier path, centered on the XY plane, and
|
||||
// extrudes it linearly upwards, forming a solid.
|
||||
// Arguments:
|
||||
// bezier = Array of 2D points of a bezier path, to be extruded.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. default=16
|
||||
// N = The degree of the bezier curves. Cubic beziers have N=3. Default: 3
|
||||
// convexity = max number of walls a line could pass through, for preview. default=10
|
||||
// twist = Angle in degrees to twist over the length of extrusion. default=0
|
||||
// scale = Relative size of top of extrusion to the bottom. default=1.0
|
||||
// slices = Number of vertical slices to use for twisted extrusion. default=20
|
||||
// center = If true, the extruded solid is centered vertically at z=0.
|
||||
// orient = Orientation of the extrusion. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Z`.
|
||||
// align = Alignment of the extrusion. Use the `V_` constants from `constants.scad`. Default: `ALIGN_POS`.
|
||||
// Example:
|
||||
// bez = [
|
||||
// [-10, 0], [-15, -5],
|
||||
// [ -5, -10], [ 0, -10], [ 5, -10],
|
||||
// [ 10, -5], [ 15, 0], [10, 5],
|
||||
// [ 5, 10], [ 0, 10], [-5, 10],
|
||||
// [ 25, -15], [-10, 0]
|
||||
// ];
|
||||
// linear_extrude_bezier(bez, height=20, splinesteps=32);
|
||||
module linear_extrude_bezier(bezier, height=100, splinesteps=16, N=3, center=undef, convexity=undef, twist=undef, slices=undef, scale=undef, orient=ORIENT_Z, align=ALIGN_POS) {
|
||||
maxx = max([for (pt = bezier) abs(pt[0])]);
|
||||
maxy = max([for (pt = bezier) abs(pt[1])]);
|
||||
orient_and_align([maxx*2,maxy*2,height], orient, align) {
|
||||
linear_extrude(height=height, center=true, convexity=convexity, twist=twist, slices=slices, scale=scale) {
|
||||
bezier_polygon(bezier, splinesteps=splinesteps, N=N);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Module: revolve_bezier()
|
||||
// Usage:
|
||||
// revolve_bezier(bezier, [splinesteps], [N], [convexity], [angle], [orient], [align])
|
||||
@ -843,7 +589,7 @@ module revolve_bezier_offset_shell(bezier, offset=1, splinesteps=16, N=3, convex
|
||||
// Arguments:
|
||||
// bezier = array of points for the bezier path to extrude along.
|
||||
// splinesteps = number of segments to divide each bezier segment into. default=16
|
||||
// Example(FR,FlatSpin):
|
||||
// Example(FR):
|
||||
// path = [ [0, 0, 0], [33, 33, 33], [66, -33, -33], [100, 0, 0] ];
|
||||
// extrude_2d_shapes_along_bezier(path) difference(){
|
||||
// circle(r=10);
|
||||
@ -886,43 +632,6 @@ module extrude_bezier_along_bezier(bezier, path, pathsteps=16, bezsteps=16, bezN
|
||||
|
||||
|
||||
|
||||
// Module: linear_extrude_bezier()
|
||||
// Usage:
|
||||
// linear_extrude_bezier(bezier, height, [splinesteps], [N], [center], [convexity], [twist], [slices], [scale], [orient], [align]);
|
||||
// Description:
|
||||
// Takes a closed 2D bezier path, centered on the XY plane, and
|
||||
// extrudes it linearly upwards, forming a solid.
|
||||
// Arguments:
|
||||
// bezier = Array of 2D points of a bezier path, to be extruded.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. default=16
|
||||
// N = The degree of the bezier curves. Cubic beziers have N=3. Default: 3
|
||||
// convexity = max number of walls a line could pass through, for preview. default=10
|
||||
// twist = Angle in degrees to twist over the length of extrusion. default=0
|
||||
// scale = Relative size of top of extrusion to the bottom. default=1.0
|
||||
// slices = Number of vertical slices to use for twisted extrusion. default=20
|
||||
// center = If true, the extruded solid is centered vertically at z=0.
|
||||
// orient = Orientation of the extrusion. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Z`.
|
||||
// align = Alignment of the extrusion. Use the `V_` constants from `constants.scad`. Default: `ALIGN_POS`.
|
||||
// Example:
|
||||
// bez = [
|
||||
// [-10, 0], [-15, -5],
|
||||
// [ -5, -10], [ 0, -10], [ 5, -10],
|
||||
// [ 10, -5], [ 15, 0], [10, 5],
|
||||
// [ 5, 10], [ 0, 10], [-5, 10],
|
||||
// [ 25, -15], [-10, 0]
|
||||
// ];
|
||||
// linear_extrude_bezier(bez, height=20, splinesteps=32);
|
||||
module linear_extrude_bezier(bezier, height=100, splinesteps=16, N=3, center=undef, convexity=undef, twist=undef, slices=undef, scale=undef, orient=ORIENT_Z, align=ALIGN_POS) {
|
||||
maxx = max([for (pt = bezier) abs(pt[0])]);
|
||||
maxy = max([for (pt = bezier) abs(pt[1])]);
|
||||
orient_and_align([maxx*2,maxy*2,height], orient, align) {
|
||||
linear_extrude(height=height, center=true, convexity=convexity, twist=twist, slices=slices, scale=scale) {
|
||||
bezier_polygon(bezier, splinesteps=splinesteps, N=N);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Module: trace_bezier()
|
||||
// Description:
|
||||
// Renders 2D or 3D bezier paths and their associated control points.
|
||||
@ -946,6 +655,323 @@ module trace_bezier(bez, N=3, size=1) {
|
||||
|
||||
|
||||
|
||||
// Section: Patch Functions
|
||||
|
||||
|
||||
// Function: bezier_patch_point()
|
||||
// Usage:
|
||||
// bezier_patch_point(patch, u, v)
|
||||
// Description:
|
||||
// Given a square 2-dimensional array of (N+1) by (N+1) points size,
|
||||
// that represents a Bezier Patch of degree N, returns a point on that
|
||||
// surface, at positions `u`, and `v`. A cubic bezier patch will be 4x4
|
||||
// points in size. If given a non-square array, each direction will have
|
||||
// its own degree.
|
||||
// Arguments:
|
||||
// patch = The 2D array of endpoints and control points for this bezier patch.
|
||||
// u = The proportion of the way along the first dimension of the patch to find the point of. 0<=`u`<=1
|
||||
// v = The proportion of the way along the second dimension of the patch to find the point of. 0<=`v`<=1
|
||||
// Example(3D):
|
||||
// patch = [
|
||||
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
|
||||
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
|
||||
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
|
||||
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]]
|
||||
// ];
|
||||
// trace_bezier_patches(patches=[patch], size=1, showcps=true);
|
||||
// pt = bezier_patch_point(patch, 0.6, 0.75);
|
||||
// translate(pt) color("magenta") sphere(d=3, $fn=12);
|
||||
function bezier_patch_point(patch, u, v) = bez_point([for (bez = patch) bez_point(bez, u)], v);
|
||||
|
||||
|
||||
// Function: bezier_triangle_point()
|
||||
// Usage:
|
||||
// bezier_triangle_point(tri, u, v)
|
||||
// Description:
|
||||
// Given a triangular 2-dimensional array of N+1 by (for the first row) N+1 points,
|
||||
// that represents a Bezier triangular patch of degree N, returns a point on
|
||||
// that surface, at positions `u`, and `v`. A cubic bezier triangular patch
|
||||
// will have a list of 4 points in the first row, 3 in the second, 2 in the
|
||||
// third, and 1 in the last row.
|
||||
// Arguments:
|
||||
// tri = Triangular bezier patch to get point on.
|
||||
// u = The proportion of the way along the first dimension of the triangular patch to find the point of. 0<=`u`<=1
|
||||
// v = The proportion of the way along the second dimension of the triangular patch to find the point of. 0<=`v`<=(1-`u`)
|
||||
// Example(3D):
|
||||
// tri = [
|
||||
// [[-50,-33,0], [-25,16,40], [20,66,20]],
|
||||
// [[0,-33,30], [25,16,30]],
|
||||
// [[50,-33,0]]
|
||||
// ];
|
||||
// trace_bezier_patches(tris=[tri], size=1, showcps=true);
|
||||
// pt = bezier_triangle_point(tri, 0.5, 0.2);
|
||||
// translate(pt) color("magenta") sphere(d=3, $fn=12);
|
||||
function bezier_triangle_point(tri, u, v) =
|
||||
len(tri) == 1 ? tri[0][0] :
|
||||
let(
|
||||
n = len(tri)-1,
|
||||
Pu = [for(i=[0:n-1]) [for (j=[1:len(tri[i])-1]) tri[i][j]]],
|
||||
Pv = [for(i=[0:n-1]) [for (j=[0:len(tri[i])-2]) tri[i][j]]],
|
||||
Pw = [for(i=[1:len(tri)-1]) tri[i]]
|
||||
)
|
||||
bezier_triangle_point(u*Pu + v*Pv + (1-u-v)*Pw, u, v);
|
||||
|
||||
|
||||
|
||||
// Function: bezier_patch()
|
||||
// Usage:
|
||||
// bezier_patch(patch, [splinesteps], [vertices], [faces]);
|
||||
// Description:
|
||||
// Calculate vertices and faces for forming a partial polyhedron
|
||||
// from the given bezier rectangular patch. Returns a list containing
|
||||
// two elements. The first is the list of unique vertices. The
|
||||
// second is the list of faces, where each face is a list of indices
|
||||
// into the list of vertices. You can chain calls to this, to add
|
||||
// more vertices and faces for multiple bezier patches, to stitch
|
||||
// them together into a complete polyhedron.
|
||||
// Arguments:
|
||||
// patch = The rectangular array of endpoints and control points for this bezier patch.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||
// vertices = Vertex list to add new points to. Default: []
|
||||
// faces = Face list to add new faces to. Default: []
|
||||
// Example(3D):
|
||||
// patch = [
|
||||
// [[-50, 50, 0], [-16, 50, -20], [ 16, 50, 20], [50, 50, 0]],
|
||||
// [[-50, 16, 20], [-16, 16, -20], [ 16, 16, 20], [50, 16, 20]],
|
||||
// [[-50,-16, 20], [-16,-16, 20], [ 16,-16, -20], [50,-16, 20]],
|
||||
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, -20], [50,-50, 0]]
|
||||
// ];
|
||||
// vnf = bezier_patch(patch, splinesteps=16);
|
||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
||||
function bezier_patch(patch, splinesteps=16, vertices=[], faces=[]) =
|
||||
let(
|
||||
base = len(vertices),
|
||||
pts = [for (v=[0:splinesteps], u=[0:splinesteps]) bezier_patch_point(patch, u/splinesteps, v/splinesteps)],
|
||||
new_vertices = concat(vertices, pts),
|
||||
new_faces = [
|
||||
for (
|
||||
v=[0:splinesteps-1],
|
||||
u=[0:splinesteps-1],
|
||||
i=[0,1]
|
||||
) let (
|
||||
v1 = u+v*(splinesteps+1) + base,
|
||||
v2 = v1 + 1,
|
||||
v3 = v1 + splinesteps + 1,
|
||||
v4 = v3 + 1,
|
||||
face = i? [v1,v3,v2] : [v2,v3,v4]
|
||||
) face
|
||||
]
|
||||
) [new_vertices, concat(faces, new_faces)];
|
||||
|
||||
|
||||
function _tri_count(n) = (n*(1+n))/2;
|
||||
|
||||
|
||||
// Function: bezier_triangle()
|
||||
// Usage:
|
||||
// bezier_triangle(tri, [splinesteps], [vertices], [faces]);
|
||||
// Description:
|
||||
// Calculate vertices and faces for forming a partial polyhedron
|
||||
// from the given bezier triangular patch. Returns a list containing
|
||||
// two elements. The first is the list of unique vertices. The
|
||||
// second is the list of faces, where each face is a list of indices
|
||||
// into the list of vertices. You can chain calls to this, to add
|
||||
// more vertices and faces for multiple bezier patches, to stitch
|
||||
// them together into a complete polyhedron.
|
||||
// Arguments:
|
||||
// tri = The triangular array of endpoints and control points for this bezier patch.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||
// vertices = Vertex list to add new points to. Default: []
|
||||
// faces = Face list to add new faces to. Default: []
|
||||
// Example(3D):
|
||||
// tri = [
|
||||
// [[-50,-33,0], [-25,16,50], [0,66,0]],
|
||||
// [[0,-33,50], [25,16,50]],
|
||||
// [[50,-33,0]]
|
||||
// ];
|
||||
// vnf = bezier_triangle(tri, splinesteps=16);
|
||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
||||
function bezier_triangle(tri, splinesteps=16, vertices=[], faces=[]) =
|
||||
let(
|
||||
base = len(vertices),
|
||||
pts = [
|
||||
for (
|
||||
u=[0:splinesteps],
|
||||
v=[0:splinesteps-u]
|
||||
) bezier_triangle_point(tri, u/splinesteps, v/splinesteps)
|
||||
],
|
||||
new_vertices = concat(vertices, pts),
|
||||
patchlen = len(tri),
|
||||
tricnt = _tri_count(splinesteps+1),
|
||||
new_faces = [
|
||||
for (
|
||||
u=[0:splinesteps-1],
|
||||
v=[0:splinesteps-u-1]
|
||||
) let (
|
||||
v1 = v + (tricnt - _tri_count(splinesteps+1-u)) + base,
|
||||
v2 = v1 + 1,
|
||||
v3 = v + (tricnt - _tri_count(splinesteps-u)) + base,
|
||||
v4 = v3 + 1,
|
||||
allfaces = concat(
|
||||
[[v1,v2,v3]],
|
||||
((u<splinesteps-1 && v<splinesteps-u-1)? [[v2,v4,v3]] : [])
|
||||
)
|
||||
) for (face=allfaces) face
|
||||
]
|
||||
) [new_vertices, concat(faces, new_faces)];
|
||||
|
||||
|
||||
|
||||
// Function: bezier_patch_flat()
|
||||
// Usage:
|
||||
// bezier_patch_flat(size, [N], [orient], [trans]);
|
||||
// Description:
|
||||
// Returns a flat rectangular bezier patch of degree `N`, centered on the XY plane.
|
||||
// Arguments:
|
||||
// size = 2D XY size of the patch.
|
||||
// N = Degree of the patch to generate. Since this is flat, a degree of 1 should usually be sufficient.
|
||||
// orient = The orientation to rotate the edge patch into. Use the `ORIENT` constants in `BOSL/constants.scad`.
|
||||
// trans = Amount to translate patch, after rotating to `orient`.
|
||||
// Example(3D):
|
||||
// patch = bezier_patch_flat(size=[100,100], N=3);
|
||||
// trace_bezier_patches([patch], size=1, showcps=true);
|
||||
function bezier_patch_flat(size=[100,100], N=4, orient=ORIENT_Z, trans=[0,0,0]) =
|
||||
let(
|
||||
patch = [for (x=[0:N]) [for (y=[0:N]) vmul(point3d(size),[x/N-0.5, 0.5-y/N, 0])]]
|
||||
) [for (row=patch)
|
||||
translate_points(v=trans,
|
||||
rotate_points3d(v=orient,row)
|
||||
)
|
||||
];
|
||||
|
||||
|
||||
|
||||
// Function: patch_reverse()
|
||||
// Usage:
|
||||
// patch_reverse(patch)
|
||||
// Description:
|
||||
// Reverses the patch, so that the faces generated from it are flipped back to front.
|
||||
// Arguments:
|
||||
// patch = The patch to reverse.
|
||||
function patch_reverse(patch) = [for (row=patch) reverse(row)];
|
||||
|
||||
|
||||
|
||||
// Function: patch_translate()
|
||||
// Usage:
|
||||
// patch_translate(patch, v)
|
||||
// Description: Translates all coordinates in a rectangular or triangular patch by a given amount.
|
||||
// Arguments:
|
||||
// patch = The patch to translate.
|
||||
// v = Vector to translate by.
|
||||
function patch_translate(patch, v=[0,0,0]) = [for(row=patch) translate_points(row, v)];
|
||||
|
||||
|
||||
// Function: patch_scale()
|
||||
// Usage:
|
||||
// patch_scale(patch, v, [cp])
|
||||
// Description: Scales all coordinates in a rectangular or triangular patch by a given amount.
|
||||
// Arguments:
|
||||
// patch = The patch to scale.
|
||||
// v = [X,Y,Z] scaling factors.
|
||||
// cp = Centerpoint to scale around.
|
||||
function patch_scale(patch, v=[1,1,1], cp=[0,0,0]) = [for(row=patch) scale_points(row, v, cp)];
|
||||
|
||||
|
||||
// Function: patch_rotate()
|
||||
// Usage:
|
||||
// patch_rotate(patch, a, [cp])
|
||||
// patch_rotate(patch, a, v, [cp])
|
||||
// Description: Rotates all coordinates in a rectangular or triangular patch by a given amount.
|
||||
// Arguments:
|
||||
// patch = The patch to rotate.
|
||||
// a = Rotation angle(s) in degrees.
|
||||
// v = Vector axis to rotate round.
|
||||
// cp = Centerpoint to rotate around.
|
||||
function patch_rotate(patch, a=undef, v=undef, cp=[0,0,0]) =
|
||||
v==undef?
|
||||
[for(row=patch) rotate_points3d(row, a, cp)] :
|
||||
[for(row=patch) rotate_points3d_around_axis(row, a, v, cp)];
|
||||
|
||||
|
||||
// Function: patches_translate()
|
||||
// Usage:
|
||||
// patches_translate(patch, v, [cp])
|
||||
// Description: Translates all coordinates in each of a list of rectangular or triangular patches.
|
||||
// Arguments:
|
||||
// patches = List of patches to translate.
|
||||
// v = Vector to translate by.
|
||||
function patches_translate(patches, v=[0,0,0]) = [for (patch=patches) patch_translate(patch,v)];
|
||||
|
||||
|
||||
// Function: patches_scale()
|
||||
// Usage:
|
||||
// patches_scale(patch, v, [cp])
|
||||
// Description: Scales all coordinates in each of a list of rectangular or triangular patches.
|
||||
// Arguments:
|
||||
// patches = List of patches to scale.
|
||||
// v = [X,Y,Z] scaling factors.
|
||||
// cp = Centerpoint to scale around.
|
||||
function patches_scale(patches, v=[1,1,1], cp=[0,0,0]) = [for (patch=patches) patch_scale(patch,v,cp)];
|
||||
|
||||
|
||||
// Function: patches_rotate()
|
||||
// Usage:
|
||||
// patches_rotate(patch, a, [cp])
|
||||
// patches_rotate(patch, a, v, [cp])
|
||||
// Description: Rotates all coordinates in each of a list of rectangular or triangular patches.
|
||||
// Arguments:
|
||||
// patches = List of patches to rotate.
|
||||
// a = Rotation angle(s) in degrees.
|
||||
// v = Vector axis to rotate round.
|
||||
// cp = Centerpoint to rotate around.
|
||||
function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=patches) patch_rotate(patch, a=a, v=v, cp=cp)];
|
||||
|
||||
|
||||
// Function: bezier_surface()
|
||||
// Usage:
|
||||
// bezier_surface(patches, [splinesteps], [vertices], [faces]);
|
||||
// Description:
|
||||
// Calculate vertices and faces for forming a (possibly partial)
|
||||
// polyhedron from the given rectangular and triangular bezier
|
||||
// patches. Returns a list containing two elements. The first is
|
||||
// the list of unique vertices. The second is the list of faces,
|
||||
// where each face is a list of indices into the list of vertices.
|
||||
// You can chain calls to this, to add more vertices and faces for
|
||||
// multiple bezier patches, to stitch them together into a complete
|
||||
// polyhedron.
|
||||
// Arguments:
|
||||
// patches = A list of rectangular bezier patches.
|
||||
// tris = A list of triangular bezier patches.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||
// vertices = Vertex list to add new points to. Default: []
|
||||
// faces = Face list to add new faces to. Default: []
|
||||
// Example(3D):
|
||||
// patch1 = [
|
||||
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
|
||||
// [[ 0,40,0], [ 0, 0,100], [100, 0, 20], [100, 40,0]],
|
||||
// [[ 0,60,0], [ 0,100,100], [100,100, 20], [100, 60,0]],
|
||||
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
|
||||
// ];
|
||||
// patch2 = [
|
||||
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
|
||||
// [[ 0,40,0], [ 0, 0,-50], [100, 0,-50], [100, 40,0]],
|
||||
// [[ 0,60,0], [ 0,100,-50], [100,100,-50], [100, 60,0]],
|
||||
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
|
||||
// ];
|
||||
// vnf = bezier_surface(patches=[patch1, patch2], splinesteps=16);
|
||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
||||
function bezier_surface(patches=[], tris=[], splinesteps=16, i=0, vertices=[], faces=[]) =
|
||||
let(
|
||||
vnf = (i >= len(patches))? [vertices, faces] :
|
||||
bezier_patch(patches[i], splinesteps=splinesteps, vertices=vertices, faces=faces),
|
||||
vnf2 = (i >= len(tris))? vnf :
|
||||
bezier_triangle(tris[i], splinesteps=splinesteps, vertices=vnf[0], faces=vnf[1])
|
||||
) (i >= len(patches) && i >= len(tris))? vnf2 :
|
||||
bezier_surface(patches=patches, tris=tris, splinesteps=splinesteps, i=i+1, vertices=vnf2[0], faces=vnf2[1]);
|
||||
|
||||
|
||||
|
||||
// Section: Bezier Surface Modules
|
||||
|
||||
|
||||
@ -976,7 +1002,7 @@ module trace_bezier(bez, N=3, size=1) {
|
||||
// bezier_polyhedron([patch1, patch2], splinesteps=8);
|
||||
module bezier_polyhedron(patches=[], tris=[], splinesteps=16, vertices=[], faces=[])
|
||||
{
|
||||
sfc = bezier_surface_vertices_and_faces(patches=patches, tris=tris, splinesteps=splinesteps, vertices=vertices, faces=faces);
|
||||
sfc = bezier_surface(patches=patches, tris=tris, splinesteps=splinesteps, vertices=vertices, faces=faces);
|
||||
polyhedron(points=sfc[0], faces=sfc[1]);
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user