mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
Merge pull request #688 from RonaldoCMP/master
Update vector search functions
This commit is contained in:
commit
f8b5a4d296
@ -178,7 +178,7 @@ test_vector_search();
|
||||
module test_vector_search_tree(){
|
||||
points1 = [ [0,1,2], [1,2,3], [2,3,4] ];
|
||||
tree1 = vector_search_tree(points1);
|
||||
assert(tree1 == [ points1, [[0,1,2]] ]);
|
||||
assert(tree1 == points1);
|
||||
points2 = [for(i=[0:9], j=[0:9], k=[1:5]) [i,j,k] ];
|
||||
tree2 = vector_search_tree(points2);
|
||||
assert(tree2[0]==points2);
|
||||
|
36
vectors.scad
36
vectors.scad
@ -171,8 +171,8 @@ function pointlist_bounds(pts) =
|
||||
// v5 = unit([0,0,0],[1,2,3]); // Returns: [1,2,3]
|
||||
// v6 = unit([0,0,0]); // Asserts an error.
|
||||
function unit(v, error=[[["ASSERT"]]]) =
|
||||
assert(is_vector(v), str("Expected a vector. Got: ",v))
|
||||
norm(v)<EPSILON? (error==[[["ASSERT"]]]? assert(norm(v)>=EPSILON,"Tried to normalize a zero vector") : error) :
|
||||
assert(is_vector(v), "Invalid vector")
|
||||
norm(v)<EPSILON? (error==[[["ASSERT"]]]? assert(norm(v)>=EPSILON,"Cannot normalize a zero vector") : error) :
|
||||
v/norm(v);
|
||||
|
||||
|
||||
@ -313,8 +313,10 @@ function furthest_point(pt, points) =
|
||||
// When `target` is a large list of points, a search tree is constructed to
|
||||
// speed up the search with an order around O(log n) per query point.
|
||||
// For small point lists, a direct search is done dispensing a tree construction.
|
||||
// Alternatively, `target` may be a search tree built with `vector_tree_search()`.
|
||||
// Alternatively, `target` may be a search tree built with `vector_search_tree()`.
|
||||
// In that case, that tree is parsed looking for matches.
|
||||
// An empty list of query points will return a empty output list.
|
||||
// An empty list of target points will return a output list with an empty list for each query point.
|
||||
// Arguments:
|
||||
// query = list of points to find matches for.
|
||||
// r = the search radius.
|
||||
@ -351,6 +353,8 @@ function furthest_point(pt, points) =
|
||||
// color("red") move_copies(select(points, search_2[i])) circle(r=.08);
|
||||
// }
|
||||
function vector_search(query, r, target) =
|
||||
query==[] ? [] :
|
||||
is_list(query) && target==[] ? is_vector(query) ? [] : [for(q=query) [] ] :
|
||||
assert( is_finite(r) && r>=0,
|
||||
"The query radius should be a positive number." )
|
||||
let(
|
||||
@ -365,13 +369,12 @@ function vector_search(query, r, target) =
|
||||
"The target should be a list of points or a search tree compatible with the query." )
|
||||
let(
|
||||
dim = tgpts ? len(target[0]) : len(target[0][0]),
|
||||
simple = is_vector(query, dim),
|
||||
mult = !simple && is_matrix(query,undef,dim)
|
||||
)
|
||||
assert( simple || mult,
|
||||
simple = is_vector(query, dim)
|
||||
)
|
||||
assert( simple || is_matrix(query,undef,dim),
|
||||
"The query points should be a list of points compatible with the target point list.")
|
||||
tgpts
|
||||
? len(target)<200
|
||||
? len(target)<=400
|
||||
? simple ? [for(i=idx(target)) if(norm(target[i]-query)<r) i ] :
|
||||
[for(q=query) [for(i=idx(target)) if(norm(target[i]-q)<r) i ] ]
|
||||
: let( tree = _bt_tree(target, count(len(target)), leafsize=25) )
|
||||
@ -382,7 +385,7 @@ function vector_search(query, r, target) =
|
||||
|
||||
|
||||
//Ball tree search
|
||||
function _bt_search(query, r, points, tree) = //echo(tree)
|
||||
function _bt_search(query, r, points, tree) =
|
||||
assert( is_list(tree)
|
||||
&& ( ( len(tree)==1 && is_list(tree[0]) )
|
||||
|| ( len(tree)==4 && is_num(tree[0]) && is_num(tree[1]) ) ),
|
||||
@ -413,25 +416,32 @@ function _bt_search(query, r, points, tree) = //echo(tree)
|
||||
// for high data dimensions. This data structure is useful when you will be
|
||||
// performing many searches of the same data, so that the cost of constructing
|
||||
// the tree is justified. (See https://en.wikipedia.org/wiki/Ball_tree)
|
||||
// For a small lists of points, the search with a tree may be more expensive
|
||||
// than direct comparisons. The argument `treemin` sets the minimum length of
|
||||
// point set for which a tree search will be done by `vector_search`.
|
||||
// For an empty list of points it returns an empty list.
|
||||
// Arguments:
|
||||
// points = list of points to store in the search tree.
|
||||
// leafsize = the size of the tree leaves. Default: 25
|
||||
// treemin = the minimum size of the point list for which a tree search is done. Default: 400
|
||||
// Example: A set of four queries to find points within 1 unit of the query. The circles show the search region and all have radius 1.
|
||||
// $fn=32;
|
||||
// k = 2000;
|
||||
// points = array_group(rands(0,10,k*2,seed=13333),2);
|
||||
// points = random_points(k, scale=10, dim=2,seed=13333);
|
||||
// queries = [for(i=[3,7],j=[3,7]) [i,j]];
|
||||
// search_tree = vector_search_tree(points);
|
||||
// search_ind = vector_tree_search(search_tree, queries, 1);
|
||||
// search_ind = vector_search(queries,1,search_tree);
|
||||
// move_copies(points) circle(r=.08);
|
||||
// for(i=idx(queries)){
|
||||
// color("blue") stroke(move(queries[i],circle(r=1)), closed=true, width=.08);
|
||||
// color("red") move_copies(select(points, search_ind[i])) circle(r=.08); }
|
||||
// color("red") move_copies(select(points, search_ind[i])) circle(r=.08);
|
||||
// }
|
||||
function vector_search_tree(points, leafsize=25) =
|
||||
function vector_search_tree(points, leafsize=25, treemin=400) =
|
||||
points==[] ? [] :
|
||||
assert( is_matrix(points), "The input list entries should be points." )
|
||||
assert( is_int(leafsize) && leafsize>=1,
|
||||
"The tree leaf size should be an integer greater than zero.")
|
||||
len(points)<treemin ? points :
|
||||
[ points, _bt_tree(points, count(len(points)), leafsize) ];
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user