Updated tutorials.

This commit is contained in:
Garth Minette 2021-04-17 19:17:44 -07:00
parent f47b02d9ef
commit fe788f56b5
7 changed files with 513 additions and 515 deletions

View File

@ -15,7 +15,7 @@ done
if [[ "$FILES" != "" ]]; then
PREVIEW_LIBS="$FILES"
else
PREVIEW_LIBS="Shapes2d Shapes3d Transforms Distributors Mutators Paths FractalTree"
PREVIEW_LIBS="Shapes2d Shapes3d Transforms Distributors Mutators Attachments Paths FractalTree"
fi
dir="$(basename $PWD)"

View File

@ -14,7 +14,7 @@ imgmgr = ImageManager()
def img_started(req):
print(" {}... ".format(os.path.basename(req.src_file)), end='')
print(" {}... ".format(os.path.basename(req.image_file)), end='')
sys.stdout.flush()
@ -52,7 +52,7 @@ def processFile(infile, outfile=None, imgroot=""):
outdata = []
with open(infile, "r") as f:
script = []
script = ["include <BOSL2/std.scad>"]
extyp = ""
in_script = False
imgnum = 0
@ -67,26 +67,24 @@ def processFile(infile, outfile=None, imgroot=""):
extyp = line.split("-")[1]
else:
extyp = ""
line = "```openscad"
script = []
show_script = "ImgOnly" not in extyp
script = ["include <BOSL2/std.scad>"]
imgnum = imgnum + 1
if show_script:
outdata.append(line)
elif in_script:
if show_script:
outdata.append(line)
if line == "```":
in_script = False
imgfile = "{}_{}.png".format(fileroot, imgnum)
imgfile = os.path.join(imgroot, "{}_{}.png".format(fileroot, imgnum))
imgmgr.new_request(
fileroot+".md", linenum,
imgfile, script, extyp,
starting_cb=img_started,
completion_cb=img_completed
)
outdata.append("![Figure {}]({})".format(imgnum, imgroot + imgfile))
script = []
if show_script:
outdata.append("```openscad")
outdata.extend(script)
outdata.append("```")
outdata.append("![Figure {}]({})".format(imgnum, imgfile))
show_script = True
extyp = ""
else:

View File

@ -7,51 +7,51 @@ Sometimes you want to take a 3D shape like a sphere, and cut it in half.
The BOSL2 library provides a number of ways to do this:
```openscad
left_half() sphere(d=100);
left_half() sphere(d=100);
```
```openscad
right_half() sphere(d=100);
right_half() sphere(d=100);
```
```openscad
front_half() sphere(d=100);
front_half() sphere(d=100);
```
```openscad
back_half() sphere(d=100);
back_half() sphere(d=100);
```
```openscad
bottom_half() sphere(d=100);
bottom_half() sphere(d=100);
```
```openscad
top_half() sphere(d=100);
top_half() sphere(d=100);
```
You can use the `half_of()` module if you want to split space in a way not aligned with an axis:
```openscad
half_of([-1,0,-1]) sphere(d=100);
half_of([-1,0,-1]) sphere(d=100);
```
The plane of dissection can be shifted along the axis of any of these operators:
```openscad
left_half(x=20) sphere(d=100);
left_half(x=20) sphere(d=100);
```
```openscad
back_half(y=-20) sphere(d=100);
back_half(y=-20) sphere(d=100);
```
```openscad
bottom_half(z=20) sphere(d=100);
bottom_half(z=20) sphere(d=100);
```
```openscad
half_of([-1,0,-1], cp=[20,0,20]) sphere(d=100);
half_of([-1,0,-1], cp=[20,0,20]) sphere(d=100);
```
By default, these operators can be applied to objects that fit in a cube 1000 on a side. If you need
@ -59,59 +59,59 @@ to apply these halving operators to objects larger than this, you can give the s
argument:
```openscad
bottom_half(s=2000) sphere(d=1500);
bottom_half(s=2000) sphere(d=1500);
```
## 2D Plane Halving
To cut 2D shapes in half, you will need to add the `planar=true` argument:
```openscad
left_half(planar=true) circle(d=100);
left_half(planar=true) circle(d=100);
```
```openscad
right_half(planar=true) circle(d=100);
right_half(planar=true) circle(d=100);
```
```openscad
front_half(planar=true) circle(d=100);
front_half(planar=true) circle(d=100);
```
```openscad
back_half(planar=true) circle(d=100);
back_half(planar=true) circle(d=100);
```
## Chained Mutators
If you have a set of shapes that you want to do pair-wise hulling of, you can use `chain_hull()`:
```openscad
chain_hull() {
cube(5, center=true);
translate([30, 0, 0]) sphere(d=15);
translate([60, 30, 0]) cylinder(d=10, h=20);
translate([60, 60, 0]) cube([10,1,20], center=false);
}
chain_hull() {
cube(5, center=true);
translate([30, 0, 0]) sphere(d=15);
translate([60, 30, 0]) cylinder(d=10, h=20);
translate([60, 60, 0]) cube([10,1,20], center=false);
}
```
## Extrusion Mutators
The OpenSCAD `linear_extrude()` module can take a 2D shape and extrude it vertically in a line:
```openscad
linear_extrude(height=30) zrot(45) square(40,center=true);
linear_extrude(height=30) zrot(45) square(40,center=true);
```
The `rotate_extrude()` module can take a 2D shape and rotate it around the Z axis.
```openscad
linear_extrude(height=30) left(30) zrot(45) square(40,center=true);
linear_extrude(height=30) left(30) zrot(45) square(40,center=true);
```
In a similar manner, the BOSL2 `cylindrical_extrude()` module can take a 2d shape and extrude it
out radially from the center of a cylinder:
```openscad
cylindrical_extrude(or=40, ir=35)
text(text="Hello World!", size=10, halign="center", valign="center");
cylindrical_extrude(or=40, ir=35)
text(text="Hello World!", size=10, halign="center", valign="center");
```
@ -121,61 +121,61 @@ out radially from the center of a cylinder:
Openscad provides the `minkowski()` module to trace a shape over the entire surface of another shape:
```openscad
minkowski() {
union() {
cube([100,33,33], center=true);
cube([33,100,33], center=true);
cube([33,33,100], center=true);
}
sphere(r=8);
minkowski() {
union() {
cube([100,33,33], center=true);
cube([33,100,33], center=true);
cube([33,33,100], center=true);
}
sphere(r=8);
}
```
However, it doesn't provide the inverse of this operation; to remove a shape from the entire surface
of another object. For this, the BOSL2 library provides the `minkowski_difference()` module:
```openscad
minkowski_difference() {
union() {
cube([100,33,33], center=true);
cube([33,100,33], center=true);
cube([33,33,100], center=true);
}
sphere(r=8);
minkowski_difference() {
union() {
cube([100,33,33], center=true);
cube([33,100,33], center=true);
cube([33,33,100], center=true);
}
sphere(r=8);
}
```
To perform a `minkowski_difference()` on 2D shapes, you need to supply the `planar=true` argument:
```openscad-2D
minkowski_difference(planar=true) {
union() {
square([100,33], center=true);
square([33,100], center=true);
}
circle(r=8);
minkowski_difference(planar=true) {
union() {
square([100,33], center=true);
square([33,100], center=true);
}
circle(r=8);
}
```
### Round2d
The `round2d()` module lets you take a 2D shape and round inside and outside corners. The inner concave corners are rounded to the radius `ir=`, while the outer convex corners are rounded to the radius `or=`:
```openscad-2D
round2d(or=8) star(6, step=2, d=100);
round2d(or=8) star(6, step=2, d=100);
```
```openscad-2D
round2d(ir=12) star(6, step=2, d=100);
round2d(ir=12) star(6, step=2, d=100);
```
```openscad-2D
round2d(or=8,ir=12) star(6, step=2, d=100);
round2d(or=8,ir=12) star(6, step=2, d=100);
```
You can use `r=` to effectively set both `ir=` and `or=` to the same value:
```openscad-2D
round2d(r=8) star(6, step=2, d=100);
round2d(r=8) star(6, step=2, d=100);
```
### Shell2d
@ -183,62 +183,62 @@ With the `shell2d()` module, you can take an arbitrary shape, and get the shell
With a positive thickness, the shell is offset outwards from the original shape:
```openscad-2D
shell2d(thickness=5) star(5,step=2,d=100);
color("blue") stroke(star(5,step=2,d=100),closed=true);
shell2d(thickness=5) star(5,step=2,d=100);
color("blue") stroke(star(5,step=2,d=100),closed=true);
```
With a negative thickness, the shell if inset from the original shape:
```openscad-2D
shell2d(thickness=-5) star(5,step=2,d=100);
color("blue") stroke(star(5,step=2,d=100),closed=true);
shell2d(thickness=-5) star(5,step=2,d=100);
color("blue") stroke(star(5,step=2,d=100),closed=true);
```
You can give a pair of thickness values if you want it both inset and outset from the original shape:
```openscad-2D
shell2d(thickness=[-5,5]) star(5,step=2,d=100);
color("blue") stroke(star(5,step=2,d=100),closed=true);
shell2d(thickness=[-5,5]) star(5,step=2,d=100);
color("blue") stroke(star(5,step=2,d=100),closed=true);
```
You can add rounding to the outside by passing a radius to the `or=` argument.
```openscad-2D
shell2d(thickness=-5,or=5) star(5,step=2,d=100);
shell2d(thickness=-5,or=5) star(5,step=2,d=100);
```
If you need to pass different radii for the convex and concave corners of the outside, you can pass them as `or=[CONVEX,CONCAVE]`:
```openscad-2D
shell2d(thickness=-5,or=[5,10]) star(5,step=2,d=100);
shell2d(thickness=-5,or=[5,10]) star(5,step=2,d=100);
```
A radius of 0 can be used to specify no rounding:
```openscad-2D
shell2d(thickness=-5,or=[5,0]) star(5,step=2,d=100);
shell2d(thickness=-5,or=[5,0]) star(5,step=2,d=100);
```
You can add rounding to the inside by passing a radius to the `ir=` argument.
```openscad-2D
shell2d(thickness=-5,ir=5) star(5,step=2,d=100);
shell2d(thickness=-5,ir=5) star(5,step=2,d=100);
```
If you need to pass different radii for the convex and concave corners of the inside, you can pass them as `ir=[CONVEX,CONCAVE]`:
```openscad-2D
shell2d(thickness=-5,ir=[8,3]) star(5,step=2,d=100);
shell2d(thickness=-5,ir=[8,3]) star(5,step=2,d=100);
```
You can use `or=` and `ir=` together to get nice combined rounding effects:
```openscad-2D
shell2d(thickness=-5,or=[7,2],ir=[7,2]) star(5,step=2,d=100);
shell2d(thickness=-5,or=[7,2],ir=[7,2]) star(5,step=2,d=100);
```
```openscad-2D
shell2d(thickness=-5,or=[5,0],ir=[5,0]) star(5,step=2,d=100);
shell2d(thickness=-5,or=[5,0],ir=[5,0]) star(5,step=2,d=100);
```
@ -253,21 +253,21 @@ easier to select colors using other color schemes. You can use the HSL or Hue-S
color scheme with the `HSL()` module:
```openscad
for (h=[0:0.1:1], s=[0:0.1:1], l=[0:0.1:1]) {
translate(100*[h,s,l]) {
HSL(h*360,1-s,l) cube(10,center=true);
}
for (h=[0:0.1:1], s=[0:0.1:1], l=[0:0.1:1]) {
translate(100*[h,s,l]) {
HSL(h*360,1-s,l) cube(10,center=true);
}
}
```
You can use the HSV or Hue-Saturation-Value color scheme with the `HSV()` module:
```openscad
for (h=[0:0.1:1], s=[0:0.1:1], v=[0:0.1:1]) {
translate(100*[h,s,v]) {
HSV(h*360,1-s,v) cube(10,center=true);
}
for (h=[0:0.1:1], s=[0:0.1:1], v=[0:0.1:1]) {
translate(100*[h,s,v]) {
HSV(h*360,1-s,v) cube(10,center=true);
}
}
```

View File

@ -18,64 +18,64 @@ A path can be hard to visualize, since it's just a bunch of numbers in the sourc
One way to see the path is to pass it to `polygon()`:
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
polygon(path);
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
polygon(path);
```
Sometimes, however, it's easier to see just the path itself. For this, you can use the `stroke()` module.
At its most basic, `stroke()` just shows the path's line segments:
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path);
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path);
```
You can vary the width of the drawn path with the `width=` argument:
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, width=3);
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, width=3);
```
You can vary the line length along the path by giving a list of widths, one per point:
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, width=[3,2,1,2,3]);
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, width=[3,2,1,2,3]);
```
If a path is meant to represent a closed polygon, you can use `closed=true` to show it that way:
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, closed=true);
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, closed=true);
```
The ends of the drawn path are normally capped with a "round" endcap, but there are other options:
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcaps="round");
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcaps="round");
```
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcaps="butt");
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcaps="butt");
```
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcaps="line");
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcaps="line");
```
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcaps="tail");
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcaps="tail");
```
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcaps="arrow2");
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcaps="arrow2");
```
For more standard supported endcap options, see the docs for [`stroke()`](shapes2d.scad#stroke).
@ -83,26 +83,26 @@ For more standard supported endcap options, see the docs for [`stroke()`](shapes
The start and ending endcaps can be specified individually or separately, using `endcap1=` and `endcap2=`:
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcap2="arrow2");
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcap2="arrow2");
```
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcap1="butt", endcap2="arrow2");
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcap1="butt", endcap2="arrow2");
```
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcap1="tail", endcap2="arrow");
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
stroke(path, endcap1="tail", endcap2="arrow");
```
The size of the endcaps will be relative to the width of the line where the endcap is to be placed:
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
widths = [1, 1.25, 1.5, 1.75, 2];
stroke(path, width=widths, endcaps="arrow2");
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
widths = [1, 1.25, 1.5, 1.75, 2];
stroke(path, width=widths, endcaps="arrow2");
```
If none of the standard endcaps are useful to you, it is possible to design your own, simply by
@ -114,104 +114,104 @@ line width size.
Untrimmed:
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
dblarrow = [[0,0], [2,-3], [0.5,-2.3], [2,-4], [0.5,-3.5], [-0.5,-3.5], [-2,-4], [-0.5,-2.3], [-2,-3]];
stroke(path, endcaps=dblarrow);
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
dblarrow = [[0,0], [2,-3], [0.5,-2.3], [2,-4], [0.5,-3.5], [-0.5,-3.5], [-2,-4], [-0.5,-2.3], [-2,-3]];
stroke(path, endcaps=dblarrow);
```
Trimmed:
```openscad-2D
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
dblarrow = [[0,0], [2,-3], [0.5,-2.3], [2,-4], [0.5,-3.5], [-0.5,-3.5], [-2,-4], [-0.5,-2.3], [-2,-3]];
stroke(path, trim=3.5, endcaps=dblarrow);
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
dblarrow = [[0,0], [2,-3], [0.5,-2.3], [2,-4], [0.5,-3.5], [-0.5,-3.5], [-2,-4], [-0.5,-2.3], [-2,-3]];
stroke(path, trim=3.5, endcaps=dblarrow);
```
### Standard 2D Shape Polygons
BOSL2 will let you get the perimeter polygon for almost all of the standard 2D shapes simply by calling them like a function:
```openscad-2D
path = square(40, center=true);
stroke(path, closed=true, endcap2="arrow2");
path = square(40, center=true);
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = rect([40,30], rounding=5, center=true);
stroke(path, closed=true, endcap2="arrow2");
path = rect([40,30], rounding=5, center=true);
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = trapezoid(w1=40, w2=20, h=30);
stroke(path, closed=true, endcap2="arrow2");
path = trapezoid(w1=40, w2=20, h=30);
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = circle(d=50);
stroke(path, closed=true, endcap2="arrow2");
path = circle(d=50);
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = oval(d=[50,30]);
stroke(path, closed=true, endcap2="arrow2");
path = oval(d=[50,30]);
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = pentagon(d=50);
stroke(path, closed=true, endcap2="arrow2");
path = pentagon(d=50);
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = star(n=5, step=2, d=50);
stroke(path, closed=true, endcap2="arrow2");
path = star(n=5, step=2, d=50);
stroke(path, closed=true, endcap2="arrow2");
```
### Arcs
Often, when you are constructing a path, you will want to add an arc. The `arc()` command lets you do that:
```openscad-2D
path = arc(r=30, angle=120);
stroke(path, endcap2="arrow2");
path = arc(r=30, angle=120);
stroke(path, endcap2="arrow2");
```
```openscad-2D
path = arc(d=60, angle=120);
stroke(path, endcap2="arrow2");
path = arc(d=60, angle=120);
stroke(path, endcap2="arrow2");
```
If you give the `N=` argument, you can control exactly how many points the arc is divided into:
```openscad-2D
path = arc(N=5, r=30, angle=120);
stroke(path, endcap2="arrow2");
path = arc(N=5, r=30, angle=120);
stroke(path, endcap2="arrow2");
```
With the `start=` argument, you can start the arc somewhere other than the X+ axis:
```openscad-2D
path = arc(start=45, r=30, angle=120);
stroke(path, endcap2="arrow2");
path = arc(start=45, r=30, angle=120);
stroke(path, endcap2="arrow2");
```
Alternatively, you can give starting and ending angles in a list in the `angle=` argument:
```openscad-2D
path = arc(angle=[120,45], r=30);
stroke(path, endcap2="arrow2");
path = arc(angle=[120,45], r=30);
stroke(path, endcap2="arrow2");
```
The `cp=` argument lets you center the arc somewhere other than the origin:
```openscad-2D
path = arc(cp=[10,0], r=30, angle=120);
stroke(path, endcap2="arrow2");
path = arc(cp=[10,0], r=30, angle=120);
stroke(path, endcap2="arrow2");
```
The arc can also be given by three points on the arc:
```openscad-2D
pts = [[-15,10],[0,20],[35,-5]];
path = arc(points=pts);
stroke(path, endcap2="arrow2");
pts = [[-15,10],[0,20],[35,-5]];
path = arc(points=pts);
stroke(path, endcap2="arrow2");
```
@ -222,75 +222,75 @@ turtle or cursor walking a path. It can "move" forward or backward, or turn "le
place:
```openscad-2D
path = turtle([
"move", 10,
"left", 90,
"move", 20,
"left", 135,
"move", 10*sqrt(2),
"right", 90,
"move", 10*sqrt(2),
"left", 135,
"move", 20
]);
stroke(path, endcap2="arrow2");
path = turtle([
"move", 10,
"left", 90,
"move", 20,
"left", 135,
"move", 10*sqrt(2),
"right", 90,
"move", 10*sqrt(2),
"left", 135,
"move", 20
]);
stroke(path, endcap2="arrow2");
```
The position and the facing of the turtle/cursor updates after each command. The motion and turning
commands can also have default distances or angles given:
```openscad-2D
path = turtle([
"angle",360/6,
"length",10,
"move","turn",
"move","turn",
"move","turn",
"move","turn",
"move"
]);
stroke(path, endcap2="arrow2");
path = turtle([
"angle",360/6,
"length",10,
"move","turn",
"move","turn",
"move","turn",
"move","turn",
"move"
]);
stroke(path, endcap2="arrow2");
```
You can use "scale" to relatively scale up the default motion length:
```openscad-2D
path = turtle([
"angle",360/6,
"length",10,
"move","turn",
"move","turn",
"scale",2,
"move","turn",
"move","turn",
"scale",0.5,
"move"
]);
stroke(path, endcap2="arrow2");
path = turtle([
"angle",360/6,
"length",10,
"move","turn",
"move","turn",
"scale",2,
"move","turn",
"move","turn",
"scale",0.5,
"move"
]);
stroke(path, endcap2="arrow2");
```
Sequences of commands can be repeated using the "repeat" command:
```openscad-2D
path=turtle([
"angle",360/5,
"length",10,
"repeat",5,["move","turn"]
]);
stroke(path, endcap2="arrow2");
path=turtle([
"angle",360/5,
"length",10,
"repeat",5,["move","turn"]
]);
stroke(path, endcap2="arrow2");
```
More complicated commands also exist, including those that form arcs:
```openscad-2D
path = turtle([
"move", 10,
"left", 90,
"move", 20,
"arcleft", 10, 180,
"move", 20
]);
stroke(path, endcap2="arrow2");
path = turtle([
"move", 10,
"left", 90,
"move", 20,
"arcleft", 10, 180,
"move", 20
]);
stroke(path, endcap2="arrow2");
```
A comprehensive list of supported turtle commands can be found in the docs for [`turtle()`](shapes2d.scad#turtle).
@ -299,97 +299,97 @@ A comprehensive list of supported turtle commands can be found in the docs for [
To translate a path, you can just pass it to the `move()` (or up/down/left/right/fwd/back) function in the `p=` argument:
```openscad-2D
path = move([-15,-30], p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
path = move([-15,-30], p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = fwd(30, p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
path = fwd(30, p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = left(30, p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
path = left(30, p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
```
To scale a path, you can just pass it to the `scale()` (or [xyz]scale) function in the `p=` argument:
```openscad-2D
path = scale([1.5,0.75], p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
path = scale([1.5,0.75], p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = xscale(1.5, p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
path = xscale(1.5, p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = yscale(1.5, p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
path = yscale(1.5, p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
```
To rotate a path, just can pass it to the `rot()` (or [xyz]rot) function in the `p=` argument:
```openscad-2D
path = rot(30, p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
path = rot(30, p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = zrot(30, p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
path = zrot(30, p=square(50,center=true));
stroke(path, closed=true, endcap2="arrow2");
```
To mirror a path, just can pass it to the `mirror()` (or [xyz]flip) function in the `p=` argument:
```openscad-2D
path = mirror([1,1], p=trapezoid(w1=40, w2=10, h=25));
stroke(path, closed=true, endcap2="arrow2");
path = mirror([1,1], p=trapezoid(w1=40, w2=10, h=25));
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = xflip(p=trapezoid(w1=40, w2=10, h=25));
stroke(path, closed=true, endcap2="arrow2");
path = xflip(p=trapezoid(w1=40, w2=10, h=25));
stroke(path, closed=true, endcap2="arrow2");
```
```openscad-2D
path = yflip(p=trapezoid(w1=40, w2=10, h=25));
stroke(path, closed=true, endcap2="arrow2");
path = yflip(p=trapezoid(w1=40, w2=10, h=25));
stroke(path, closed=true, endcap2="arrow2");
```
You can get raw transformation matrices for various transformations by calling them like a function without a `p=` argument:
```openscad-2D
mat = move([5,10,0]);
multmatrix(mat) square(50,center=true);
mat = move([5,10,0]);
multmatrix(mat) square(50,center=true);
```
```openscad-2D
mat = scale([1.5,0.75,1]);
multmatrix(mat) square(50,center=true);
mat = scale([1.5,0.75,1]);
multmatrix(mat) square(50,center=true);
```
```openscad-2D
mat = rot(30);
multmatrix(mat) square(50,center=true);
mat = rot(30);
multmatrix(mat) square(50,center=true);
```
Raw transformation matrices can be multiplied together to precalculate a compound transformation. For example, to scale a shape, then rotate it, then translate the result, you can do something like:
```openscad-2D
mat = move([5,10,0]) * rot(30) * scale([1.5,0.75,1]);
multmatrix(mat) square(50,center=true);
mat = move([5,10,0]) * rot(30) * scale([1.5,0.75,1]);
multmatrix(mat) square(50,center=true);
```
To apply a compound transformation matrix to a path, you can use the `apply()` function:
```openscad-2D
mat = move([5,10]) * rot(30, planar=true) * scale([1.5,0.75]);
path = square(50,center=true);
tpath = apply(mat, path);
stroke(tpath, endcap2="arrow2");
mat = move([5,10]) * rot(30, planar=true) * scale([1.5,0.75]);
path = square(50,center=true);
tpath = apply(mat, path);
stroke(tpath, endcap2="arrow2");
```
@ -401,39 +401,39 @@ XORed against all the others. You can display a region using the `region()` mod
If you have a region with one polygon fully inside another, it makes a hole:
```openscad-2D
rgn = [square(50,center=true), circle(d=30)];
region(rgn);
rgn = [square(50,center=true), circle(d=30)];
region(rgn);
```
If you have a region with multiple polygons that are not contained by any others, they make multiple discontiguous shapes:
```openscad-2D
rgn = [
move([-30, 20], p=square(20,center=true)),
move([ 0,-20], p=trapezoid(w1=20, w2=10, h=20)),
move([ 30, 20], p=square(20,center=true)),
];
region(rgn);
rgn = [
move([-30, 20], p=square(20,center=true)),
move([ 0,-20], p=trapezoid(w1=20, w2=10, h=20)),
move([ 30, 20], p=square(20,center=true)),
];
region(rgn);
```
Region polygons can be nested abitrarily deep, in multiple discontiguous shapes:
```openscad-2D
rgn = [
for (d=[50:-10:10]) left(30, p=circle(d=d)),
for (d=[50:-10:10]) right(30, p=circle(d=d))
];
region(rgn);
rgn = [
for (d=[50:-10:10]) left(30, p=circle(d=d)),
for (d=[50:-10:10]) right(30, p=circle(d=d))
];
region(rgn);
```
A region with crossing polygons is somewhat poorly formed, but the intersection(s) of the polygons become holes:
```openscad-2D
rgn = [
left(15, p=circle(d=50)),
right(15, p=circle(d=50))
];
region(rgn);
rgn = [
left(15, p=circle(d=50)),
right(15, p=circle(d=50))
];
region(rgn);
```
### Boolean Region Geometry
@ -441,65 +441,65 @@ Similarly to how OpenSCAD can perform operations like union/difference/intersect
the BOSL2 library lets you perform those same operations on regions:
```openscad-2D
rgn1 = [for (d=[40:-10:10]) circle(d=d)];
rgn2 = [square([60,12], center=true)];
rgn = union(rgn1, rgn2);
region(rgn);
rgn1 = [for (d=[40:-10:10]) circle(d=d)];
rgn2 = [square([60,12], center=true)];
rgn = union(rgn1, rgn2);
region(rgn);
```
```openscad-2D
rgn1 = [for (d=[40:-10:10]) circle(d=d)];
rgn2 = [square([60,12], center=true)];
rgn = difference(rgn1, rgn2);
region(rgn);
rgn1 = [for (d=[40:-10:10]) circle(d=d)];
rgn2 = [square([60,12], center=true)];
rgn = difference(rgn1, rgn2);
region(rgn);
```
```openscad-2D
rgn1 = [for (d=[40:-10:10]) circle(d=d)];
rgn2 = [square([60,12], center=true)];
rgn = intersection(rgn1, rgn2);
region(rgn);
rgn1 = [for (d=[40:-10:10]) circle(d=d)];
rgn2 = [square([60,12], center=true)];
rgn = intersection(rgn1, rgn2);
region(rgn);
```
```openscad-2D
rgn1 = [for (d=[40:-10:10]) circle(d=d)];
rgn2 = [square([60,12], center=true)];
rgn = exclusive_or(rgn1, rgn2);
region(rgn);
rgn1 = [for (d=[40:-10:10]) circle(d=d)];
rgn2 = [square([60,12], center=true)];
rgn = exclusive_or(rgn1, rgn2);
region(rgn);
```
```openscad-2D
orig_rgn = [star(n=5, step=2, d=50)];
rgn = offset(orig_rgn, r=-3, closed=true);
color("blue") region(orig_rgn);
region(rgn);
orig_rgn = [star(n=5, step=2, d=50)];
rgn = offset(orig_rgn, r=-3, closed=true);
color("blue") region(orig_rgn);
region(rgn);
```
You can use regions for several useful things. If you wanted a grid of holes in your object that
form the shape given by a region, you can do that with `grid2d()`:
```openscad-3D
rgn = [
circle(d=100),
star(n=5,step=2,d=100,spin=90)
];
difference() {
cyl(h=5, d=120);
grid2d(size=[120,120], spacing=[4,4], inside=rgn) cyl(h=10,d=2);
}
rgn = [
circle(d=100),
star(n=5,step=2,d=100,spin=90)
];
difference() {
cyl(h=5, d=120);
grid2d(size=[120,120], spacing=[4,4], inside=rgn) cyl(h=10,d=2);
}
```
You can also sweep a region through 3-space to make a solid:
```openscad-3D
$fa=1; $fs=1;
rgn = [ for (d=[50:-10:10]) circle(d=d) ];
tforms = [
for (a=[90:-5:0]) xrot(a, cp=[0,-70]),
for (a=[0:5:90]) xrot(a, cp=[0,70]),
move([0,150,-70]) * xrot(90),
];
sweep(rgn, tforms, closed=false, caps=true);
$fa=1; $fs=1;
rgn = [ for (d=[50:-10:10]) circle(d=d) ];
tforms = [
for (a=[90:-5:0]) xrot(a, cp=[0,-70]),
for (a=[0:5:90]) xrot(a, cp=[0,70]),
move([0,150,-70]) * xrot(90),
];
sweep(rgn, tforms, closed=false, caps=true);
```

View File

@ -12,15 +12,15 @@ and more ways to simply reorient them.
You can still use the built-in `square()` in the familiar ways that OpenSCAD provides:
```openscad-2D
square(100, center=false);
square(100, center=false);
```
```openscad-2D
square(100, center=true);
square(100, center=true);
```
```openscad-2D
square([60,40], center=true);
square([60,40], center=true);
```
The BOSL2 library provides an enhanced equivalent to `square()` called `rect()`.
@ -28,13 +28,13 @@ You can use it in the same way you use `square()`, but it also provides
extended functionality. For example, it allows you to round the corners:
```openscad-2D
rect([60,40], center=true, rounding=10);
rect([60,40], center=true, rounding=10);
```
Or chamfer them:
```openscad-2D
rect([60,40], center=true, chamfer=10);
rect([60,40], center=true, chamfer=10);
```
You can even specify *which* corners get rounded or chamfered. If you pass a
@ -44,26 +44,26 @@ corner, counter-clockwise around to the back-left (quadrant II) corner, to the
forward-left (quadrant III) corner, to the forward-right (quadrant IV) corner:
```openscad-2DImgOnly
module text3d(text) color("black") text(
text=text, font="Times", size=10,
halign="center", valign="center"
);
translate([ 50, 50]) text3d("I");
translate([-50, 50]) text3d("II");
translate([-50,-50]) text3d("III");
translate([ 50,-50]) text3d("IV");
rect([90,80], center=true);
module text3d(text) color("black") text(
text=text, font="Times", size=10,
halign="center", valign="center"
);
translate([ 50, 50]) text3d("I");
translate([-50, 50]) text3d("II");
translate([-50,-50]) text3d("III");
translate([ 50,-50]) text3d("IV");
rect([90,80], center=true);
```
If a size is given as `0`, then there is no rounding and/or chamfering for
that quadrant's corner:
```openscad-2D
rect([60,40], center=true, rounding=[0,5,10,15]);
rect([60,40], center=true, rounding=[0,5,10,15]);
```
```openscad-2D
rect([60,40], center=true, chamfer=[0,5,10,15]);
rect([60,40], center=true, chamfer=[0,5,10,15]);
```
You can give both `rounding=` and `chamfer=` arguments to mix rounding and
@ -71,7 +71,7 @@ chamfering, but only if you specify per corner. If you want a rounding in
a corner, specify a 0 chamfer for that corner, and vice versa:
```openscad-2D
rect([60,40], center=true, rounding=[5,0,10,0], chamfer=[0,5,0,15]);
rect([60,40], center=true, rounding=[5,0,10,0], chamfer=[0,5,0,15]);
```
#### Anchors and Spin
@ -84,19 +84,19 @@ the side or corner you want to align to the origin. For example, to align
the center of the back edge to the origin, set the anchor to `[0,1]`:
```openscad-2D
rect([60,40], anchor=[0,1]);
rect([60,40], anchor=[0,1]);
```
To align the front right corner to the origin:
```openscad-2D
rect([60,40], anchor=[1,-1]);
rect([60,40], anchor=[1,-1]);
```
To center:
```openscad-2D
rect([60,40], anchor=[0,0]);
rect([60,40], anchor=[0,0]);
```
To make it clearer when giving vectors, there are several standard vector
@ -116,52 +116,52 @@ Note that even though these are 3D vectors, you can use most of them,
(except `UP`/`DOWN`, of course) for anchors in 2D shapes:
```openscad-2D
rect([60,40], anchor=BACK);
rect([60,40], anchor=BACK);
```
```openscad-2D
rect([60,40], anchor=CENTER);
rect([60,40], anchor=CENTER);
```
You can add vectors together to point to corners:
```openscad-2D
rect([60,40], anchor=FRONT+RIGHT);
rect([60,40], anchor=FRONT+RIGHT);
```
Finally, the `spin` argument can rotate the shape by a given number of degrees
clockwise:
```openscad-2D
rect([60,40], anchor=CENTER, spin=30);
rect([60,40], anchor=CENTER, spin=30);
```
Anchoring or centering is performed before the spin:
```openscad-2D
rect([60,40], anchor=BACK, spin=30);
rect([60,40], anchor=BACK, spin=30);
```
Anchor points double as attachment points, so that you can attach other shapes:
```openscad-2D
rect([60,40],center=true)
show_anchors();
rect([60,40],center=true)
show_anchors();
```
### 2D Circles and Ovals
The built-in `circle()` primitive can be used as expected:
```openscad-2D
circle(r=50);
circle(r=50);
```
```openscad-2D
circle(d=100);
circle(d=100);
```
```openscad-2D
circle(d=100, $fn=8);
circle(d=100, $fn=8);
```
The BOSL2 library also provides an enhanced equivalent of `circle()` called `oval()`.
@ -176,7 +176,7 @@ The `realign=` argument, if set `true`, rotates the `oval()` by half the angle
between the sides:
```openscad-2D
oval(d=100, $fn=8, realign=true);
oval(d=100, $fn=8, realign=true);
```
The `circum=` argument, if true, makes it so that the polygon forming the
@ -185,19 +185,19 @@ The `circum=` argument, if true, makes it so that the polygon forming the
Inscribing the ideal circle:
```openscad-2D
difference() {
circle(d=100, $fn=360);
oval(d=100, $fn=8);
}
difference() {
circle(d=100, $fn=360);
oval(d=100, $fn=8);
}
```
Circumscribing the ideal circle:
```openscad-2D
difference() {
oval(d=100, $fn=8, circum=true);
circle(d=100, $fn=360);
}
difference() {
oval(d=100, $fn=8, circum=true);
circle(d=100, $fn=360);
}
```
The `oval()` module, as its name suggests, can be given separate X and Y radii
@ -205,29 +205,29 @@ or diameters. To do this, just give `r=` or `d=` with a list of two radii or
diameters:
```openscad-2D
oval(r=[30,20]);
oval(r=[30,20]);
```
```openscad-2D
oval(d=[60,40]);
oval(d=[60,40]);
```
Another way that `oval()` is enhanced over `circle()`, is that you can anchor,
spin and attach it.
```openscad-2D
oval(r=50, anchor=BACK);
oval(r=50, anchor=BACK);
```
```openscad-2D
oval(r=50, anchor=FRONT+RIGHT);
oval(r=50, anchor=FRONT+RIGHT);
```
Using spin on a circle may not make initial sense, until you remember that
anchoring is performed before spin:
```openscad-2D
oval(r=50, anchor=FRONT, spin=-30);
oval(r=50, anchor=FRONT, spin=-30);
```
@ -239,51 +239,51 @@ The BOSL2 library can provide all of these shapes with the `trapezoid()` module.
To make a simple triangle, just make one of the widths zero:
```openscad-2D
trapezoid(w1=50, w2=0, h=50);
trapezoid(w1=50, w2=0, h=50);
```
To make a right triangle, you need to use the `shift=` argument, to shift the back of the trapezoid along the X axis:
```openscad-2D
trapezoid(w1=50, w2=0, h=50, shift=-25);
trapezoid(w1=50, w2=0, h=50, shift=-25);
```
```openscad-2D
trapezoid(w1=50, w2=0, h=50, shift=25);
trapezoid(w1=50, w2=0, h=50, shift=25);
```
```openscad-2D
trapezoid(w1=0, w2=50, h=50, shift=-25);
trapezoid(w1=0, w2=50, h=50, shift=-25);
```
```openscad-2D
trapezoid(w1=0, w2=50, h=50, shift=25);
trapezoid(w1=0, w2=50, h=50, shift=25);
```
You can make a trapezoid by specifying non-zero widths for both the front (`w1=`) and back (`w2=`):
```openscad-2D
trapezoid(w1=30, w2=50, h=50);
trapezoid(w1=30, w2=50, h=50);
```
A parallelogram is just a matter of using the same width for front and back, with a shift along the X axis:
```openscad-2D
trapezoid(w1=50, w2=50, shift=20, h=50);
trapezoid(w1=50, w2=50, shift=20, h=50);
```
A quadrilateral can be made by having unequal, non-zero front (`w1=`) and back (`w2=`) widths, with the back shifted along the X axis:
```openscad-2D
trapezoid(w1=50, w2=30, shift=20, h=50);
trapezoid(w1=50, w2=30, shift=20, h=50);
```
You can use `anchor=` and `spin=`, just like with other attachable shapes. However, the anchor
points are based on the side angles of the faces, and may not be where you expect them:
```openscad-2D
trapezoid(w1=30, w2=50, h=50)
show_anchors();
trapezoid(w1=30, w2=50, h=50)
show_anchors();
```
### Regular N-Gons
@ -292,25 +292,25 @@ OpenSCAD lets you make regular N-gons (pentagon, hexagon, etc) by using `circle(
While this is concise, it may be less than obvious at first glance:
```openscad-2D
circle(d=50, $fn=5);
circle(d=50, $fn=5);
```
The BOSL2 library has modules that are named more clearly:
```openscad-2D
pentagon(d=50);
pentagon(d=50);
```
```openscad-2D
hexagon(d=50);
hexagon(d=50);
```
```openscad-2D
octagon(d=50);
octagon(d=50);
```
```openscad-2D
regular_ngon(n=7, d=50);
regular_ngon(n=7, d=50);
```
These modules also provide you with extra functionality.
@ -318,44 +318,44 @@ These modules also provide you with extra functionality.
They can be sized by side length:
```openscad-2D
pentagon(side=20);
pentagon(side=20);
```
They can be sized by circumscribed circle radius/diameter:
```openscad-2D
pentagon(ir=25);
pentagon(id=50);
pentagon(ir=25);
pentagon(id=50);
```
They can be realigned by half a side's angle:
```openscad-2D
left(30) pentagon(d=50, realign=true);
right(30) pentagon(d=50, realign=false);
left(30) pentagon(d=50, realign=true);
right(30) pentagon(d=50, realign=false);
```
They can be rounded:
```openscad-2D
pentagon(d=50, rounding=10);
pentagon(d=50, rounding=10);
```
```openscad-2D
hexagon(d=50, rounding=10);
hexagon(d=50, rounding=10);
```
They also have somewhat different attachment behavior:
```openscad-2D
color("green") stroke(circle(d=50), closed=true);
oval(d=50,$fn=5)
attach(LEFT) color("blue") anchor_arrow2d();
color("green") stroke(circle(d=50), closed=true);
oval(d=50,$fn=5)
attach(LEFT) color("blue") anchor_arrow2d();
```
```openscad-2D
pentagon(d=50)
attach(LEFT) color("blue") anchor_arrow2d();
pentagon(d=50)
attach(LEFT) color("blue") anchor_arrow2d();
```
You can use `anchor=` and `spin=`, just like with other attachable shapes. However, the anchor
@ -363,15 +363,15 @@ points are based on where the anchor vector would intersect the side of the N-go
be where you expect them:
```openscad-2D
pentagon(d=50)
show_anchors(custom=false);
pentagon(d=50)
show_anchors(custom=false);
```
N-gons also have named anchor points for their sides and tips:
```openscad-2D
pentagon(d=30)
show_anchors(std=false);
pentagon(d=30)
show_anchors(std=false);
```
@ -381,72 +381,72 @@ The BOSL2 library has stars as a basic supported shape. They can have any numbe
You can specify a star's shape by point count, inner and outer vertex radius/diameters:
```openscad-2D
star(n=3, id=10, d=50);
star(n=3, id=10, d=50);
```
```openscad-2D
star(n=5, id=15, r=25);
star(n=5, id=15, r=25);
```
```openscad-2D
star(n=10, id=30, d=50);
star(n=10, id=30, d=50);
```
Or you can specify the star shape by point count and number of points to step:
```openscad-2D
star(n=7, step=2, d=50);
star(n=7, step=2, d=50);
```
```openscad-2D
star(n=7, step=3, d=50);
star(n=7, step=3, d=50);
```
If the `realign=` argument is given a true value, then the star will be rotated by half a point angle:
```openscad-2D
left(30) star(n=5, step=2, d=50);
right(30) star(n=5, step=2, d=50, realign=true);
left(30) star(n=5, step=2, d=50);
right(30) star(n=5, step=2, d=50, realign=true);
```
The `align_tip=` argument can be given a vector so that you can align the first point in a specific direction:
```openscad-2D
star(n=5, ir=15, or=30, align_tip=BACK+LEFT)
attach("tip0") color("blue") anchor_arrow2d();
star(n=5, ir=15, or=30, align_tip=BACK+LEFT)
attach("tip0") color("blue") anchor_arrow2d();
```
```openscad-2D
star(n=5, ir=15, or=30, align_tip=BACK+RIGHT)
attach("tip0") color("blue") anchor_arrow2d();
star(n=5, ir=15, or=30, align_tip=BACK+RIGHT)
attach("tip0") color("blue") anchor_arrow2d();
```
Similarly, the first indentation or pit can be oriented towards a specific vector with `align_pit=`:
```openscad-2D
star(n=5, ir=15, or=30, align_pit=BACK+LEFT)
attach("pit0") color("blue") anchor_arrow2d();
star(n=5, ir=15, or=30, align_pit=BACK+LEFT)
attach("pit0") color("blue") anchor_arrow2d();
```
```openscad-2D
star(n=5, ir=15, or=30, align_pit=BACK+RIGHT)
attach("pit0") color("blue") anchor_arrow2d();
star(n=5, ir=15, or=30, align_pit=BACK+RIGHT)
attach("pit0") color("blue") anchor_arrow2d();
```
You can use `anchor=` and `spin=`, just like with other attachable shapes. However, the anchor
points are based on the furthest extents of the shape, and may not be where you expect them:
```openscad-2D
star(n=5, step=2, d=50)
show_anchors(custom=false);
star(n=5, step=2, d=50)
show_anchors(custom=false);
```
Stars also have named anchor points for their pits, tips, and midpoints between tips:
```openscad-2D
star(n=5, step=2, d=40)
show_anchors(std=false);
star(n=5, step=2, d=40)
show_anchors(std=false);
```
@ -460,36 +460,36 @@ The `teardrop2d()` module will let you make a 2D version of the teardrop shape,
extrude it later:
```openscad-2D
teardrop2d(r=20);
teardrop2d(r=20);
```
```openscad-2D
teardrop2d(d=50);
teardrop2d(d=50);
```
The default overhang angle is 45 degrees, but you can adjust that with the `ang=` argument:
```openscad-2D
teardrop2d(d=50, ang=30);
teardrop2d(d=50, ang=30);
```
If you prefer to flatten the top of the teardrop, to encourage bridging, you can use the `cap_h=`
argument:
```openscad-2D
teardrop2d(d=50, cap_h=25);
teardrop2d(d=50, cap_h=25);
```
```openscad-2D
teardrop2d(d=50, ang=30, cap_h=30);
teardrop2d(d=50, ang=30, cap_h=30);
```
You can use `anchor=` and `spin=`, just like with other attachable shapes. However, the anchor
points are based on the furthest extents of the shape, and may not be where you expect them:
```openscad-2D
teardrop2d(d=50, ang=30, cap_h=30)
show_anchors();
teardrop2d(d=50, ang=30, cap_h=30)
show_anchors();
```
@ -499,57 +499,57 @@ A more unusal shape that BOSL2 provides is Glued Circles. It's basically a pair
connected by what looks like a gloopy glued miniscus:
```openscad-2D
glued_circles(d=30, spread=40);
glued_circles(d=30, spread=40);
```
The `r=`/`d=` arguments can specify the radius or diameter of the two circles:
```openscad-2D
glued_circles(r=20, spread=45);
glued_circles(r=20, spread=45);
```
```openscad-2D
glued_circles(d=40, spread=45);
glued_circles(d=40, spread=45);
```
The `spread=` argument specifies the distance between the centers of the two circles:
```openscad-2D
glued_circles(d=30, spread=30);
glued_circles(d=30, spread=30);
```
```openscad-2D
glued_circles(d=30, spread=40);
glued_circles(d=30, spread=40);
```
The `tangent=` argument gives the angle of the tangent of the meniscus on the two circles:
```openscad-2D
glued_circles(d=30, spread=30, tangent=45);
glued_circles(d=30, spread=30, tangent=45);
```
```openscad-2D
glued_circles(d=30, spread=30, tangent=20);
glued_circles(d=30, spread=30, tangent=20);
```
```openscad-2D
glued_circles(d=30, spread=30, tangent=-20);
glued_circles(d=30, spread=30, tangent=-20);
```
One useful thing you can do is to string a few `glued_circle()`s in a line then extrude them to make a ribbed wall:
```openscad-3D
$fn=36; s=10;
linear_extrude(height=50,convexity=16,center=true)
xcopies(s*sqrt(2),n=3)
glued_circles(d=s, spread=s*sqrt(2), tangent=45);
$fn=36; s=10;
linear_extrude(height=50,convexity=16,center=true)
xcopies(s*sqrt(2),n=3)
glued_circles(d=s, spread=s*sqrt(2), tangent=45);
```
You can use `anchor=` and `spin=`, just like with other attachable shapes. However, the anchor
points are based on the furthest extents of the shape, and may not be where you expect them:
```openscad-2D
glued_circles(d=40, spread=40, tangent=45)
show_anchors();
glued_circles(d=40, spread=40, tangent=45)
show_anchors();
```

View File

@ -12,15 +12,15 @@ that they support more features, and more ways to simply reorient them.
BOSL2 overrides the built-in `cube()` module. It still can be used as you expect from the built-in:
```openscad-3D
cube(100);
cube(100);
```
```openscad-3D
cube(100, center=true);
cube(100, center=true);
```
```openscad-3D
cube([50,40,20], center=true);
cube([50,40,20], center=true);
```
It is also enhanced to allow you to anchor, spin, orient, and attach it.
@ -30,21 +30,21 @@ except you can also anchor vertically in 3D, allowing anchoring to faces, edges,
and corners:
```openscad-3D
cube([50,40,20], anchor=BOTTOM);
cube([50,40,20], anchor=BOTTOM);
```
```openscad-3D
cube([50,40,20], anchor=TOP+BACK);
cube([50,40,20], anchor=TOP+BACK);
```
```openscad-3D
cube([50,40,20], anchor=TOP+FRONT+LEFT);
cube([50,40,20], anchor=TOP+FRONT+LEFT);
```
You can use `spin=` to rotate around the Z axis:
```openscad-3D
cube([50,40,20], anchor=FRONT, spin=30);
cube([50,40,20], anchor=FRONT, spin=30);
```
3D objects also gain the ability to use an extra trick with `spin=`;
@ -52,29 +52,29 @@ if you pass a list of `[X,Y,Z]` rotation angles to `spin=`, it will
rotate by the three given axis angles, similar to using `rotate()`:
```openscad-3D
cube([50,40,20], anchor=FRONT, spin=[15,0,30]);
cube([50,40,20], anchor=FRONT, spin=[15,0,30]);
```
3D objects also can be given an `orient=` argument as a vector, pointing
to where the top of the shape should be rotated towards.
```openscad-3D
cube([50,40,20], orient=UP+BACK+RIGHT);
cube([50,40,20], orient=UP+BACK+RIGHT);
```
If you use `anchor=`, `spin=`, and `orient=` together, the anchor is performed
first, then the spin, then the orient:
```openscad-3D
cube([50,40,20], anchor=FRONT);
cube([50,40,20], anchor=FRONT);
```
```openscad-3D
cube([50,40,20], anchor=FRONT, spin=45);
cube([50,40,20], anchor=FRONT, spin=45);
```
```openscad-3D
cube([50,40,20], anchor=FRONT, spin=45, orient=UP+FWD+RIGHT);
cube([50,40,20], anchor=FRONT, spin=45, orient=UP+FWD+RIGHT);
```
BOSL2 provides a `cuboid()` module that expands on `cube()`, by providing
@ -84,13 +84,13 @@ except that `cuboid()` centers by default.
You can round the edges with the `rounding=` argument:
```openscad-3D
cuboid([100,80,60], rounding=20);
cuboid([100,80,60], rounding=20);
```
Similarly, you can chamfer the edges with the `chamfer=` argument:
```openscad-3D
cuboid([100,80,60], chamfer=10);
cuboid([100,80,60], chamfer=10);
```
You can round only some edges, by using the `edges=` arguments. It can be
@ -98,80 +98,80 @@ given a few types of arguments. If you gave it a vector pointed at a face,
it will only round the edges surrounding that face:
```openscad-3D
cuboid([100,80,60], rounding=20, edges=TOP);
cuboid([100,80,60], rounding=20, edges=TOP);
```
```openscad-3D
cuboid([100,80,60], rounding=20, edges=RIGHT);
cuboid([100,80,60], rounding=20, edges=RIGHT);
```
If you give `edges=` a vector pointing at a corner, it will round all edges
that meet at that corner:
```openscad-3D
cuboid([100,80,60], rounding=20, edges=RIGHT+FRONT+TOP);
cuboid([100,80,60], rounding=20, edges=RIGHT+FRONT+TOP);
```
```openscad-3D
cuboid([100,80,60], rounding=20, edges=LEFT+FRONT+TOP);
cuboid([100,80,60], rounding=20, edges=LEFT+FRONT+TOP);
```
If you give `edges=` a vector pointing at an edge, it will round only that edge:
```openscad-3D
cuboid([100,80,60], rounding=10, edges=FRONT+TOP);
cuboid([100,80,60], rounding=10, edges=FRONT+TOP);
```
```openscad-3D
cuboid([100,80,60], rounding=10, edges=RIGHT+FRONT);
cuboid([100,80,60], rounding=10, edges=RIGHT+FRONT);
```
If you give the string "X", "Y", or "Z", then all edges aligned with the specified
axis will be rounded:
```openscad-3D
cuboid([100,80,60], rounding=10, edges="X");
cuboid([100,80,60], rounding=10, edges="X");
```
```openscad-3D
cuboid([100,80,60], rounding=10, edges="Y");
cuboid([100,80,60], rounding=10, edges="Y");
```
```openscad-3D
cuboid([100,80,60], rounding=10, edges="Z");
cuboid([100,80,60], rounding=10, edges="Z");
```
If you give a list of edge specs, then all edges referenced in the list will
be rounded:
```openscad-3D
cuboid([100,80,60], rounding=10, edges=[TOP,"Z",BOTTOM+RIGHT]);
cuboid([100,80,60], rounding=10, edges=[TOP,"Z",BOTTOM+RIGHT]);
```
The default value for `edges=` is `EDGES_ALL`, which is all edges. You can also
give an `except_edges=` argument that specifies edges to NOT round:
```openscad-3D
cuboid([100,80,60], rounding=10, except_edges=BOTTOM+RIGHT);
cuboid([100,80,60], rounding=10, except_edges=BOTTOM+RIGHT);
```
You can give the `except_edges=` argument any type of argument that you can
give to `edges=`:
```openscad-3D
cuboid([100,80,60], rounding=10, except_edges=[BOTTOM,"Z",TOP+RIGHT]);
cuboid([100,80,60], rounding=10, except_edges=[BOTTOM,"Z",TOP+RIGHT]);
```
You can give both `edges=` and `except_edges=`, to simplify edge specs:
```openscad-3D
cuboid([100,80,60], rounding=10, edges=[TOP,FRONT], except_edges=TOP+FRONT);
cuboid([100,80,60], rounding=10, edges=[TOP,FRONT], except_edges=TOP+FRONT);
```
You can specify what edges to chamfer similarly:
```openscad-3D
cuboid([100,80,60], chamfer=10, edges=[TOP,FRONT], except_edges=TOP+FRONT);
cuboid([100,80,60], chamfer=10, edges=[TOP,FRONT], except_edges=TOP+FRONT);
```
@ -180,37 +180,37 @@ BOSL2 overrides the built-in `cylinder()` module. It still can be used as you
expect from the built-in:
```openscad-3D
cylinder(r=50,h=50);
cylinder(r=50,h=50);
```
```openscad-3D
cylinder(r=50,h=50,center=true);
cylinder(r=50,h=50,center=true);
```
```openscad-3D
cylinder(d=100,h=50,center=true);
cylinder(d=100,h=50,center=true);
```
```openscad-3D
cylinder(d1=100,d2=80,h=50,center=true);
cylinder(d1=100,d2=80,h=50,center=true);
```
You can also anchor, spin, orient, and attach like the `cuboid()` module:
```openscad-3D
cylinder(r=50, h=50, anchor=TOP+FRONT);
cylinder(r=50, h=50, anchor=TOP+FRONT);
```
```openscad-3D
cylinder(r=50, h=50, anchor=BOTTOM+LEFT);
cylinder(r=50, h=50, anchor=BOTTOM+LEFT);
```
```openscad-3D
cylinder(r=50, h=50, anchor=BOTTOM+LEFT, spin=30);
cylinder(r=50, h=50, anchor=BOTTOM+LEFT, spin=30);
```
```openscad-3D
cylinder(r=50, h=50, anchor=BOTTOM, orient=UP+BACK+RIGHT);
cylinder(r=50, h=50, anchor=BOTTOM, orient=UP+BACK+RIGHT);
```
@ -219,55 +219,55 @@ rounding and chamfering of edges. You can use it similarly to `cylinder()`,
except that `cyl()` centers the cylinder by default.
```openscad-3D
cyl(r=60, l=100);
cyl(r=60, l=100);
```
```openscad-3D
cyl(d=100, l=100);
cyl(d=100, l=100);
```
```openscad-3D
cyl(d=100, l=100, anchor=TOP);
cyl(d=100, l=100, anchor=TOP);
```
You can round the edges with the `rounding=` argument:
```openscad-3D
cyl(d=100, l=100, rounding=20);
cyl(d=100, l=100, rounding=20);
```
Similarly, you can chamfer the edges with the `chamfer=` argument:
```openscad-3D
cyl(d=100, l=100, chamfer=10);
cyl(d=100, l=100, chamfer=10);
```
You can specify rounding and chamfering for each end individually:
```openscad-3D
cyl(d=100, l=100, rounding1=20);
cyl(d=100, l=100, rounding1=20);
```
```openscad-3D
cyl(d=100, l=100, rounding2=20);
cyl(d=100, l=100, rounding2=20);
```
```openscad-3D
cyl(d=100, l=100, chamfer1=10);
cyl(d=100, l=100, chamfer1=10);
```
```openscad-3D
cyl(d=100, l=100, chamfer2=10);
cyl(d=100, l=100, chamfer2=10);
```
You can even mix and match rounding and chamfering:
```openscad-3D
cyl(d=100, l=100, rounding1=20, chamfer2=10);
cyl(d=100, l=100, rounding1=20, chamfer2=10);
```
```openscad-3D
cyl(d=100, l=100, rounding2=20, chamfer1=10);
cyl(d=100, l=100, rounding2=20, chamfer1=10);
```
@ -276,26 +276,26 @@ BOSL2 overrides the built-in `sphere()` module. It still can be used as you
expect from the built-in:
```openscad-3D
sphere(r=50);
sphere(r=50);
```
```openscad-3D
sphere(d=100);
sphere(d=100);
```
You can anchor, spin, and orient `sphere()`s, much like you can with `cylinder()`
and `cube()`:
```openscad-3D
sphere(d=100, anchor=FRONT);
sphere(d=100, anchor=FRONT);
```
```openscad-3D
sphere(d=100, anchor=FRONT, spin=30);
sphere(d=100, anchor=FRONT, spin=30);
```
```openscad-3D
sphere(d=100, anchor=BOTTOM, orient=RIGHT+TOP);
sphere(d=100, anchor=BOTTOM, orient=RIGHT+TOP);
```
BOSL2 also provides `spheroid()`, which enhances `sphere()` with a few features
@ -305,27 +305,27 @@ You can use the `circum=true` argument to force the sphere to circumscribe the
ideal sphere, as opposed to the default inscribing:
```openscad-3D
spheroid(d=100, circum=true);
spheroid(d=100, circum=true);
```
The `style=` argument can choose the way that the sphere will be constructed:
The "orig" style matches the `sphere()` built-in's construction.
```openscad-3D
spheroid(d=100, style="orig", $fn=20);
spheroid(d=100, style="orig", $fn=20);
```
The "aligned" style will ensure that there is a vertex at each axis extrema,
so long as `$fn` is a multiple of 4.
```openscad-3D
spheroid(d=100, style="aligned", $fn=20);
spheroid(d=100, style="aligned", $fn=20);
```
The "stagger" style will stagger the triangulation of the vertical rows:
```openscad-3D
spheroid(d=100, style="stagger", $fn=20);
spheroid(d=100, style="stagger", $fn=20);
```
The "icosa" style will make for roughly equal-sized triangles for the entire
@ -333,7 +333,7 @@ sphere surface, based on subdividing an icosahedron. This style will round the
effective `$fn` to a multiple of 5 when constructing the spheroid:
```openscad-3D
spheroid(d=100, style="icosa", $fn=20);
spheroid(d=100, style="icosa", $fn=20);
```
The "octa" style will also make for roughly equal-sized triangles for the entire
@ -342,6 +342,6 @@ guarantees vertices at the axis extrema. This style will round the effective `$
to a multiple of 4 when constructing the spheroid:
```openscad-3D
spheroid(d=100, style="octa", $fn=20);
spheroid(d=100, style="octa", $fn=20);
```

View File

@ -14,124 +14,124 @@ just what axis is being moved along, and in which direction. It's also a bit ve
frequently used command. For these reasons, BOSL2 provides you with shortcuts for each direction.
These shortcuts are `up()`, `down()`, `fwd()`, `back()`, `left()`, and `right()`:
```openscad
#sphere(d=20);
up(30) sphere(d=20);
#sphere(d=20);
up(30) sphere(d=20);
```
```openscad
#sphere(d=20);
down(30) sphere(d=20);
#sphere(d=20);
down(30) sphere(d=20);
```
```openscad
#sphere(d=20);
fwd(30) sphere(d=20);
#sphere(d=20);
fwd(30) sphere(d=20);
```
```openscad
#sphere(d=20);
back(30) sphere(d=20);
#sphere(d=20);
back(30) sphere(d=20);
```
```openscad
#sphere(d=20);
left(30) sphere(d=20);
#sphere(d=20);
left(30) sphere(d=20);
```
```openscad
#sphere(d=20);
right(30) sphere(d=20);
#sphere(d=20);
right(30) sphere(d=20);
```
There is also a more generic `move()` command that can work just like `translate()`, or you can
specify the motion on each axis more clearly:
```openscad
#sphere(d=20);
move([30,-10]) sphere(d=20);
#sphere(d=20);
move([30,-10]) sphere(d=20);
```
```openscad
#sphere(d=20);
move(x=30,y=10) sphere(d=20);
#sphere(d=20);
move(x=30,y=10) sphere(d=20);
```
## Scaling
The `scale()` command is also fairly simple:
```openscad
scale(2) cube(10, center=true);
scale(2) cube(10, center=true);
```
```openscad
scale([1,2,3]) cube(10, center=true);
scale([1,2,3]) cube(10, center=true);
```
If you want to only change the scaling on one axis, though, BOSL2 provides clearer
commands to do just that; `xscale()`, `yscale()`, and `zscale()`:
```openscad
xscale(2) cube(10, center=true);
xscale(2) cube(10, center=true);
```
```openscad
yscale(2) cube(10, center=true);
yscale(2) cube(10, center=true);
```
```openscad
zscale(2) cube(10, center=true);
zscale(2) cube(10, center=true);
```
## Rotation
The `rotate()` command is fairly straightforward:
```openscad
rotate([0,30,0]) cube(20, center=true);
rotate([0,30,0]) cube(20, center=true);
```
It is also a bit verbose, and can, at a glance, be difficult to tell just how it is rotating.
BOSL2 provides shortcuts for rotating around each axis, for clarity; `xrot()`, `yrot()`, and `zrot()`:
```openscad
xrot(30) cube(20, center=true);
xrot(30) cube(20, center=true);
```
```openscad
yrot(30) cube(20, center=true);
yrot(30) cube(20, center=true);
```
```openscad
zrot(30) cube(20, center=true);
zrot(30) cube(20, center=true);
```
The `rot()` command is a more generic rotation command, and shorter to type than `rotate()`:
```openscad
rot([0,30,15]) cube(20, center=true);
rot([0,30,15]) cube(20, center=true);
```
All of the rotation shortcuts can take a `cp=` argument, that lets you specify a
centerpoint to rotate around:
```openscad
cp = [0,0,40];
color("blue") move(cp) sphere(d=3);
#cube(20, center=true);
xrot(45, cp=cp) cube(20, center=true);
cp = [0,0,40];
color("blue") move(cp) sphere(d=3);
#cube(20, center=true);
xrot(45, cp=cp) cube(20, center=true);
```
```openscad
cp = [0,0,40];
color("blue") move(cp) sphere(d=3);
#cube(20, center=true);
yrot(45, cp=cp) cube(20, center=true);
cp = [0,0,40];
color("blue") move(cp) sphere(d=3);
#cube(20, center=true);
yrot(45, cp=cp) cube(20, center=true);
```
```openscad
cp = [0,40,0];
color("blue") move(cp) sphere(d=3);
#cube(20, center=true);
zrot(45, cp=cp) cube(20, center=true);
cp = [0,40,0];
color("blue") move(cp) sphere(d=3);
#cube(20, center=true);
zrot(45, cp=cp) cube(20, center=true);
```
You can also do a new trick with it. You can rotate from pointing in one direction, towards another.
You give these directions using vectors:
```openscad
#cylinder(d=10, h=50);
rot(from=[0,0,1], to=[1,0,1]) cylinder(d=10, h=50);
#cylinder(d=10, h=50);
rot(from=[0,0,1], to=[1,0,1]) cylinder(d=10, h=50);
```
There are several direction vectors constants and aliases you can use for clarity:
@ -150,51 +150,51 @@ Constant | Value | Direction
This lets you rewrite the above vector rotation more clearly as:
```openscad
#cylinder(d=10, h=50);
rot(from=UP, to=UP+RIGHT) cylinder(d=10, h=50);
#cylinder(d=10, h=50);
rot(from=UP, to=UP+RIGHT) cylinder(d=10, h=50);
```
## Mirroring
The standard `mirror()` command works like this:
```openscad
#yrot(60) cylinder(h=50, d1=20, d2=10);
mirror([1,0,0]) yrot(60) cylinder(h=50, d1=20, d2=10);
#yrot(60) cylinder(h=50, d1=20, d2=10);
mirror([1,0,0]) yrot(60) cylinder(h=50, d1=20, d2=10);
```
BOSL2 provides shortcuts for mirroring across the standard axes; `xflip()`, `yflip()`, and `zflip()`:
```openscad
#yrot(60) cylinder(h=50, d1=20, d2=10);
xflip() yrot(60) cylinder(h=50, d1=20, d2=10);
#yrot(60) cylinder(h=50, d1=20, d2=10);
xflip() yrot(60) cylinder(h=50, d1=20, d2=10);
```
```openscad
#xrot(60) cylinder(h=50, d1=20, d2=10);
yflip() xrot(60) cylinder(h=50, d1=20, d2=10);
#xrot(60) cylinder(h=50, d1=20, d2=10);
yflip() xrot(60) cylinder(h=50, d1=20, d2=10);
```
```openscad
#cylinder(h=50, d1=20, d2=10);
zflip() cylinder(h=50, d1=20, d2=10);
#cylinder(h=50, d1=20, d2=10);
zflip() cylinder(h=50, d1=20, d2=10);
```
All of the flip commands can offset where the mirroring is performed:
```openscad
#zrot(30) cube(20, center=true);
xflip(x=-20) zrot(30) cube(20, center=true);
color("blue",0.25) left(20) cube([0.1,50,50], center=true);
#zrot(30) cube(20, center=true);
xflip(x=-20) zrot(30) cube(20, center=true);
color("blue",0.25) left(20) cube([0.1,50,50], center=true);
```
```openscad
#zrot(30) cube(20, center=true);
yflip(y=20) zrot(30) cube(20, center=true);
color("blue",0.25) back(20) cube([40,0.1,40], center=true);
#zrot(30) cube(20, center=true);
yflip(y=20) zrot(30) cube(20, center=true);
color("blue",0.25) back(20) cube([40,0.1,40], center=true);
```
```openscad
#xrot(30) cube(20, center=true);
zflip(z=-20) xrot(30) cube(20, center=true);
color("blue",0.25) down(20) cube([40,40,0.1], center=true);
#xrot(30) cube(20, center=true);
zflip(z=-20) xrot(30) cube(20, center=true);
color("blue",0.25) down(20) cube([40,40,0.1], center=true);
```