BOSL2/masks.scad
2019-05-16 13:21:59 -07:00

680 lines
25 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: masks.scad
// Masking shapes.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: General Masks
// Module: angle_pie_mask()
// Usage:
// angle_pie_mask(r|d, l, ang, [orient], [anchor]);
// angle_pie_mask(r1|d1, r2|d2, l, ang, [orient], [anchor]);
// Description:
// Creates a pie wedge shape that can be used to mask other shapes.
// Arguments:
// ang = angle of wedge in degrees.
// l = height of wedge.
// r = Radius of circle wedge is created from. (optional)
// r1 = Bottom radius of cone that wedge is created from. (optional)
// r2 = Upper radius of cone that wedge is created from. (optional)
// d = Diameter of circle wedge is created from. (optional)
// d1 = Bottom diameter of cone that wedge is created from. (optional)
// d2 = Upper diameter of cone that wedge is created from. (optional)
// orient = Orientation of the pie slice. Use the ORIENT_ constants from constants.h. Default: ORIENT_Z.
// anchor = Alignment of the pie slice. Use the constants from constants.h. Default: CENTER.
// Example(FR):
// angle_pie_mask(ang=30, d=100, l=20);
module angle_pie_mask(
ang=45, l=undef,
r=undef, r1=undef, r2=undef,
d=undef, d1=undef, d2=undef,
orient=ORIENT_Z, anchor=CENTER,
h=undef
) {
l = first_defined([l, h, 1]);
r1 = get_radius(r1, r, d1, d, 10);
r2 = get_radius(r2, r, d2, d, 10);
orient_and_anchor([2*r1, 2*r1, l], orient, anchor, chain=true) {
pie_slice(ang=ang, l=l+0.1, r1=r1, r2=r2, anchor=CENTER);
children();
}
}
// Module: cylinder_mask()
// Usage: Mask objects
// cylinder_mask(l, r|d, chamfer, [chamfang], [from_end], [circum], [overage], [ends_only], [orient], [anchor]);
// cylinder_mask(l, r|d, rounding, [circum], [overage], [ends_only], [orient], [anchor]);
// cylinder_mask(l, r|d, [chamfer1|rounding1], [chamfer2|rounding2], [chamfang1], [chamfang2], [from_end], [circum], [overage], [ends_only], [orient], [anchor]);
// Usage: Masking operators
// cylinder_mask(l, r|d, chamfer, [chamfang], [from_end], [circum], [overage], [ends_only], [orient], [anchor]) ...
// cylinder_mask(l, r|d, rounding, [circum], [overage], [ends_only], [orient], [anchor]) ...
// cylinder_mask(l, r|d, [chamfer1|rounding1], [chamfer2|rounding2], [chamfang1], [chamfang2], [from_end], [circum], [overage], [ends_only], [orient], [anchor]) ...
// Description:
// If passed children, bevels/chamfers and/or rounds one or both
// ends of the origin-centered cylindrical region specified. If
// passed no children, creates a mask to bevel/chamfer and/or round
// one or both ends of the cylindrical region. Difference the mask
// from the region, making sure the center of the mask object is
// anchored exactly with the center of the cylindrical region to
// be chamferred.
// Arguments:
// l = Length of the cylindrical/conical region.
// r = Radius of cylindrical region to chamfer.
// r1 = Radius of axis-negative end of the region to chamfer.
// r2 = Radius of axis-positive end of the region to chamfer.
// d = Diameter of cylindrical region to chamfer.
// d1 = Diameter of axis-negative end of the region to chamfer.
// d1 = Diameter of axis-positive end of the region to chamfer.
// chamfer = Size of the chamfers/bevels. (Default: 0.25)
// chamfer1 = Size of the chamfers/bevels for the axis-negative end of the region.
// chamfer2 = Size of the chamfers/bevels for the axis-positive end of the region.
// chamfang = Angle of chamfers/bevels in degrees from the length axis of the region. (Default: 45)
// chamfang1 = Angle of chamfer/bevel of the axis-negative end of the region, in degrees from the length axis.
// chamfang2 = Angle of chamfer/bevel of the axis-positive end of the region, in degrees from the length axis.
// rounding = The radius of the rounding on the ends of the region. Default: none.
// rounding1 = The radius of the rounding on the axis-negative end of the region.
// rounding2 = The radius of the rounding on the axis-positive end of the region.
// circum = If true, region will circumscribe the circle of the given radius/diameter.
// from_end = If true, chamfer/bevel size is measured from end of region. If false, chamfer/bevel is measured outset from the radius of the region. (Default: false)
// overage = The extra thickness of the mask. Default: `10`.
// ends_only = If true, only mask the ends and not around the middle of the cylinder.
// orient = Orientation. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Z`.
// anchor = Alignment of the region. Use the constants from `constants.scad`. Default: `CENTER`.
// Example:
// difference() {
// cylinder(h=100, r1=60, r2=30, center=true);
// cylinder_mask(l=100, r1=60, r2=30, chamfer=10, from_end=true);
// }
// Example:
// cylinder_mask(l=100, r=50, chamfer1=10, rounding2=10) {
// cube([100,50,100], center=true);
// }
module cylinder_mask(
l,
r=undef, r1=undef, r2=undef,
d=undef, d1=undef, d2=undef,
chamfer=undef, chamfer1=undef, chamfer2=undef,
chamfang=undef, chamfang1=undef, chamfang2=undef,
rounding=undef, rounding1=undef, rounding2=undef,
circum=false, from_end=false,
overage=10, ends_only=false,
orient=ORIENT_Z, anchor=CENTER
) {
r1 = get_radius(r=r, d=d, r1=r1, d1=d1, dflt=1);
r2 = get_radius(r=r, d=d, r1=r2, d1=d2, dflt=1);
sides = segs(max(r1,r2));
sc = circum? 1/cos(180/sides) : 1;
vang = atan2(l, r1-r2)/2;
ang1 = first_defined([chamfang1, chamfang, vang]);
ang2 = first_defined([chamfang2, chamfang, 90-vang]);
cham1 = first_defined([chamfer1, chamfer, 0]);
cham2 = first_defined([chamfer2, chamfer, 0]);
fil1 = first_defined([rounding1, rounding, 0]);
fil2 = first_defined([rounding2, rounding, 0]);
maxd = max(r1,r2);
if ($children > 0) {
difference() {
children();
cylinder_mask(l=l, r1=sc*r1, r2=sc*r2, chamfer1=cham1, chamfer2=cham2, chamfang1=ang1, chamfang2=ang2, rounding1=fil1, rounding2=fil2, orient=orient, from_end=from_end);
}
} else {
orient_and_anchor([2*r1, 2*r1, l], orient, anchor, chain=true) {
difference() {
union() {
chlen1 = cham1 / (from_end? 1 : tan(ang1));
chlen2 = cham2 / (from_end? 1 : tan(ang2));
if (!ends_only) {
cylinder(r=maxd+overage, h=l+2*overage, center=true);
} else {
if (cham2>0) up(l/2-chlen2) cylinder(r=maxd+overage, h=chlen2+overage, center=false);
if (cham1>0) down(l/2+overage) cylinder(r=maxd+overage, h=chlen1+overage, center=false);
if (fil2>0) up(l/2-fil2) cylinder(r=maxd+overage, h=fil2+overage, center=false);
if (fil1>0) down(l/2+overage) cylinder(r=maxd+overage, h=fil1+overage, center=false);
}
}
cyl(r1=sc*r1, r2=sc*r2, l=l, chamfer1=cham1, chamfer2=cham2, chamfang1=ang1, chamfang2=ang2, from_end=from_end, rounding1=fil1, rounding2=fil2);
}
children();
}
}
}
// Section: Chamfers
// Module: chamfer_mask()
// Usage:
// chamfer_mask(l, chamfer, [orient], [anchor]);
// Description:
// Creates a shape that can be used to chamfer a 90 degree edge.
// Difference it from the object to be chamfered. The center of
// the mask object should align exactly with the edge to be chamfered.
// Arguments:
// l = Length of mask.
// chamfer = Size of chamfer
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: vertical.
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: centered.
// Example:
// difference() {
// cube(50);
// #chamfer_mask(l=50, chamfer=10, orient=ORIENT_X, anchor=BOTTOM);
// }
module chamfer_mask(l=1, chamfer=1, orient=ORIENT_Z, anchor=CENTER) {
orient_and_anchor([chamfer*2, chamfer*2, l], orient, anchor, chain=true) {
cylinder(r=chamfer, h=l+0.1, center=true, $fn=4);
children();
}
}
// Module: chamfer_mask_x()
// Usage:
// chamfer_mask_x(l, chamfer, [anchor]);
// Description:
// Creates a shape that can be used to chamfer a 90 degree edge along the X axis.
// Difference it from the object to be chamfered. The center of the mask
// object should align exactly with the edge to be chamfered.
// Arguments:
// l = Height of mask
// chamfer = size of chamfer
// anchor = Alignment of the cylinder. Use the constants from constants.h. Default: centered.
// Example:
// difference() {
// left(40) cube(80);
// #chamfer_mask_x(l=80, chamfer=20);
// }
module chamfer_mask_x(l=1.0, chamfer=1.0, anchor=CENTER) {
chamfer_mask(l=l, chamfer=chamfer, orient=ORIENT_X, anchor=anchor) children();
}
// Module: chamfer_mask_y()
// Usage:
// chamfer_mask_y(l, chamfer, [anchor]);
// Description:
// Creates a shape that can be used to chamfer a 90 degree edge along the Y axis.
// Difference it from the object to be chamfered. The center of the mask
// object should align exactly with the edge to be chamfered.
// Arguments:
// l = Height of mask
// chamfer = size of chamfer
// anchor = Alignment of the cylinder. Use the constants from constants.h. Default: centered.
// Example:
// difference() {
// fwd(40) cube(80);
// right(80) #chamfer_mask_y(l=80, chamfer=20);
// }
module chamfer_mask_y(l=1.0, chamfer=1.0, anchor=CENTER) {
chamfer_mask(l=l, chamfer=chamfer, orient=ORIENT_Y, anchor=anchor) children();
}
// Module: chamfer_mask_z()
// Usage:
// chamfer_mask_z(l, chamfer, [anchor]);
// Description:
// Creates a shape that can be used to chamfer a 90 degree edge along the Z axis.
// Difference it from the object to be chamfered. The center of the mask
// object should align exactly with the edge to be chamfered.
// Arguments:
// l = Height of mask
// chamfer = size of chamfer
// anchor = Alignment of the cylinder. Use the constants from constants.h. Default: centered.
// Example:
// difference() {
// down(40) cube(80);
// #chamfer_mask_z(l=80, chamfer=20);
// }
module chamfer_mask_z(l=1.0, chamfer=1.0, anchor=CENTER) {
chamfer_mask(l=l, chamfer=chamfer, orient=ORIENT_Z, anchor=anchor) children();
}
// Module: chamfer()
// Usage:
// chamfer(chamfer, size, [edges]) ...
// Description:
// Chamfers the edges of a cuboid region containing childrem, centered on the origin.
// Arguments:
// chamfer = Inset of the chamfer from the edge. (Default: 1)
// size = The size of the rectangular cuboid we want to chamfer.
// edges = Which edges to chamfer. Use of [`edges()`](edges.scad#edges) from [`edges.scad`](edges.scad) is recommend.
// Description:
// You should use [`edges()`](edges.scad#edges) from [`edges.scad`](edges.scad) with the `edge` argument.
// However, if you must handle it raw, the edge ordering is this:
// [
// [Y-Z-, Y+Z-, Y-Z+, Y+Z+],
// [X-Z-, X+Z-, X-Z+, X+Z+],
// [X-Y-, X+Y-, X-Y+, X+Y+]
// ]
// Example(FR):
// chamfer(chamfer=2, size=[20,40,30]) {
// cube(size=[20,40,30], center=true);
// }
// Example(FR):
// chamfer(chamfer=2, size=[20,40,30], edges=edges([TOP,FRONT+RIGHT], except=TOP+LEFT)) {
// cube(size=[20,40,30], center=true);
// }
module chamfer(chamfer=1, size=[1,1,1], edges=EDGES_ALL)
{
difference() {
children();
difference() {
cube(size, center=true);
cuboid(size+[1,1,1]*0.02, chamfer=chamfer+0.01, edges=edges, trimcorners=true);
}
}
}
// Module: chamfer_cylinder_mask()
// Usage:
// chamfer_cylinder_mask(r|d, chamfer, [ang], [from_end], [orient])
// Description:
// Create a mask that can be used to bevel/chamfer the end of a cylindrical region.
// Difference it from the end of the region to be chamferred. The center of the mask
// object should align exactly with the center of the end of the cylindrical region
// to be chamferred.
// Arguments:
// r = Radius of cylinder to chamfer.
// d = Diameter of cylinder to chamfer. Use instead of r.
// chamfer = Size of the edge chamferred, inset from edge. (Default: 0.25)
// ang = Angle of chamfer in degrees from vertical. (Default: 45)
// from_end = If true, chamfer size is measured from end of cylinder. If false, chamfer is measured outset from the radius of the cylinder. (Default: false)
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: ORIENT_Z.
// Example:
// difference() {
// cylinder(r=50, h=100, center=true);
// up(50) #chamfer_cylinder_mask(r=50, chamfer=10);
// }
module chamfer_cylinder_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=false, orient=ORIENT_Z)
{
r = get_radius(r=r, d=d, dflt=1);
rot(orient) cylinder_mask(l=chamfer*3, r=r, chamfer2=chamfer, chamfang2=ang, from_end=from_end, ends_only=true, anchor=TOP);
}
// Module: chamfer_hole_mask()
// Usage:
// chamfer_hole_mask(r|d, chamfer, [ang], [from_end]);
// Description:
// Create a mask that can be used to bevel/chamfer the end of a cylindrical hole.
// Difference it from the hole to be chamferred. The center of the mask object
// should align exactly with the center of the end of the hole to be chamferred.
// Arguments:
// r = Radius of hole to chamfer.
// d = Diameter of hole to chamfer. Use instead of r.
// chamfer = Size of the chamfer. (Default: 0.25)
// ang = Angle of chamfer in degrees from vertical. (Default: 45)
// from_end = If true, chamfer size is measured from end of hole. If false, chamfer is measured outset from the radius of the hole. (Default: false)
// overage = The extra thickness of the mask. Default: `0.1`.
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: `ORIENT_Z`.
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: `CENTER`.
// Example:
// difference() {
// cube(100, center=true);
// cylinder(d=50, h=100.1, center=true);
// up(50) #chamfer_hole_mask(d=50, chamfer=10);
// }
// Example:
// chamfer_hole_mask(d=100, chamfer=25, ang=30, overage=10);
module chamfer_hole_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=false, overage=0.1, orient=ORIENT_Z, anchor=CENTER)
{
r = get_radius(r=r, d=d, dflt=1);
h = chamfer * (from_end? 1 : tan(90-ang));
r2 = r + chamfer * (from_end? tan(ang) : 1);
$fn = segs(r);
orient_and_anchor([2*r, 2*r, h*2], orient, anchor, size2=[2*r2, 2*r2], chain=true) {
union() {
cylinder(r=r2, h=overage, center=false);
down(h) cylinder(r1=r, r2=r2, h=h, center=false);
}
children();
}
}
// Section: Rounding
// Module: rounding_mask()
// Usage:
// rounding_mask(l|h, r, [orient], [anchor])
// Description:
// Creates a shape that can be used to round a vertical 90 degree edge.
// Difference it from the object to be rounded. The center of the mask
// object should align exactly with the edge to be rounded.
// Arguments:
// l = Length of mask.
// r = Radius of the rounding.
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: vertical.
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: centered.
// Example:
// difference() {
// cube(size=100, center=false);
// #rounding_mask(l=100, r=25, orient=ORIENT_Z, anchor=BOTTOM);
// }
module rounding_mask(l=undef, r=1.0, orient=ORIENT_Z, anchor=CENTER, h=undef)
{
l = first_defined([l, h, 1]);
sides = quantup(segs(r),4);
orient_and_anchor([2*r, 2*r, l], orient, anchor, chain=true) {
linear_extrude(height=l+0.1, convexity=4, center=true) {
difference() {
square(2*r, center=true);
xspread(2*r) yspread(2*r) circle(r=r, $fn=sides);
}
}
children();
}
}
// Module: rounding_mask_x()
// Usage:
// rounding_mask_x(l, r, [anchor])
// Description:
// Creates a shape that can be used to round a 90 degree edge oriented
// along the X axis. Difference it from the object to be rounded.
// The center of the mask object should align exactly with the edge to
// be rounded.
// Arguments:
// l = Length of mask.
// r = Radius of the rounding.
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: centered.
// Example:
// difference() {
// cube(size=100, center=false);
// #rounding_mask_x(l=100, r=25, anchor=LEFT);
// }
module rounding_mask_x(l=1.0, r=1.0, anchor=CENTER)
{
orient_and_anchor([l, 2*r, 2*r], ORIENT_Z, anchor, chain=true) {
rounding_mask(l=l, r=r, orient=ORIENT_X, anchor=CENTER)
children();
}
}
// Module: rounding_mask_y()
// Usage:
// rounding_mask_y(l, r, [anchor])
// Description:
// Creates a shape that can be used to round a 90 degree edge oriented
// along the Y axis. Difference it from the object to be rounded.
// The center of the mask object should align exactly with the edge to
// be rounded.
// Arguments:
// l = Length of mask.
// r = Radius of the rounding.
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: centered.
// Example:
// difference() {
// cube(size=100, center=false);
// right(100) #rounding_mask_y(l=100, r=25, anchor=FRONT);
// }
module rounding_mask_y(l=1.0, r=1.0, anchor=CENTER)
{
orient_and_anchor([2*r, l, 2*r], ORIENT_Z, anchor, chain=true) {
rounding_mask(l=l, r=r, orient=ORIENT_Y, anchor=CENTER)
children();
}
}
// Module: rounding_mask_z()
// Usage:
// rounding_mask_z(l, r, [anchor])
// Description:
// Creates a shape that can be used to round a 90 degree edge oriented
// along the Z axis. Difference it from the object to be rounded.
// The center of the mask object should align exactly with the edge to
// be rounded.
// Arguments:
// l = Length of mask.
// r = Radius of the rounding.
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: centered.
// Example:
// difference() {
// cube(size=100, center=false);
// #rounding_mask_z(l=100, r=25, anchor=BOTTOM);
// }
module rounding_mask_z(l=1.0, r=1.0, anchor=CENTER) rounding_mask(l=l, r=r, orient=ORIENT_Z, anchor=anchor) children();
// Module: rounding()
// Usage:
// rounding(r, size, [edges]) ...
// Description:
// Rounds the edges of a cuboid region containing the given children.
// Arguments:
// r = Radius of the rounding. (Default: 1)
// size = The size of the rectangular cuboid we want to chamfer.
// edges = Which edges to chamfer. Use of [`edges()`](edges.scad#edges) from [`edges.scad`](edges.scad) is recommend.
// Description:
// You should use [`edges()`](edges.scad#edges) from [`edges.scad`](edges.scad) to generate the edge array for the `edge` argument.
// However, if you must handle it raw, the edge ordering is this:
// [
// [Y-Z-, Y+Z-, Y-Z+, Y+Z+],
// [X-Z-, X+Z-, X-Z+, X+Z+],
// [X-Y-, X+Y-, X-Y+, X+Y+]
// ]
// Example(FR):
// rounding(r=10, size=[50,100,150], $fn=24) {
// cube(size=[50,100,150], center=true);
// }
// Example(FR,FlatSpin):
// rounding(r=10, size=[50,50,75], edges=edges([TOP,FRONT+RIGHT], except=TOP+LEFT), $fn=24) {
// cube(size=[50,50,75], center=true);
// }
module rounding(r=1, size=[1,1,1], edges=EDGES_ALL)
{
difference() {
children();
difference() {
cube(size, center=true);
cuboid(size+[1,1,1]*0.01, rounding=r, edges=edges, trimcorners=true);
}
}
}
// Module: rounding_angled_edge_mask()
// Usage:
// rounding_angled_edge_mask(h, r, [ang], [orient], [anchor]);
// Description:
// Creates a vertical mask that can be used to round the edge where two
// face meet, at any arbitrary angle. Difference it from the object to
// be rounded. The center of the mask should align exactly with the
// edge to be rounded.
// Arguments:
// h = height of vertical mask.
// r = radius of the rounding.
// ang = angle that the planes meet at.
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: `ORIENT_Z`.
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: `CENTER`.
// Example:
// difference() {
// angle_pie_mask(ang=70, h=50, d=100);
// #rounding_angled_edge_mask(h=51, r=20.0, ang=70, $fn=32);
// }
module rounding_angled_edge_mask(h=1.0, r=1.0, ang=90, orient=ORIENT_Z, anchor=CENTER)
{
sweep = 180-ang;
n = ceil(segs(r)*sweep/360);
x = r*sin(90-(ang/2))/sin(ang/2);
orient_and_anchor([2*x,2*r,h], orient, anchor, chain=true) {
linear_extrude(height=h, convexity=4, center=true) {
polygon(
points=concat(
[for (i = [0:n]) let (a=90+ang+i*sweep/n) [r*cos(a)+x, r*sin(a)+r]],
[for (i = [0:n]) let (a=90+i*sweep/n) [r*cos(a)+x, r*sin(a)-r]],
[
[min(-1, r*cos(270-ang)+x-1), r*sin(270-ang)-r],
[min(-1, r*cos(90+ang)+x-1), r*sin(90+ang)+r],
]
)
);
}
children();
}
}
// Module: rounding_angled_corner_mask()
// Usage:
// rounding_angled_corner_mask(r, ang, [orient], [anchor]);
// Description:
// Creates a shape that can be used to round the corner of an angle.
// Difference it from the object to be rounded. The center of the mask
// object should align exactly with the point of the corner to be rounded.
// Arguments:
// r = Radius of the rounding.
// ang = Angle between planes that you need to round the corner of.
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: `ORIENT_Z`.
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: `CENTER`.
// Example(Med):
// ang=60;
// difference() {
// angle_pie_mask(ang=ang, h=50, r=200);
// up(50/2) {
// #rounding_angled_corner_mask(r=20, ang=ang);
// zrot_copies([0, ang]) right(200/2) rounding_mask_x(l=200, r=20);
// }
// rounding_angled_edge_mask(h=51, r=20, ang=ang);
// }
module rounding_angled_corner_mask(r=1.0, ang=90, orient=ORIENT_Z, anchor=CENTER)
{
dx = r / tan(ang/2);
dx2 = dx / cos(ang/2) + 1;
fn = quantup(segs(r), 4);
orient_and_anchor([2*dx2, 2*dx2, r*2], orient, anchor, chain=true) {
difference() {
down(r) cylinder(r=dx2, h=r+1, center=false);
yflip_copy() {
translate([dx, r, -r]) {
hull() {
sphere(r=r, $fn=fn);
down(r*3) sphere(r=r, $fn=fn);
zrot_copies([0,ang]) {
right(r*3) sphere(r=r, $fn=fn);
}
}
}
}
}
children();
}
}
// Module: rounding_corner_mask()
// Usage:
// rounding_corner_mask(r, [anchor]);
// Description:
// Creates a shape that you can use to round 90 degree corners.
// Difference it from the object to be rounded. The center of the mask
// object should align exactly with the corner to be rounded.
// Arguments:
// r = Radius of corner rounding.
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: `CENTER`.
// Example:
// rounding_corner_mask(r=20.0);
// Example:
// difference() {
// cube(size=[30, 50, 80], center=true);
// translate([0, 25, 40]) rounding_mask_x(l=31, r=15);
// translate([15, 0, 40]) rounding_mask_y(l=51, r=15);
// translate([15, 25, 0]) rounding_mask_z(l=81, r=15);
// translate([15, 25, 40]) #rounding_corner_mask(r=15);
// }
module rounding_corner_mask(r=1.0, anchor=CENTER)
{
orient_and_anchor([2*r, 2*r, 2*r], ORIENT_Z, anchor, chain=true) {
difference() {
cube(size=r*2, center=true);
grid3d(n=[2,2,2], spacing=r*2-0.05) {
sphere(r=r);
}
}
children();
}
}
// Module: rounding_cylinder_mask()
// Usage:
// rounding_cylinder_mask(r, rounding);
// Description:
// Create a mask that can be used to round the end of a cylinder.
// Difference it from the cylinder to be rounded. The center of the
// mask object should align exactly with the center of the end of the
// cylinder to be rounded.
// Arguments:
// r = Radius of cylinder. (Default: 1.0)
// rounding = Radius of the edge rounding. (Default: 0.25)
// Example:
// difference() {
// cylinder(r=50, h=50, center=false);
// up(50) #rounding_cylinder_mask(r=50, rounding=10);
// }
// Example:
// difference() {
// cylinder(r=50, h=50, center=false);
// up(50) rounding_cylinder_mask(r=50, rounding=10);
// }
module rounding_cylinder_mask(r=1.0, rounding=0.25)
{
cylinder_mask(l=rounding*3, r=r, rounding2=rounding, overage=rounding, ends_only=true, anchor=TOP);
}
// Module: rounding_hole_mask()
// Usage:
// rounding_hole_mask(r|d, rounding);
// Description:
// Create a mask that can be used to round the edge of a circular hole.
// Difference it from the hole to be rounded. The center of the
// mask object should align exactly with the center of the end of the
// hole to be rounded.
// Arguments:
// r = Radius of hole.
// d = Diameter of hole to rounding.
// rounding = Radius of the rounding. (Default: 0.25)
// overage = The extra thickness of the mask. Default: `0.1`.
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: `ORIENT_Z`.
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: `CENTER`.
// Example(Med):
// difference() {
// cube([150,150,100], center=true);
// cylinder(r=50, h=100.1, center=true);
// up(50) #rounding_hole_mask(r=50, rounding=10);
// }
// Example:
// rounding_hole_mask(r=40, rounding=20, $fa=2, $fs=2);
module rounding_hole_mask(r=undef, d=undef, rounding=0.25, overage=0.1, orient=ORIENT_Z, anchor=CENTER)
{
r = get_radius(r=r, d=d, dflt=1);
orient_and_anchor([2*(r+rounding), 2*(r+rounding), rounding*2], orient, anchor, chain=true) {
rotate_extrude(convexity=4) {
difference() {
right(r-overage) fwd(rounding) square(rounding+overage, center=false);
right(r+rounding) fwd(rounding) circle(r=rounding);
}
}
children();
}
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap