2017-08-29 17:00:16 -07:00
//////////////////////////////////////////////////////////////////////
2019-03-22 21:13:18 -07:00
// LibFile: masks.scad
// Masking shapes.
// To use, add the following lines to the beginning of your file:
// ```
2019-04-19 00:25:10 -07:00
// include <BOSL2/std.scad>
2019-03-22 21:13:18 -07:00
// ```
2017-08-29 17:00:16 -07:00
//////////////////////////////////////////////////////////////////////
2019-03-22 21:13:18 -07:00
// Section: General Masks
2017-08-29 17:00:16 -07:00
2019-03-22 21:13:18 -07:00
// Module: angle_pie_mask()
// Usage:
2019-04-22 20:55:03 -07:00
// angle_pie_mask(r|d, l, ang, [orient], [anchor]);
// angle_pie_mask(r1|d1, r2|d2, l, ang, [orient], [anchor]);
2019-03-22 21:13:18 -07:00
// Description:
// Creates a pie wedge shape that can be used to mask other shapes.
// Arguments:
2017-08-29 17:00:16 -07:00
// ang = angle of wedge in degrees.
2019-03-22 21:13:18 -07:00
// l = height of wedge.
2017-08-29 17:00:16 -07:00
// r = Radius of circle wedge is created from. (optional)
// r1 = Bottom radius of cone that wedge is created from. (optional)
// r2 = Upper radius of cone that wedge is created from. (optional)
// d = Diameter of circle wedge is created from. (optional)
// d1 = Bottom diameter of cone that wedge is created from. (optional)
// d2 = Upper diameter of cone that wedge is created from. (optional)
2019-03-22 21:13:18 -07:00
// orient = Orientation of the pie slice. Use the ORIENT_ constants from constants.h. Default: ORIENT_Z.
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the pie slice. Use the constants from constants.h. Default: CENTER.
2019-03-22 21:13:18 -07:00
// Example(FR):
// angle_pie_mask(ang=30, d=100, l=20);
2017-08-29 17:00:16 -07:00
module angle_pie_mask (
2019-03-22 21:13:18 -07:00
ang = 45 , l = undef ,
2017-08-29 17:00:16 -07:00
r = undef , r1 = undef , r2 = undef ,
2019-03-22 21:13:18 -07:00
d = undef , d1 = undef , d2 = undef ,
2019-04-22 20:55:03 -07:00
orient = ORIENT_Z , anchor = CENTER ,
2019-04-19 17:02:17 -07:00
h = undef
2017-08-29 17:00:16 -07:00
) {
2019-03-22 21:13:18 -07:00
l = first_defined ( [ l , h , 1 ] ) ;
r1 = get_radius ( r1 , r , d1 , d , 10 ) ;
r2 = get_radius ( r2 , r , d2 , d , 10 ) ;
2019-04-22 20:55:03 -07:00
orient_and_anchor ( [ 2 * r1 , 2 * r1 , l ] , orient , anchor , chain = true ) {
pie_slice ( ang = ang , l = l + 0.1 , r1 = r1 , r2 = r2 , anchor = CENTER ) ;
2019-04-19 17:02:17 -07:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-03-22 21:13:18 -07:00
// Module: cylinder_mask()
// Usage: Mask objects
2019-04-22 20:55:03 -07:00
// cylinder_mask(l, r|d, chamfer, [chamfang], [from_end], [circum], [overage], [ends_only], [orient], [anchor]);
2019-04-24 19:42:38 -07:00
// cylinder_mask(l, r|d, rounding, [circum], [overage], [ends_only], [orient], [anchor]);
// cylinder_mask(l, r|d, [chamfer1|rounding1], [chamfer2|rounding2], [chamfang1], [chamfang2], [from_end], [circum], [overage], [ends_only], [orient], [anchor]);
2019-03-22 21:13:18 -07:00
// Usage: Masking operators
2019-04-22 20:55:03 -07:00
// cylinder_mask(l, r|d, chamfer, [chamfang], [from_end], [circum], [overage], [ends_only], [orient], [anchor]) ...
2019-04-24 19:42:38 -07:00
// cylinder_mask(l, r|d, rounding, [circum], [overage], [ends_only], [orient], [anchor]) ...
// cylinder_mask(l, r|d, [chamfer1|rounding1], [chamfer2|rounding2], [chamfang1], [chamfang2], [from_end], [circum], [overage], [ends_only], [orient], [anchor]) ...
2019-03-22 21:13:18 -07:00
// Description:
2019-04-24 19:42:38 -07:00
// If passed children, bevels/chamfers and/or rounds one or both
// ends of the origin-centered cylindrical region specified. If
// passed no children, creates a mask to bevel/chamfer and/or round
2019-03-22 21:13:18 -07:00
// one or both ends of the cylindrical region. Difference the mask
2019-04-24 19:42:38 -07:00
// from the region, making sure the center of the mask object is
// anchored exactly with the center of the cylindrical region to
// be chamferred.
2019-03-22 21:13:18 -07:00
// Arguments:
2019-03-02 12:32:15 -08:00
// l = Length of the cylindrical/conical region.
// r = Radius of cylindrical region to chamfer.
// r1 = Radius of axis-negative end of the region to chamfer.
// r2 = Radius of axis-positive end of the region to chamfer.
// d = Diameter of cylindrical region to chamfer.
// d1 = Diameter of axis-negative end of the region to chamfer.
// d1 = Diameter of axis-positive end of the region to chamfer.
// chamfer = Size of the chamfers/bevels. (Default: 0.25)
// chamfer1 = Size of the chamfers/bevels for the axis-negative end of the region.
// chamfer2 = Size of the chamfers/bevels for the axis-positive end of the region.
// chamfang = Angle of chamfers/bevels in degrees from the length axis of the region. (Default: 45)
// chamfang1 = Angle of chamfer/bevel of the axis-negative end of the region, in degrees from the length axis.
// chamfang2 = Angle of chamfer/bevel of the axis-positive end of the region, in degrees from the length axis.
2019-04-24 19:42:38 -07:00
// rounding = The radius of the rounding on the ends of the region. Default: none.
// rounding1 = The radius of the rounding on the axis-negative end of the region.
// rounding2 = The radius of the rounding on the axis-positive end of the region.
2019-03-02 12:32:15 -08:00
// circum = If true, region will circumscribe the circle of the given radius/diameter.
// from_end = If true, chamfer/bevel size is measured from end of region. If false, chamfer/bevel is measured outset from the radius of the region. (Default: false)
// overage = The extra thickness of the mask. Default: `10`.
// ends_only = If true, only mask the ends and not around the middle of the cylinder.
// orient = Orientation. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Z`.
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the region. Use the constants from `constants.scad`. Default: `CENTER`.
2019-03-02 12:32:15 -08:00
// Example:
// difference() {
// cylinder(h=100, r1=60, r2=30, center=true);
// cylinder_mask(l=100, r1=60, r2=30, chamfer=10, from_end=true);
// }
2019-03-22 21:13:18 -07:00
// Example:
2019-04-24 19:42:38 -07:00
// cylinder_mask(l=100, r=50, chamfer1=10, rounding2=10) {
2019-03-02 12:32:15 -08:00
// cube([100,50,100], center=true);
// }
module cylinder_mask (
l ,
r = undef , r1 = undef , r2 = undef ,
d = undef , d1 = undef , d2 = undef ,
chamfer = undef , chamfer1 = undef , chamfer2 = undef ,
chamfang = undef , chamfang1 = undef , chamfang2 = undef ,
2019-04-24 19:42:38 -07:00
rounding = undef , rounding1 = undef , rounding2 = undef ,
2019-03-02 12:32:15 -08:00
circum = false , from_end = false ,
overage = 10 , ends_only = false ,
2019-04-22 20:55:03 -07:00
orient = ORIENT_Z , anchor = CENTER
2019-03-02 12:32:15 -08:00
) {
r1 = get_radius ( r = r , d = d , r1 = r1 , d1 = d1 , dflt = 1 ) ;
r2 = get_radius ( r = r , d = d , r1 = r2 , d1 = d2 , dflt = 1 ) ;
sides = segs ( max ( r1 , r2 ) ) ;
sc = circum ? 1 / cos ( 180 / sides ) : 1 ;
vang = atan2 ( l , r1 - r2 ) / 2 ;
ang1 = first_defined ( [ chamfang1 , chamfang , vang ] ) ;
ang2 = first_defined ( [ chamfang2 , chamfang , 90 - vang ] ) ;
cham1 = first_defined ( [ chamfer1 , chamfer , 0 ] ) ;
cham2 = first_defined ( [ chamfer2 , chamfer , 0 ] ) ;
2019-04-24 19:42:38 -07:00
fil1 = first_defined ( [ rounding1 , rounding , 0 ] ) ;
fil2 = first_defined ( [ rounding2 , rounding , 0 ] ) ;
2019-03-02 12:32:15 -08:00
maxd = max ( r1 , r2 ) ;
if ( $children > 0 ) {
difference ( ) {
children ( ) ;
2019-04-24 19:42:38 -07:00
cylinder_mask ( l = l , r1 = sc * r1 , r2 = sc * r2 , chamfer1 = cham1 , chamfer2 = cham2 , chamfang1 = ang1 , chamfang2 = ang2 , rounding1 = fil1 , rounding2 = fil2 , orient = orient , from_end = from_end ) ;
2019-03-02 12:32:15 -08:00
}
} else {
2019-04-22 20:55:03 -07:00
orient_and_anchor ( [ 2 * r1 , 2 * r1 , l ] , orient , anchor , chain = true ) {
2019-03-02 12:32:15 -08:00
difference ( ) {
union ( ) {
chlen1 = cham1 / ( from_end ? 1 : tan ( ang1 ) ) ;
chlen2 = cham2 / ( from_end ? 1 : tan ( ang2 ) ) ;
if ( ! ends_only ) {
cylinder ( r = maxd + overage , h = l + 2 * overage , center = true ) ;
} else {
if ( cham2 > 0 ) up ( l / 2 - chlen2 ) cylinder ( r = maxd + overage , h = chlen2 + overage , center = false ) ;
if ( cham1 > 0 ) down ( l / 2 + overage ) cylinder ( r = maxd + overage , h = chlen1 + overage , center = false ) ;
if ( fil2 > 0 ) up ( l / 2 - fil2 ) cylinder ( r = maxd + overage , h = fil2 + overage , center = false ) ;
if ( fil1 > 0 ) down ( l / 2 + overage ) cylinder ( r = maxd + overage , h = fil1 + overage , center = false ) ;
}
}
2019-04-24 19:42:38 -07:00
cyl ( r1 = sc * r1 , r2 = sc * r2 , l = l , chamfer1 = cham1 , chamfer2 = cham2 , chamfang1 = ang1 , chamfang2 = ang2 , from_end = from_end , rounding1 = fil1 , rounding2 = fil2 ) ;
2019-03-02 12:32:15 -08:00
}
2019-04-19 17:02:17 -07:00
children ( ) ;
2019-03-02 12:32:15 -08:00
}
2018-12-22 02:37:39 -08:00
}
}
2019-02-22 16:20:26 -08:00
2019-03-22 21:13:18 -07:00
// Section: Chamfers
// Module: chamfer_mask()
// Usage:
2019-04-22 20:55:03 -07:00
// chamfer_mask(l, chamfer, [orient], [anchor]);
2019-03-22 21:13:18 -07:00
// Description:
// Creates a shape that can be used to chamfer a 90 degree edge.
// Difference it from the object to be chamfered. The center of
// the mask object should align exactly with the edge to be chamfered.
// Arguments:
// l = Length of mask.
// chamfer = Size of chamfer
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: vertical.
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: centered.
2019-03-22 21:13:18 -07:00
// Example:
// difference() {
// cube(50);
2019-05-16 13:21:59 -07:00
// #chamfer_mask(l=50, chamfer=10, orient=ORIENT_X, anchor=BOTTOM);
2019-03-22 21:13:18 -07:00
// }
2019-04-22 20:55:03 -07:00
module chamfer_mask ( l = 1 , chamfer = 1 , orient = ORIENT_Z , anchor = CENTER ) {
2019-05-16 13:21:59 -07:00
orient_and_anchor ( [ chamfer * 2 , chamfer * 2 , l ] , orient , anchor , chain = true ) {
cylinder ( r = chamfer , h = l + 0.1 , center = true , $fn = 4 ) ;
2019-04-19 17:02:17 -07:00
children ( ) ;
2019-03-22 21:13:18 -07:00
}
}
// Module: chamfer_mask_x()
// Usage:
2019-04-22 20:55:03 -07:00
// chamfer_mask_x(l, chamfer, [anchor]);
2019-03-22 21:13:18 -07:00
// Description:
// Creates a shape that can be used to chamfer a 90 degree edge along the X axis.
// Difference it from the object to be chamfered. The center of the mask
// object should align exactly with the edge to be chamfered.
// Arguments:
// l = Height of mask
// chamfer = size of chamfer
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the cylinder. Use the constants from constants.h. Default: centered.
2019-03-22 21:13:18 -07:00
// Example:
// difference() {
// left(40) cube(80);
// #chamfer_mask_x(l=80, chamfer=20);
// }
2019-04-22 20:55:03 -07:00
module chamfer_mask_x ( l = 1.0 , chamfer = 1.0 , anchor = CENTER ) {
chamfer_mask ( l = l , chamfer = chamfer , orient = ORIENT_X , anchor = anchor ) children ( ) ;
2019-03-22 21:13:18 -07:00
}
// Module: chamfer_mask_y()
// Usage:
2019-04-22 20:55:03 -07:00
// chamfer_mask_y(l, chamfer, [anchor]);
2019-03-22 21:13:18 -07:00
// Description:
// Creates a shape that can be used to chamfer a 90 degree edge along the Y axis.
// Difference it from the object to be chamfered. The center of the mask
// object should align exactly with the edge to be chamfered.
// Arguments:
// l = Height of mask
// chamfer = size of chamfer
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the cylinder. Use the constants from constants.h. Default: centered.
2019-03-22 21:13:18 -07:00
// Example:
// difference() {
// fwd(40) cube(80);
// right(80) #chamfer_mask_y(l=80, chamfer=20);
// }
2019-04-22 20:55:03 -07:00
module chamfer_mask_y ( l = 1.0 , chamfer = 1.0 , anchor = CENTER ) {
chamfer_mask ( l = l , chamfer = chamfer , orient = ORIENT_Y , anchor = anchor ) children ( ) ;
2019-03-22 21:13:18 -07:00
}
// Module: chamfer_mask_z()
// Usage:
2019-04-22 20:55:03 -07:00
// chamfer_mask_z(l, chamfer, [anchor]);
2019-03-22 21:13:18 -07:00
// Description:
// Creates a shape that can be used to chamfer a 90 degree edge along the Z axis.
// Difference it from the object to be chamfered. The center of the mask
// object should align exactly with the edge to be chamfered.
// Arguments:
// l = Height of mask
// chamfer = size of chamfer
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the cylinder. Use the constants from constants.h. Default: centered.
2019-03-22 21:13:18 -07:00
// Example:
// difference() {
// down(40) cube(80);
// #chamfer_mask_z(l=80, chamfer=20);
// }
2019-04-22 20:55:03 -07:00
module chamfer_mask_z ( l = 1.0 , chamfer = 1.0 , anchor = CENTER ) {
chamfer_mask ( l = l , chamfer = chamfer , orient = ORIENT_Z , anchor = anchor ) children ( ) ;
2019-03-22 21:13:18 -07:00
}
// Module: chamfer()
// Usage:
// chamfer(chamfer, size, [edges]) ...
// Description:
// Chamfers the edges of a cuboid region containing childrem, centered on the origin.
// Arguments:
// chamfer = Inset of the chamfer from the edge. (Default: 1)
// size = The size of the rectangular cuboid we want to chamfer.
2019-05-07 22:42:44 -07:00
// edges = Which edges to chamfer. Use of [`edges()`](edges.scad#edges) from [`edges.scad`](edges.scad) is recommend.
2019-03-22 21:13:18 -07:00
// Description:
2019-05-07 22:42:44 -07:00
// You should use [`edges()`](edges.scad#edges) from [`edges.scad`](edges.scad) with the `edge` argument.
2019-03-22 21:13:18 -07:00
// However, if you must handle it raw, the edge ordering is this:
// [
2019-05-07 22:42:44 -07:00
// [Y-Z-, Y+Z-, Y-Z+, Y+Z+],
// [X-Z-, X+Z-, X-Z+, X+Z+],
// [X-Y-, X+Y-, X-Y+, X+Y+]
2019-03-22 21:13:18 -07:00
// ]
// Example(FR):
// chamfer(chamfer=2, size=[20,40,30]) {
// cube(size=[20,40,30], center=true);
// }
// Example(FR):
2019-05-07 22:42:44 -07:00
// chamfer(chamfer=2, size=[20,40,30], edges=edges([TOP,FRONT+RIGHT], except=TOP+LEFT)) {
2019-03-22 21:13:18 -07:00
// cube(size=[20,40,30], center=true);
// }
module chamfer ( chamfer = 1 , size = [ 1 , 1 , 1 ] , edges = EDGES_ALL )
{
difference ( ) {
children ( ) ;
difference ( ) {
cube ( size , center = true ) ;
cuboid ( size + [ 1 , 1 , 1 ] * 0.02 , chamfer = chamfer + 0.01 , edges = edges , trimcorners = true ) ;
}
}
}
// Module: chamfer_cylinder_mask()
// Usage:
// chamfer_cylinder_mask(r|d, chamfer, [ang], [from_end], [orient])
// Description:
// Create a mask that can be used to bevel/chamfer the end of a cylindrical region.
// Difference it from the end of the region to be chamferred. The center of the mask
// object should align exactly with the center of the end of the cylindrical region
// to be chamferred.
// Arguments:
// r = Radius of cylinder to chamfer.
// d = Diameter of cylinder to chamfer. Use instead of r.
// chamfer = Size of the edge chamferred, inset from edge. (Default: 0.25)
// ang = Angle of chamfer in degrees from vertical. (Default: 45)
// from_end = If true, chamfer size is measured from end of cylinder. If false, chamfer is measured outset from the radius of the cylinder. (Default: false)
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: ORIENT_Z.
// Example:
// difference() {
// cylinder(r=50, h=100, center=true);
// up(50) #chamfer_cylinder_mask(r=50, chamfer=10);
// }
2019-05-16 13:21:59 -07:00
module chamfer_cylinder_mask ( r = undef , d = undef , chamfer = 0.25 , ang = 45 , from_end = false , orient = ORIENT_Z )
2019-03-22 21:13:18 -07:00
{
r = get_radius ( r = r , d = d , dflt = 1 ) ;
2019-05-16 13:21:59 -07:00
rot ( orient ) cylinder_mask ( l = chamfer * 3 , r = r , chamfer2 = chamfer , chamfang2 = ang , from_end = from_end , ends_only = true , anchor = TOP ) ;
2019-03-22 21:13:18 -07:00
}
// Module: chamfer_hole_mask()
// Usage:
// chamfer_hole_mask(r|d, chamfer, [ang], [from_end]);
// Description:
// Create a mask that can be used to bevel/chamfer the end of a cylindrical hole.
// Difference it from the hole to be chamferred. The center of the mask object
// should align exactly with the center of the end of the hole to be chamferred.
// Arguments:
2019-02-22 16:20:26 -08:00
// r = Radius of hole to chamfer.
// d = Diameter of hole to chamfer. Use instead of r.
// chamfer = Size of the chamfer. (Default: 0.25)
// ang = Angle of chamfer in degrees from vertical. (Default: 45)
// from_end = If true, chamfer size is measured from end of hole. If false, chamfer is measured outset from the radius of the hole. (Default: false)
2019-04-18 15:54:11 -07:00
// overage = The extra thickness of the mask. Default: `0.1`.
2019-04-19 17:02:17 -07:00
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: `ORIENT_Z`.
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: `CENTER`.
2019-02-22 16:20:26 -08:00
// Example:
// difference() {
// cube(100, center=true);
// cylinder(d=50, h=100.1, center=true);
2019-03-22 21:13:18 -07:00
// up(50) #chamfer_hole_mask(d=50, chamfer=10);
2019-02-22 16:20:26 -08:00
// }
2019-04-18 15:54:11 -07:00
// Example:
// chamfer_hole_mask(d=100, chamfer=25, ang=30, overage=10);
2019-04-22 20:55:03 -07:00
module chamfer_hole_mask ( r = undef , d = undef , chamfer = 0.25 , ang = 45 , from_end = false , overage = 0.1 , orient = ORIENT_Z , anchor = CENTER )
2019-02-22 16:20:26 -08:00
{
2019-04-18 15:54:11 -07:00
r = get_radius ( r = r , d = d , dflt = 1 ) ;
2019-02-22 16:20:26 -08:00
h = chamfer * ( from_end ? 1 : tan ( 90 - ang ) ) ;
r2 = r + chamfer * ( from_end ? tan ( ang ) : 1 ) ;
2019-04-18 15:54:11 -07:00
$fn = segs ( r ) ;
2019-04-22 20:55:03 -07:00
orient_and_anchor ( [ 2 * r , 2 * r , h * 2 ] , orient , anchor , size2 = [ 2 * r2 , 2 * r2 ] , chain = true ) {
2019-04-18 15:54:11 -07:00
union ( ) {
cylinder ( r = r2 , h = overage , center = false ) ;
down ( h ) cylinder ( r1 = r , r2 = r2 , h = h , center = false ) ;
}
2019-04-19 17:02:17 -07:00
children ( ) ;
2019-04-18 15:54:11 -07:00
}
2019-02-22 16:20:26 -08:00
}
2019-04-24 19:42:38 -07:00
// Section: Rounding
2019-03-22 21:13:18 -07:00
2019-04-24 19:42:38 -07:00
// Module: rounding_mask()
2019-03-22 21:13:18 -07:00
// Usage:
2019-04-24 19:42:38 -07:00
// rounding_mask(l|h, r, [orient], [anchor])
2019-03-22 21:13:18 -07:00
// Description:
2019-04-24 19:42:38 -07:00
// Creates a shape that can be used to round a vertical 90 degree edge.
// Difference it from the object to be rounded. The center of the mask
// object should align exactly with the edge to be rounded.
2019-03-22 21:13:18 -07:00
// Arguments:
// l = Length of mask.
2019-04-24 19:42:38 -07:00
// r = Radius of the rounding.
2019-03-22 21:13:18 -07:00
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: vertical.
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: centered.
2017-08-29 17:00:16 -07:00
// Example:
// difference() {
// cube(size=100, center=false);
2019-05-16 13:21:59 -07:00
// #rounding_mask(l=100, r=25, orient=ORIENT_Z, anchor=BOTTOM);
2017-08-29 17:00:16 -07:00
// }
2019-04-24 19:42:38 -07:00
module rounding_mask ( l = undef , r = 1.0 , orient = ORIENT_Z , anchor = CENTER , h = undef )
2017-08-29 17:00:16 -07:00
{
2019-03-22 21:13:18 -07:00
l = first_defined ( [ l , h , 1 ] ) ;
sides = quantup ( segs ( r ) , 4 ) ;
2019-04-22 20:55:03 -07:00
orient_and_anchor ( [ 2 * r , 2 * r , l ] , orient , anchor , chain = true ) {
2019-03-22 21:13:18 -07:00
linear_extrude ( height = l + 0.1 , convexity = 4 , center = true ) {
difference ( ) {
square ( 2 * r , center = true ) ;
xspread ( 2 * r ) yspread ( 2 * r ) circle ( r = r , $fn = sides ) ;
}
}
2019-04-19 17:02:17 -07:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-04-24 19:42:38 -07:00
// Module: rounding_mask_x()
2019-03-22 21:13:18 -07:00
// Usage:
2019-04-24 19:42:38 -07:00
// rounding_mask_x(l, r, [anchor])
2019-03-22 21:13:18 -07:00
// Description:
2019-04-24 19:42:38 -07:00
// Creates a shape that can be used to round a 90 degree edge oriented
// along the X axis. Difference it from the object to be rounded.
2019-03-22 21:13:18 -07:00
// The center of the mask object should align exactly with the edge to
2019-04-24 19:42:38 -07:00
// be rounded.
2019-03-22 21:13:18 -07:00
// Arguments:
// l = Length of mask.
2019-04-24 19:42:38 -07:00
// r = Radius of the rounding.
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: centered.
2019-03-22 21:13:18 -07:00
// Example:
// difference() {
// cube(size=100, center=false);
2019-05-16 13:21:59 -07:00
// #rounding_mask_x(l=100, r=25, anchor=LEFT);
2019-03-22 21:13:18 -07:00
// }
2019-05-16 13:21:59 -07:00
module rounding_mask_x ( l = 1.0 , r = 1.0 , anchor = CENTER )
{
orient_and_anchor ( [ l , 2 * r , 2 * r ] , ORIENT_Z , anchor , chain = true ) {
rounding_mask ( l = l , r = r , orient = ORIENT_X , anchor = CENTER )
children ( ) ;
}
}
2019-03-22 21:13:18 -07:00
2019-04-24 19:42:38 -07:00
// Module: rounding_mask_y()
2019-03-22 21:13:18 -07:00
// Usage:
2019-04-24 19:42:38 -07:00
// rounding_mask_y(l, r, [anchor])
2019-03-22 21:13:18 -07:00
// Description:
2019-04-24 19:42:38 -07:00
// Creates a shape that can be used to round a 90 degree edge oriented
// along the Y axis. Difference it from the object to be rounded.
2019-03-22 21:13:18 -07:00
// The center of the mask object should align exactly with the edge to
2019-04-24 19:42:38 -07:00
// be rounded.
2019-03-22 21:13:18 -07:00
// Arguments:
// l = Length of mask.
2019-04-24 19:42:38 -07:00
// r = Radius of the rounding.
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: centered.
2019-03-22 21:13:18 -07:00
// Example:
// difference() {
// cube(size=100, center=false);
2019-05-16 13:21:59 -07:00
// right(100) #rounding_mask_y(l=100, r=25, anchor=FRONT);
2019-03-22 21:13:18 -07:00
// }
2019-05-16 13:21:59 -07:00
module rounding_mask_y ( l = 1.0 , r = 1.0 , anchor = CENTER )
{
orient_and_anchor ( [ 2 * r , l , 2 * r ] , ORIENT_Z , anchor , chain = true ) {
rounding_mask ( l = l , r = r , orient = ORIENT_Y , anchor = CENTER )
children ( ) ;
}
}
2019-03-22 21:13:18 -07:00
2019-04-24 19:42:38 -07:00
// Module: rounding_mask_z()
2019-03-22 21:13:18 -07:00
// Usage:
2019-04-24 19:42:38 -07:00
// rounding_mask_z(l, r, [anchor])
2019-03-22 21:13:18 -07:00
// Description:
2019-04-24 19:42:38 -07:00
// Creates a shape that can be used to round a 90 degree edge oriented
// along the Z axis. Difference it from the object to be rounded.
2019-03-22 21:13:18 -07:00
// The center of the mask object should align exactly with the edge to
2019-04-24 19:42:38 -07:00
// be rounded.
2019-03-22 21:13:18 -07:00
// Arguments:
// l = Length of mask.
2019-04-24 19:42:38 -07:00
// r = Radius of the rounding.
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: centered.
2019-03-22 21:13:18 -07:00
// Example:
// difference() {
// cube(size=100, center=false);
2019-05-16 13:21:59 -07:00
// #rounding_mask_z(l=100, r=25, anchor=BOTTOM);
2019-03-22 21:13:18 -07:00
// }
2019-04-24 19:42:38 -07:00
module rounding_mask_z ( l = 1.0 , r = 1.0 , anchor = CENTER ) rounding_mask ( l = l , r = r , orient = ORIENT_Z , anchor = anchor ) children ( ) ;
2019-03-22 21:13:18 -07:00
2019-04-24 19:42:38 -07:00
// Module: rounding()
2019-03-22 21:13:18 -07:00
// Usage:
2019-04-24 19:42:38 -07:00
// rounding(r, size, [edges]) ...
2019-03-22 21:13:18 -07:00
// Description:
2019-04-24 19:42:38 -07:00
// Rounds the edges of a cuboid region containing the given children.
2019-03-22 21:13:18 -07:00
// Arguments:
2019-04-24 19:42:38 -07:00
// r = Radius of the rounding. (Default: 1)
2019-02-19 20:53:27 -08:00
// size = The size of the rectangular cuboid we want to chamfer.
2019-05-07 22:42:44 -07:00
// edges = Which edges to chamfer. Use of [`edges()`](edges.scad#edges) from [`edges.scad`](edges.scad) is recommend.
2019-03-22 21:13:18 -07:00
// Description:
2019-05-07 22:42:44 -07:00
// You should use [`edges()`](edges.scad#edges) from [`edges.scad`](edges.scad) to generate the edge array for the `edge` argument.
2019-03-22 21:13:18 -07:00
// However, if you must handle it raw, the edge ordering is this:
// [
2019-05-07 22:42:44 -07:00
// [Y-Z-, Y+Z-, Y-Z+, Y+Z+],
// [X-Z-, X+Z-, X-Z+, X+Z+],
// [X-Y-, X+Y-, X-Y+, X+Y+]
2019-03-22 21:13:18 -07:00
// ]
// Example(FR):
2019-04-24 19:42:38 -07:00
// rounding(r=10, size=[50,100,150], $fn=24) {
2019-02-19 20:53:27 -08:00
// cube(size=[50,100,150], center=true);
// }
2019-03-22 21:13:18 -07:00
// Example(FR,FlatSpin):
2019-05-07 22:42:44 -07:00
// rounding(r=10, size=[50,50,75], edges=edges([TOP,FRONT+RIGHT], except=TOP+LEFT), $fn=24) {
2019-03-22 21:13:18 -07:00
// cube(size=[50,50,75], center=true);
// }
2019-04-24 19:42:38 -07:00
module rounding ( r = 1 , size = [ 1 , 1 , 1 ] , edges = EDGES_ALL )
2019-02-19 20:53:27 -08:00
{
difference ( ) {
children ( ) ;
2019-03-22 21:13:18 -07:00
difference ( ) {
cube ( size , center = true ) ;
2019-04-24 19:42:38 -07:00
cuboid ( size + [ 1 , 1 , 1 ] * 0.01 , rounding = r , edges = edges , trimcorners = true ) ;
2019-02-19 20:53:27 -08:00
}
}
}
2019-04-24 19:42:38 -07:00
// Module: rounding_angled_edge_mask()
2019-03-22 21:13:18 -07:00
// Usage:
2019-04-24 19:42:38 -07:00
// rounding_angled_edge_mask(h, r, [ang], [orient], [anchor]);
2019-03-22 21:13:18 -07:00
// Description:
2019-04-24 19:42:38 -07:00
// Creates a vertical mask that can be used to round the edge where two
2019-03-22 21:13:18 -07:00
// face meet, at any arbitrary angle. Difference it from the object to
2019-04-24 19:42:38 -07:00
// be rounded. The center of the mask should align exactly with the
// edge to be rounded.
2019-03-22 21:13:18 -07:00
// Arguments:
2017-08-29 17:00:16 -07:00
// h = height of vertical mask.
2019-04-24 19:42:38 -07:00
// r = radius of the rounding.
2017-08-29 17:00:16 -07:00
// ang = angle that the planes meet at.
2019-04-19 17:02:17 -07:00
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: `ORIENT_Z`.
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: `CENTER`.
2017-08-29 17:00:16 -07:00
// Example:
2018-11-26 01:53:02 -08:00
// difference() {
// angle_pie_mask(ang=70, h=50, d=100);
2019-04-24 19:42:38 -07:00
// #rounding_angled_edge_mask(h=51, r=20.0, ang=70, $fn=32);
2018-11-26 01:53:02 -08:00
// }
2019-04-24 19:42:38 -07:00
module rounding_angled_edge_mask ( h = 1.0 , r = 1.0 , ang = 90 , orient = ORIENT_Z , anchor = CENTER )
2017-08-29 17:00:16 -07:00
{
sweep = 180 - ang ;
n = ceil ( segs ( r ) * sweep / 360 ) ;
x = r * sin ( 90 - ( ang / 2 ) ) / sin ( ang / 2 ) ;
2019-04-22 20:55:03 -07:00
orient_and_anchor ( [ 2 * x , 2 * r , h ] , orient , anchor , chain = true ) {
2019-04-19 17:02:17 -07:00
linear_extrude ( height = h , convexity = 4 , center = true ) {
polygon (
points = concat (
[ for ( i = [ 0 : n ] ) let ( a = 90 + ang + i * sweep / n ) [ r * cos ( a ) + x , r * sin ( a ) + r ] ] ,
[ for ( i = [ 0 : n ] ) let ( a = 90 + i * sweep / n ) [ r * cos ( a ) + x , r * sin ( a ) - r ] ] ,
[
[ min ( - 1 , r * cos ( 270 - ang ) + x - 1 ) , r * sin ( 270 - ang ) - r ] ,
[ min ( - 1 , r * cos ( 90 + ang ) + x - 1 ) , r * sin ( 90 + ang ) + r ] ,
]
)
) ;
}
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-04-24 19:42:38 -07:00
// Module: rounding_angled_corner_mask()
2019-03-22 21:13:18 -07:00
// Usage:
2019-04-24 19:42:38 -07:00
// rounding_angled_corner_mask(r, ang, [orient], [anchor]);
2019-03-22 21:13:18 -07:00
// Description:
2019-04-24 19:42:38 -07:00
// Creates a shape that can be used to round the corner of an angle.
// Difference it from the object to be rounded. The center of the mask
// object should align exactly with the point of the corner to be rounded.
2019-03-22 21:13:18 -07:00
// Arguments:
2019-04-24 19:42:38 -07:00
// r = Radius of the rounding.
// ang = Angle between planes that you need to round the corner of.
2019-04-19 17:02:17 -07:00
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: `ORIENT_Z`.
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: `CENTER`.
2019-05-16 13:21:59 -07:00
// Example(Med):
2018-11-26 01:53:02 -08:00
// ang=60;
// difference() {
// angle_pie_mask(ang=ang, h=50, r=200);
// up(50/2) {
2019-04-24 19:42:38 -07:00
// #rounding_angled_corner_mask(r=20, ang=ang);
// zrot_copies([0, ang]) right(200/2) rounding_mask_x(l=200, r=20);
2018-11-26 01:53:02 -08:00
// }
2019-04-24 19:42:38 -07:00
// rounding_angled_edge_mask(h=51, r=20, ang=ang);
2018-11-26 01:53:02 -08:00
// }
2019-04-24 19:42:38 -07:00
module rounding_angled_corner_mask ( r = 1.0 , ang = 90 , orient = ORIENT_Z , anchor = CENTER )
2017-08-29 17:00:16 -07:00
{
2019-04-24 19:42:38 -07:00
dx = r / tan ( ang / 2 ) ;
2019-04-19 17:02:17 -07:00
dx2 = dx / cos ( ang / 2 ) + 1 ;
2019-04-24 19:42:38 -07:00
fn = quantup ( segs ( r ) , 4 ) ;
orient_and_anchor ( [ 2 * dx2 , 2 * dx2 , r * 2 ] , orient , anchor , chain = true ) {
2019-04-19 17:02:17 -07:00
difference ( ) {
2019-04-24 19:42:38 -07:00
down ( r ) cylinder ( r = dx2 , h = r + 1 , center = false ) ;
2019-04-19 17:02:17 -07:00
yflip_copy ( ) {
2019-04-24 19:42:38 -07:00
translate ( [ dx , r , - r ] ) {
2019-04-19 17:02:17 -07:00
hull ( ) {
2019-04-24 19:42:38 -07:00
sphere ( r = r , $fn = fn ) ;
down ( r * 3 ) sphere ( r = r , $fn = fn ) ;
2019-04-19 17:02:17 -07:00
zrot_copies ( [ 0 , ang ] ) {
2019-04-24 19:42:38 -07:00
right ( r * 3 ) sphere ( r = r , $fn = fn ) ;
2019-04-19 17:02:17 -07:00
}
2017-08-29 17:00:16 -07:00
}
}
}
}
2019-04-19 17:02:17 -07:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-04-24 19:42:38 -07:00
// Module: rounding_corner_mask()
2019-03-22 21:13:18 -07:00
// Usage:
2019-04-24 19:42:38 -07:00
// rounding_corner_mask(r, [anchor]);
2019-03-22 21:13:18 -07:00
// Description:
2019-04-24 19:42:38 -07:00
// Creates a shape that you can use to round 90 degree corners.
// Difference it from the object to be rounded. The center of the mask
// object should align exactly with the corner to be rounded.
2019-03-22 21:13:18 -07:00
// Arguments:
2019-04-24 19:42:38 -07:00
// r = Radius of corner rounding.
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: `CENTER`.
2017-08-29 17:00:16 -07:00
// Example:
2019-04-24 19:42:38 -07:00
// rounding_corner_mask(r=20.0);
2019-03-22 21:13:18 -07:00
// Example:
2017-08-29 17:00:16 -07:00
// difference() {
2019-03-22 21:13:18 -07:00
// cube(size=[30, 50, 80], center=true);
2019-04-24 19:42:38 -07:00
// translate([0, 25, 40]) rounding_mask_x(l=31, r=15);
// translate([15, 0, 40]) rounding_mask_y(l=51, r=15);
// translate([15, 25, 0]) rounding_mask_z(l=81, r=15);
// translate([15, 25, 40]) #rounding_corner_mask(r=15);
2017-08-29 17:00:16 -07:00
// }
2019-04-24 19:42:38 -07:00
module rounding_corner_mask ( r = 1.0 , anchor = CENTER )
2017-08-29 17:00:16 -07:00
{
2019-04-22 20:55:03 -07:00
orient_and_anchor ( [ 2 * r , 2 * r , 2 * r ] , ORIENT_Z , anchor , chain = true ) {
2019-04-19 17:02:17 -07:00
difference ( ) {
cube ( size = r * 2 , center = true ) ;
grid3d ( n = [ 2 , 2 , 2 ] , spacing = r * 2 - 0.05 ) {
sphere ( r = r ) ;
}
2017-08-29 17:00:16 -07:00
}
2019-04-19 17:02:17 -07:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-04-24 19:42:38 -07:00
// Module: rounding_cylinder_mask()
2019-03-22 21:13:18 -07:00
// Usage:
2019-04-24 19:42:38 -07:00
// rounding_cylinder_mask(r, rounding);
2019-03-22 21:13:18 -07:00
// Description:
// Create a mask that can be used to round the end of a cylinder.
2019-04-24 19:42:38 -07:00
// Difference it from the cylinder to be rounded. The center of the
2019-03-22 21:13:18 -07:00
// mask object should align exactly with the center of the end of the
2019-04-24 19:42:38 -07:00
// cylinder to be rounded.
2019-03-22 21:13:18 -07:00
// Arguments:
2019-04-24 19:42:38 -07:00
// r = Radius of cylinder. (Default: 1.0)
// rounding = Radius of the edge rounding. (Default: 0.25)
2017-08-29 17:00:16 -07:00
// Example:
// difference() {
2019-03-22 21:13:18 -07:00
// cylinder(r=50, h=50, center=false);
2019-04-24 19:42:38 -07:00
// up(50) #rounding_cylinder_mask(r=50, rounding=10);
2019-03-22 21:13:18 -07:00
// }
// Example:
// difference() {
2019-05-16 13:21:59 -07:00
// cylinder(r=50, h=50, center=false);
// up(50) rounding_cylinder_mask(r=50, rounding=10);
2017-08-29 17:00:16 -07:00
// }
2019-04-24 19:42:38 -07:00
module rounding_cylinder_mask ( r = 1.0 , rounding = 0.25 )
2017-08-29 17:00:16 -07:00
{
2019-05-16 13:21:59 -07:00
cylinder_mask ( l = rounding * 3 , r = r , rounding2 = rounding , overage = rounding , ends_only = true , anchor = TOP ) ;
2017-08-29 17:00:16 -07:00
}
2019-04-24 19:42:38 -07:00
// Module: rounding_hole_mask()
2019-03-22 21:13:18 -07:00
// Usage:
2019-04-24 19:42:38 -07:00
// rounding_hole_mask(r|d, rounding);
2019-03-22 21:13:18 -07:00
// Description:
// Create a mask that can be used to round the edge of a circular hole.
2019-04-24 19:42:38 -07:00
// Difference it from the hole to be rounded. The center of the
2019-03-22 21:13:18 -07:00
// mask object should align exactly with the center of the end of the
2019-04-24 19:42:38 -07:00
// hole to be rounded.
2019-03-22 21:13:18 -07:00
// Arguments:
2019-04-24 19:42:38 -07:00
// r = Radius of hole.
// d = Diameter of hole to rounding.
// rounding = Radius of the rounding. (Default: 0.25)
2019-04-18 15:54:11 -07:00
// overage = The extra thickness of the mask. Default: `0.1`.
2019-04-19 17:02:17 -07:00
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: `ORIENT_Z`.
2019-04-22 20:55:03 -07:00
// anchor = Alignment of the mask. Use the constants from `constants.h`. Default: `CENTER`.
2019-05-16 13:21:59 -07:00
// Example(Med):
2017-08-29 17:00:16 -07:00
// difference() {
// cube([150,150,100], center=true);
// cylinder(r=50, h=100.1, center=true);
2019-04-24 19:42:38 -07:00
// up(50) #rounding_hole_mask(r=50, rounding=10);
2017-08-29 17:00:16 -07:00
// }
2019-04-18 15:54:11 -07:00
// Example:
2019-04-24 19:42:38 -07:00
// rounding_hole_mask(r=40, rounding=20, $fa=2, $fs=2);
module rounding_hole_mask ( r = undef , d = undef , rounding = 0.25 , overage = 0.1 , orient = ORIENT_Z , anchor = CENTER )
2017-08-29 17:00:16 -07:00
{
2019-04-18 16:13:47 -07:00
r = get_radius ( r = r , d = d , dflt = 1 ) ;
2019-04-24 19:42:38 -07:00
orient_and_anchor ( [ 2 * ( r + rounding ) , 2 * ( r + rounding ) , rounding * 2 ] , orient , anchor , chain = true ) {
2019-04-19 17:02:17 -07:00
rotate_extrude ( convexity = 4 ) {
difference ( ) {
2019-04-24 19:42:38 -07:00
right ( r - overage ) fwd ( rounding ) square ( rounding + overage , center = false ) ;
right ( r + rounding ) fwd ( rounding ) circle ( r = rounding ) ;
2017-08-29 17:00:16 -07:00
}
}
2019-04-19 17:02:17 -07:00
children ( ) ;
2017-08-29 17:00:16 -07:00
}
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap