BOSL2/math.scad
2020-02-28 17:40:52 -05:00

905 lines
29 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: math.scad
// Math helper functions.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: Math Constants
PHI = (1+sqrt(5))/2; // The golden ratio phi.
EPSILON = 1e-9; // A really small value useful in comparing FP numbers. ie: abs(a-b)<EPSILON
INF = 1/0; // The value `inf`, useful for comparisons.
NAN = acos(2); // The value `nan`, useful for comparisons.
// Section: Simple math
// Function: sqr()
// Usage:
// sqr(x);
// Description:
// Returns the square of the given number.
// Examples:
// sqr(3); // Returns: 9
// sqr(-4); // Returns: 16
function sqr(x) = x*x;
// Function: log2()
// Usage:
// foo = log2(x);
// Description:
// Returns the logarithm base 2 of the value given.
// Examples:
// log2(0.125); // Returns: -3
// log2(16); // Returns: 4
// log2(256); // Returns: 8
function log2(x) = ln(x)/ln(2);
// Function: hypot()
// Usage:
// l = hypot(x,y,[z]);
// Description:
// Calculate hypotenuse length of a 2D or 3D triangle.
// Arguments:
// x = Length on the X axis.
// y = Length on the Y axis.
// z = Length on the Z axis. Optional.
// Example:
// l = hypot(3,4); // Returns: 5
// l = hypot(3,4,5); // Returns: ~7.0710678119
function hypot(x,y,z=0) = norm([x,y,z]);
// Function: factorial()
// Usage:
// x = factorial(n,[d]);
// Description:
// Returns the factorial of the given integer value.
// Arguments:
// n = The integer number to get the factorial of. (n!)
// d = If given, the returned value will be (n! / d!)
// Example:
// x = factorial(4); // Returns: 24
// y = factorial(6); // Returns: 720
// z = factorial(9); // Returns: 362880
function factorial(n,d=1) = product([for (i=[n:-1:d]) i]);
// Function: lerp()
// Usage:
// x = lerp(a, b, u);
// l = lerp(a, b, LIST);
// Description:
// Interpolate between two values or vectors.
// If `u` is given as a number, returns the single interpolated value.
// If `u` is 0.0, then the value of `a` is returned.
// If `u` is 1.0, then the value of `b` is returned.
// If `u` is a range, or list of numbers, returns a list of interpolated values.
// It is valid to use a `u` value outside the range 0 to 1. The result will be a predicted
// value along the slope formed by `a` and `b`, but not between those two values.
// Arguments:
// a = First value or vector.
// b = Second value or vector.
// u = The proportion from `a` to `b` to calculate. Standard range is 0.0 to 1.0, inclusive. If given as a list or range of values, returns a list of results.
// Example:
// x = lerp(0,20,0.3); // Returns: 6
// x = lerp(0,20,0.8); // Returns: 16
// x = lerp(0,20,-0.1); // Returns: -2
// x = lerp(0,20,1.1); // Returns: 22
// p = lerp([0,0],[20,10],0.25); // Returns [5,2.5]
// l = lerp(0,20,[0.4,0.6]); // Returns: [8,12]
// l = lerp(0,20,[0.25:0.25:0.75]); // Returns: [5,10,15]
// Example(2D):
// p1 = [-50,-20]; p2 = [50,30];
// stroke([p1,p2]);
// pts = lerp(p1, p2, [0:1/8:1]);
// // Points colored in ROYGBIV order.
// rainbow(pts) translate($item) circle(d=3,$fn=8);
function lerp(a,b,u) =
is_num(u)? (1-u)*a + u*b :
[for (v = u) lerp(a,b,v)];
// Section: Hyperbolic Trigonometry
// Function: sinh()
// Description: Takes a value `x`, and returns the hyperbolic sine of it.
function sinh(x) =
(exp(x)-exp(-x))/2;
// Function: cosh()
// Description: Takes a value `x`, and returns the hyperbolic cosine of it.
function cosh(x) =
(exp(x)+exp(-x))/2;
// Function: tanh()
// Description: Takes a value `x`, and returns the hyperbolic tangent of it.
function tanh(x) =
sinh(x)/cosh(x);
// Function: asinh()
// Description: Takes a value `x`, and returns the inverse hyperbolic sine of it.
function asinh(x) =
ln(x+sqrt(x*x+1));
// Function: acosh()
// Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it.
function acosh(x) =
ln(x+sqrt(x*x-1));
// Function: atanh()
// Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it.
function atanh(x) =
ln((1+x)/(1-x))/2;
// Section: Quantization
// Function: quant()
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple.
// If `x` is a list, then every item in that list will be recursively quantized.
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
// Example:
// quant(12,4); // Returns: 12
// quant(13,4); // Returns: 12
// quant(13.1,4); // Returns: 12
// quant(14,4); // Returns: 16
// quant(14.1,4); // Returns: 16
// quant(15,4); // Returns: 16
// quant(16,4); // Returns: 16
// quant(9,3); // Returns: 9
// quant(10,3); // Returns: 9
// quant(10.4,3); // Returns: 9
// quant(10.5,3); // Returns: 12
// quant(11,3); // Returns: 12
// quant(12,3); // Returns: 12
// quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16]
// quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
// quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
function quant(x,y) =
is_list(x)? [for (v=x) quant(v,y)] :
floor(x/y+0.5)*y;
// Function: quantdn()
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple.
// If `x` is a list, then every item in that list will be recursively quantized down.
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
// Examples:
// quantdn(12,4); // Returns: 12
// quantdn(13,4); // Returns: 12
// quantdn(13.1,4); // Returns: 12
// quantdn(14,4); // Returns: 12
// quantdn(14.1,4); // Returns: 12
// quantdn(15,4); // Returns: 12
// quantdn(16,4); // Returns: 16
// quantdn(9,3); // Returns: 9
// quantdn(10,3); // Returns: 9
// quantdn(10.4,3); // Returns: 9
// quantdn(10.5,3); // Returns: 9
// quantdn(11,3); // Returns: 9
// quantdn(12,3); // Returns: 12
// quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16]
// quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
// quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
function quantdn(x,y) =
is_list(x)? [for (v=x) quantdn(v,y)] :
floor(x/y)*y;
// Function: quantup()
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple.
// If `x` is a list, then every item in that list will be recursively quantized up.
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
// Examples:
// quantup(12,4); // Returns: 12
// quantup(13,4); // Returns: 16
// quantup(13.1,4); // Returns: 16
// quantup(14,4); // Returns: 16
// quantup(14.1,4); // Returns: 16
// quantup(15,4); // Returns: 16
// quantup(16,4); // Returns: 16
// quantup(9,3); // Returns: 9
// quantup(10,3); // Returns: 12
// quantup(10.4,3); // Returns: 12
// quantup(10.5,3); // Returns: 12
// quantup(11,3); // Returns: 12
// quantup(12,3); // Returns: 12
// quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16]
// quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
// quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
function quantup(x,y) =
is_list(x)? [for (v=x) quantup(v,y)] :
ceil(x/y)*y;
// Section: Constraints and Modulos
// Function: constrain()
// Usage:
// constrain(v, minval, maxval);
// Description:
// Constrains value to a range of values between minval and maxval, inclusive.
// Arguments:
// v = value to constrain.
// minval = minimum value to return, if out of range.
// maxval = maximum value to return, if out of range.
// Example:
// constrain(-5, -1, 1); // Returns: -1
// constrain(5, -1, 1); // Returns: 1
// constrain(0.3, -1, 1); // Returns: 0.3
// constrain(9.1, 0, 9); // Returns: 9
// constrain(-0.1, 0, 9); // Returns: 0
function constrain(v, minval, maxval) = min(maxval, max(minval, v));
// Function: posmod()
// Usage:
// posmod(x,m)
// Description:
// Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1.
// Arguments:
// x = The value to constrain.
// m = Modulo value.
// Example:
// posmod(-700,360); // Returns: 340
// posmod(-270,360); // Returns: 90
// posmod(-120,360); // Returns: 240
// posmod(120,360); // Returns: 120
// posmod(270,360); // Returns: 270
// posmod(700,360); // Returns: 340
// posmod(3,2.5); // Returns: 0.5
function posmod(x,m) = (x%m+m)%m;
// Function: modang(x)
// Usage:
// ang = modang(x)
// Description:
// Takes an angle in degrees and normalizes it to an equivalent angle value between -180 and 180.
// Example:
// modang(-700,360); // Returns: 20
// modang(-270,360); // Returns: 90
// modang(-120,360); // Returns: -120
// modang(120,360); // Returns: 120
// modang(270,360); // Returns: -90
// modang(700,360); // Returns: -20
function modang(x) =
let(xx = posmod(x,360)) xx<180? xx : xx-360;
// Function: modrange()
// Usage:
// modrange(x, y, m, [step])
// Description:
// Returns a normalized list of values from `x` to `y`, by `step`, modulo `m`. Wraps if `x` > `y`.
// Arguments:
// x = The start value to constrain.
// y = The end value to constrain.
// m = Modulo value.
// step = Step by this amount.
// Examples:
// modrange(90,270,360, step=45); // Returns: [90,135,180,225,270]
// modrange(270,90,360, step=45); // Returns: [270,315,0,45,90]
// modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270]
// modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90]
function modrange(x, y, m, step=1) =
let(
a = posmod(x, m),
b = posmod(y, m),
c = step>0? (a>b? b+m : b) : (a<b? b-m : b)
) [for (i=[a:step:c]) (i%m+m)%m];
// Section: Random Number Generation
// Function: rand_int()
// Usage:
// rand_int(min,max,N,[seed]);
// Description:
// Return a list of random integers in the range of min to max, inclusive.
// Arguments:
// min = Minimum integer value to return.
// max = Maximum integer value to return.
// N = Number of random integers to return.
// seed = If given, sets the random number seed.
// Example:
// ints = rand_int(0,100,3);
// int = rand_int(-10,10,1)[0];
function rand_int(min, max, N, seed=undef) =
assert(max >= min, "Max value cannot be smaller than min")
let (rvect = is_def(seed) ? rands(min,max+1,N,seed) : rands(min,max+1,N))
[for(entry = rvect) floor(entry)];
// Function: gaussian_rands()
// Usage:
// gaussian_rands(mean, stddev, [N], [seed])
// Description:
// Returns a random number with a gaussian/normal distribution.
// Arguments:
// mean = The average random number returned.
// stddev = The standard deviation of the numbers to be returned.
// N = Number of random numbers to return. Default: 1
// seed = If given, sets the random number seed.
function gaussian_rands(mean, stddev, N=1, seed=undef) =
let(nums = is_undef(seed)? rands(0,1,N*2) : rands(0,1,N*2,seed))
[for (i = list_range(N)) mean + stddev*sqrt(-2*ln(nums[i*2]))*cos(360*nums[i*2+1])];
// Function: log_rands()
// Usage:
// log_rands(minval, maxval, factor, [N], [seed]);
// Description:
// Returns a single random number, with a logarithmic distribution.
// Arguments:
// minval = Minimum value to return.
// maxval = Maximum value to return. `minval` <= X < `maxval`.
// factor = Log factor to use. Values of X are returned `factor` times more often than X+1.
// N = Number of random numbers to return. Default: 1
// seed = If given, sets the random number seed.
function log_rands(minval, maxval, factor, N=1, seed=undef) =
assert(maxval >= minval, "maxval cannot be smaller than minval")
let(
minv = 1-1/pow(factor,minval),
maxv = 1-1/pow(factor,maxval),
nums = is_undef(seed)? rands(minv, maxv, N) : rands(minv, maxv, N, seed)
) [for (num=nums) -ln(1-num)/ln(factor)];
// Section: GCD/GCF, LCM
// If argument is a list return it. Otherwise return a singleton list containing the argument.
function _force_list(x) = is_list(x) ? x : [x];
// Function: gcd()
// Usage:
// gcd(a,b)
// Description:
// Computes the Greatest Common Divisor/Factor of `a` and `b`.
function gcd(a,b) =
assert(is_int(a) && is_int(b),"Arguments to gcd must be integers")
b==0 ? abs(a) : gcd(b,a % b);
// Computes lcm for two scalars
function _lcm(a,b) =
assert(is_int(a), "Invalid non-integer parameters to lcm")
assert(is_int(b), "Invalid non-integer parameters to lcm")
assert(a!=0 && b!=0, "Arguments to lcm must be nonzero")
abs(a*b) / gcd(a,b);
// Computes lcm for a list of values
function _lcmlist(a) =
len(a)==1 ? a[0] :
_lcmlist(concat(slice(a,0,len(a)-2),[lcm(a[len(a)-2],a[len(a)-1])]));
// Function: lcm()
// Usage:
// lcm(a,b)
// lcm(list)
// Description:
// Computes the Least Common Multiple of the two arguments or a list of arguments. Inputs should
// be non-zero integers. The output is always a positive integer. It is an error to pass zero
// as an argument.
function lcm(a,b=[]) =
!is_list(a) && !is_list(b) ? _lcm(a,b) :
let(
arglist = concat(_force_list(a),_force_list(b))
)
assert(len(arglist)>0,"invalid call to lcm with empty list(s)")
_lcmlist(arglist);
// Section: Sums, Products, Aggregate Functions.
// Function: sum()
// Description:
// Returns the sum of all entries in the given list.
// If passed an array of vectors, returns a vector of sums of each part.
// If passed an empty list, the value of `dflt` will be returned.
// Arguments:
// v = The list to get the sum of.
// dflt = The default value to return if `v` is an empty list. Default: 0
// Example:
// sum([1,2,3]); // returns 6.
// sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15]
function sum(v, dflt=0, _i=0, _acc) =
_i>=len(v)? (len(v)? _acc : dflt) :
sum(v, dflt=dflt, _i=_i+1, _acc=is_undef(_acc)? v[_i] : _acc+v[_i]);
// Function: cumsum()
// Description:
// Returns a list where each item is the cumulative sum of all items up to and including the corresponding entry in the input list.
// If passed an array of vectors, returns a list of cumulative vectors sums.
// Arguments:
// v = The list to get the sum of.
// Example:
// cumsum([1,1,1]); // returns [1,2,3]
// cumsum([2,2,2]); // returns [2,4,6]
// cumsum([1,2,3]); // returns [1,3,6]
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
function cumsum(v,_i=0,_acc=[]) =
_i==len(v) ? _acc :
cumsum(
v, _i+1,
concat(
_acc,
[_i==0 ? v[_i] : select(_acc,-1)+v[_i]]
)
);
// Function: sum_of_squares()
// Description:
// Returns the sum of the square of each element of a vector.
// Arguments:
// v = The vector to get the sum of.
// Example:
// sum_of_squares([1,2,3]); // Returns: 14.
// sum_of_squares([1,2,4]); // Returns: 21
// sum_of_squares([-3,-2,-1]); // Returns: 14
function sum_of_squares(v, i=0, tot=0) = sum(vmul(v,v));
// Function: sum_of_sines()
// Usage:
// sum_of_sines(a,sines)
// Description:
// Gives the sum of a series of sines, at a given angle.
// Arguments:
// a = Angle to get the value for.
// sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle.
// Examples:
// v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]);
function sum_of_sines(a, sines) =
sum([
for (s = sines) let(
ss=point3d(s),
v=ss.x*sin(a*ss.y+ss.z)
) v
]);
// Function: deltas()
// Description:
// Returns a list with the deltas of adjacent entries in the given list.
// Given [a,b,c,d], returns [b-a,c-b,d-c].
// Arguments:
// v = The list to get the deltas of.
// Example:
// deltas([2,5,9,17]); // returns [3,4,8].
// deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]]
function deltas(v) = [for (p=pair(v)) p.y-p.x];
// Function: product()
// Description:
// Returns the product of all entries in the given list.
// If passed an array of vectors, returns a vector of products of each part.
// If passed an array of matrices, returns a the resulting product matrix.
// Arguments:
// v = The list to get the product of.
// Example:
// product([2,3,4]); // returns 24.
// product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105]
function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==undef)? v[i] : is_vector(v[i])? vmul(tot,v[i]) : tot*v[i]));
// Function: mean()
// Description:
// Returns the mean of all entries in the given array.
// If passed an array of vectors, returns a vector of mean of each part.
// Arguments:
// v = The list of values to get the mean of.
// Example:
// mean([2,3,4]); // returns 3.
// mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [3, 4, 5]
function mean(v) = sum(v)/len(v);
// Section: Matrix math
// Function: qr_factor()
// Usage: qr = qr_factor(A)
// Description:
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R]. This factorization can be
// used to solve linear systems of equations.
function qr_factor(A) =
let(
dim = array_dim(A),
m = dim[0],
n = dim[1]
)
assert(len(dim)==2)
let(
qr =_qr_factor(A, column=0, m = m, n=m, Q=ident(m)),
Rzero = [for(i=[0:m-1]) [for(j=[0:n-1]) i>j ? 0 : qr[1][i][j]]]
)
[qr[0],Rzero];
function _qr_factor(A,Q, column, m, n) =
column >= min(m-1,n) ? [Q,A] :
let(
x = [for(i=[column:1:m-1]) A[i][column]],
alpha = (x[0]<=0 ? 1 : -1) * norm(x),
u = x - concat([alpha],replist(0,m-1)),
v = u / norm(u),
Qc = ident(len(x)) - 2*transpose([v])*[v],
Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i<column || j<column ? (i==j ? 1 : 0) : Qc[i-column][j-column]]]
)
_qr_factor(Qf*A, Q*Qf, column+1, m, n);
// Function: submatrix()
// Usage: submatrix(M, ind1, ind2)
// Description:
// Returns a submatrix with the specified index ranges or index sets.
function submatrix(M,ind1,ind2) =
[for(i=ind1)
[for(j=ind2)
M[i][j]
]
];
// Function: linear_solve()
// Usage: linear_solve(A,b)
// Description:
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
// If A is rank deficient or singular then linear_solve returns `undef`.
function linear_solve(A,b) =
let(
dim = array_dim(A),
m=dim[0], n=dim[1]
)
assert(len(b)==m,str("Incompatible matrix and vector",dim,len(b)))
let (
qr = m<n ? qr_factor(transpose(A)) : qr_factor(A),
maxdim = max(n,m),
mindim = min(n,m),
Q = submatrix(qr[0],[0:maxdim-1], [0:mindim-1]),
R = submatrix(qr[1],[0:mindim-1], [0:mindim-1]),
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
)
zeros != [] ? undef :
m<n ? Q*back_substitute(R,b,transpose=true) :
back_substitute(R, transpose(Q)*b);
// Function: back_substitute()
// Usage: back_substitute(R, b, [transpose])
// Description:
// Solves the problem Rx=b where R is an upper triangular square matrix. No check is made that the lower triangular entries
// are actually zero. If transpose==true then instead solve transpose(R)*x=b.
function back_substitute(R, b, x=[],transpose = false) =
let(n=len(b))
transpose ?
reverse(back_substitute(
[for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
reverse(b), x, false)) :
len(x) == n ? x :
let(
ind = n - len(x) - 1,
newvalue = len(x)==0 ? b[ind]/R[ind][ind] :
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
)
back_substitute(R, b, concat([newvalue],x));
// Function: det2()
// Description:
// Optimized function that returns the determinant for the given 2x2 square matrix.
// Arguments:
// M = The 2x2 square matrix to get the determinant of.
// Example:
// M = [ [6,-2], [1,8] ];
// det = det2(M); // Returns: 50
function det2(M) = M[0][0] * M[1][1] - M[0][1]*M[1][0];
// Function: det3()
// Description:
// Optimized function that returns the determinant for the given 3x3 square matrix.
// Arguments:
// M = The 3x3 square matrix to get the determinant of.
// Example:
// M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
// det = det3(M); // Returns: -334
function det3(M) =
M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) -
M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) +
M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]);
// Function: determinant()
// Description:
// Returns the determinant for the given square matrix.
// Arguments:
// M = The NxN square matrix to get the determinant of.
// Example:
// M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ];
// det = determinant(M); // Returns: 2267
function determinant(M) =
assert(len(M)==len(M[0]))
len(M)==1? M[0][0] :
len(M)==2? det2(M) :
len(M)==3? det3(M) :
sum(
[for (col=[0:1:len(M)-1])
((col%2==0)? 1 : -1) *
M[col][0] *
determinant(
[for (r=[1:1:len(M)-1])
[for (c=[0:1:len(M)-1])
if (c!=col) M[c][r]
]
]
)
]
);
// Section: Comparisons and Logic
// Function: approx()
// Usage:
// approx(a,b,[eps])
// Description:
// Compares two numbers or vectors, and returns true if they are closer than `eps` to each other.
// Arguments:
// a = First value.
// b = Second value.
// eps = The maximum allowed difference between `a` and `b` that will return true.
// Example:
// approx(-0.3333333333,-1/3); // Returns: true
// approx(0.3333333333,1/3); // Returns: true
// approx(0.3333,1/3); // Returns: false
// approx(0.3333,1/3,eps=1e-3); // Returns: true
// approx(PI,3.1415926536); // Returns: true
function approx(a,b,eps=EPSILON) = let(c=a-b) (is_num(c)? abs(c) : norm(c)) <= eps;
function _type_num(x) =
is_undef(x)? 0 :
is_bool(x)? 1 :
is_num(x)? 2 :
is_string(x)? 3 :
is_list(x)? 4 : 5;
// Function: compare_vals()
// Usage:
// compare_vals(a, b);
// Description:
// Compares two values. Lists are compared recursively.
// If types are not the same, then undef < bool < num < str < list < range.
// Arguments:
// a = First value to compare.
// b = Second value to compare.
function compare_vals(a, b) =
(a==b)? 0 :
let(t1=_type_num(a), t2=_type_num(b)) (t1!=t2)? (t1-t2) :
is_list(a)? compare_lists(a,b) :
(a<b)? -1 : (a>b)? 1 : 0;
// Function: compare_lists()
// Usage:
// compare_lists(a, b)
// Description:
// Compare contents of two lists using `compare_vals()`.
// Returns <0 if `a`<`b`.
// Returns 0 if `a`==`b`.
// Returns >0 if `a`>`b`.
// Arguments:
// a = First list to compare.
// b = Second list to compare.
function compare_lists(a, b) =
a==b? 0 : let(
cmps = [
for(i=[0:1:min(len(a),len(b))-1]) let(
cmp = compare_vals(a[i],b[i])
) if(cmp!=0) cmp
]
) cmps==[]? (len(a)-len(b)) : cmps[0];
// Function: any()
// Description:
// Returns true if any item in list `l` evaluates as true.
// If `l` is a lists of lists, `any()` is applied recursively to each sublist.
// Arguments:
// l = The list to test for true items.
// Example:
// any([0,false,undef]); // Returns false.
// any([1,false,undef]); // Returns true.
// any([1,5,true]); // Returns true.
// any([[0,0], [0,0]]); // Returns false.
// any([[0,0], [1,0]]); // Returns true.
function any(l, i=0, succ=false) =
(i>=len(l) || succ)? succ :
any(
l, i=i+1, succ=(
is_list(l[i])? any(l[i]) :
!(!l[i])
)
);
// Function: all()
// Description:
// Returns true if all items in list `l` evaluate as true.
// If `l` is a lists of lists, `all()` is applied recursively to each sublist.
// Arguments:
// l = The list to test for true items.
// Example:
// all([0,false,undef]); // Returns false.
// all([1,false,undef]); // Returns false.
// all([1,5,true]); // Returns true.
// all([[0,0], [0,0]]); // Returns false.
// all([[0,0], [1,0]]); // Returns false.
// all([[1,1], [1,1]]); // Returns true.
function all(l, i=0, fail=false) =
(i>=len(l) || fail)? (!fail) :
all(
l, i=i+1, fail=(
is_list(l[i])? !all(l[i]) :
!l[i]
)
);
// Function: count_true()
// Usage:
// count_true(l)
// Description:
// Returns the number of items in `l` that evaluate as true.
// If `l` is a lists of lists, this is applied recursively to each
// sublist. Returns the total count of items that evaluate as true
// in all recursive sublists.
// Arguments:
// l = The list to test for true items.
// nmax = If given, stop counting if `nmax` items evaluate as true.
// Example:
// count_true([0,false,undef]); // Returns 0.
// count_true([1,false,undef]); // Returns 1.
// count_true([1,5,false]); // Returns 2.
// count_true([1,5,true]); // Returns 3.
// count_true([[0,0], [0,0]]); // Returns 0.
// count_true([[0,0], [1,0]]); // Returns 1.
// count_true([[1,1], [1,1]]); // Returns 4.
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
function count_true(l, nmax=undef, i=0, cnt=0) =
(i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt :
count_true(
l=l, nmax=nmax, i=i+1, cnt=cnt+(
is_list(l[i])? count_true(l[i], nmax=nmax-cnt) :
(l[i]? 1 : 0)
)
);
// Section: Calculus
// Function deriv()
// Usage: deriv(data, [h], [closed])
// Description:
// Computes a numerical derivative estimate of the data, which may be scalar or vector valued.
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
// data[len(data)-1]. This function uses a symetric derivative approximation
// for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm
// uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h.
function deriv(data, h=1, closed=false) =
let( L = len(data) )
closed ?
[ for(i=[0:1:L-1]) (data[(i+1)%L]-data[(L+i-1)%L])/2/h ] :
let( first = L<3 ?
data[1]-data[0] :
3*(data[1]-data[0]) - (data[2]-data[1]),
last = L<3 ?
data[L-1]-data[L-2]:
(data[L-3]-data[L-2])-3*(data[L-2]-data[L-1])
)
[ first/2/h,
for(i=[1:1:L-2]) (data[i+1]-data[i-1])/2/h,
last/2/h];
// Function deriv2()
// Usage: deriv2(data, [h], [closed])
// Description:
// Computes a numerical esimate of the second derivative of the data, which may be scalar or vector valued.
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
// data[len(data)-1]. For internal points this function uses the approximation
// f''(t) = (f(t-h)-2*f(t)+f(t+h))/h^2. For the endpoints (when closed=false) the algorithm
// when sufficient points are available the method is either the four point expression
// f''(t) = (2*f(t) - 5*f(t+h) + 4*f(t+2*h) - f(t+3*h))/h^2 or if five points are available
// f''(t) = (35*f(t) - 104*f(t+h) + 114*f(t+2*h) - 56*f(t+3*h) + 11*f(t+4*h)) / 12h^2
function deriv2(data, h=1, closed=false) =
let( L = len(data) )
closed ?
[ for(i=[0:1:L-1]) (data[(i+1)%L]-2*data[i]+data[(L+i-1)%L])/h/h ] :
let( first = L<3 ? undef :
L==3 ? data[0] - 2*data[1] + data[2] :
L==4 ? 2*data[0] - 5*data[1] + 4*data[2] - data[3] :
(35*data[0] - 104*data[1] + 114*data[2] - 56*data[3] + 11*data[4])/12,
last = L<3 ? undef :
L==3 ? data[L-1] - 2*data[L-2] + data[L-3] :
L==4 ? -2*data[L-1] + 5*data[L-2] - 4*data[L-3] + data[L-4] :
(35*data[L-1] - 104*data[L-2] + 114*data[L-3] - 56*data[L-4] + 11*data[L-5])/12
)
[ first/h/h,
for(i=[1:1:L-2]) (data[i+1]-2*data[i]+data[i-1])/h/h,
last/h/h];
// Function deriv3()
// Usage: deriv3(data, [h], [closed])
// Description:
// Computes a numerical third derivative estimate of the data, which may be scalar or vector valued.
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
// data[len(data)-1]. This function uses a five point derivative estimate, so the input must include five points:
// f'''(t) = (-f(t-2*h)+2*f(t-h)-2*f(t+h)+f(t+2*h)) / 2h^3. At the first and second points from the end
// the estimates are f'''(t) = (-5*f(t)+18*f(t+h)-24*f(t+2*h)+14*f(t+3*h)-3*f(t+4*h)) / 2h^3 and
// f'''(t) = (-3*f(t-h)+10*f(t)-12*f(t+h)+6*f(t+2*h)-f(t+3*h)) / 2h^3.
function deriv3(data, h=1, closed=false) =
let( L = len(data),
h3 = h*h*h
)
assert(L>=5, "Need five points for 3rd derivative estimate")
closed ?
[ for(i=[0:1:L-1]) (-data[(L+i-2)%L]+2*data[(L+i-1)%L]-2*data[(i+1)%L]+data[(i+2)%L])/2/h3] :
let(
first=(-5*data[0]+18*data[1]-24*data[2]+14*data[3]-3*data[4])/2,
second=(-3*data[0]+10*data[1]-12*data[2]+6*data[3]-data[4])/2,
last=(5*data[L-1]-18*data[L-2]+24*data[L-3]-14*data[L-4]+3*data[L-5])/2,
prelast=(3*data[L-1]-10*data[L-2]+12*data[L-3]-6*data[L-4]+data[L-5])/2
)
[
first/h3,
second/h3,
for(i=[2:1:L-3]) (-data[i-2]+2*data[i-1]-2*data[i+1]+data[i+2])/2/h3,
prelast/h3,
last/h3
];
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap