2019-06-08 22:10:47 +01:00
//
// NopSCADlib Copyright Chris Palmer 2018
// nop.head@gmail.com
// hydraraptor.blogspot.com
//
// This file is part of NopSCADlib.
//
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
// GNU General Public License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along with NopSCADlib.
// If not, see <https://www.gnu.org/licenses/>.
//
//
2021-06-15 09:56:37 +01:00
//! Utility to generate a polyhedron by sweeping a 2D profile along a 3D path and utilities for generating paths.
2019-06-08 22:10:47 +01:00
//!
//! The initial orientation is the Y axis of the profile points towards the initial center of curvature, Frenet-Serret style.
2020-11-29 10:22:49 +00:00
//! Subsequent rotations use the minimum rotation method.
2019-06-08 22:10:47 +01:00
//!
//! The path can be open or closed. If closed sweep ensures that the start and end have the same rotation to line up.
//! An additional twist around the path can be specified. If the path is closed this should be a multiple of 360.
2022-02-06 23:44:23 +00:00
//!
//! `rounded_path()` can be used to generate a path of lines connected by arcs, useful for wire runs, etc.
//! The vertices specify where the the path would be without any rounding.
//! Each vertex, apart from the first and the last, has an associated radius and the path shortcuts the vertex with an arc specified by the radius.
2022-02-08 19:08:10 +00:00
//!
//! `spiral_paths()` makes a list of new paths that spiral around a given path. It can be used to make twisted wires that follow a rounded_path, for example.
2019-06-08 22:10:47 +01:00
//
2020-02-29 17:52:36 +00:00
include < ../utils/core/core.scad >
2019-06-08 22:10:47 +01:00
use < maths.scad >
function transpose3 ( m ) = [ [ m [ 0 ] . x , m [ 1 ] . x , m [ 2 ] . x ] ,
[ m [ 0 ] . y , m [ 1 ] . y , m [ 2 ] . y ] ,
[ m [ 0 ] . z , m [ 1 ] . z , m [ 2 ] . z ] ] ;
//
2020-11-04 19:56:51 +00:00
// Find the first non-colinear point
//
tiny = 0.00001 ;
function find_curve ( tangents , i = 1 ) =
i >= len ( tangents ) - 1 || norm ( cross ( tangents [ 0 ] , tangents [ i ] - tangents [ 0 ] ) ) > tiny ? i
: find_curve ( tangents , i + 1 ) ;
//
2019-06-08 22:10:47 +01:00
// Frenet-Serret frame
//
function fs_frame ( tangents ) =
let ( tangent = tangents [ 0 ] ,
2020-11-04 19:56:51 +00:00
i = find_curve ( tangents ) ,
normal = tangents [ i ] - tangents [ 0 ] ,
2019-06-08 22:10:47 +01:00
binormal = cross ( tangent , normal ) ,
z = unit ( tangent ) ,
2020-11-04 19:56:51 +00:00
x = assert ( norm ( binormal ) > tiny , "all points are colinear" ) unit ( binormal ) ,
2019-06-08 22:10:47 +01:00
y = unit ( cross ( z , x ) )
) [ [ x . x , y . x , z . x ] ,
[ x . y , y . y , z . y ] ,
[ x . z , y . z , z . z ] ] ;
//
// Computes the rotation with minimum angle that brings UNIT vectors a to b.
// The code fails if a and b are opposed to each other.
//
function rotate_from_to ( a , b ) =
let ( axis = unit ( cross ( a , b ) ) )
axis * axis >= 0.99 ? transpose3 ( [ b , axis , cross ( axis , b ) ] ) * [ a , axis , cross ( axis , a ) ]
: a * b > 0 ? [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ]
: [ [ - 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , - 1 ] ] ;
//
// Given two rotations A and B, calculates the angle between B*[1,0,0]
// and A*[1,0,0] that is, the total torsion angle difference between A and B.
//
function calculate_twist ( A , B ) = let ( D = transpose3 ( B ) * A ) atan2 ( D [ 1 ] [ 0 ] , D [ 0 ] [ 0 ] ) ;
//
2019-07-04 12:03:38 +01:00
// Compute a 4x3 matrix to orientate a frame of the sweep given the position and a 3x3 rotation matrix.
2020-02-22 19:44:01 +00:00
// Note that the rotation matrix is transposed to allow post multiplication.
2019-06-08 22:10:47 +01:00
//
function orientate ( p , r ) =
let ( x = r [ 0 ] , y = r [ 1 ] , z = r [ 2 ] )
[ [ x . x , y . x , z . x ] ,
[ x . y , y . y , z . y ] ,
[ x . z , y . z , z . z ] ,
[ p . x , p . y , p . z ] ] ;
//
// Rotate around z
//
function rot3_z ( a ) =
let ( c = cos ( a ) ,
s = sin ( a ) )
[ [ c , - s , 0 ] ,
[ s , c , 0 ] ,
[ 0 , 0 , 1 ] ] ;
//
// Calculate the unit tangent at a vertex given the indices before and after. One of these can be the same as i in the case
2020-02-22 19:44:01 +00:00
// of the start and end of a non closed path. Note that the edges are converted to unit vectors so that their relative lengths
// don't affect the direction of the tangent.
//
function tangent ( path , before , i , after ) = unit ( unit ( path [ i ] - path [ before ] ) + unit ( path [ after ] - path [ i ] ) ) ;
2019-06-08 22:10:47 +01:00
//
2020-02-22 19:44:01 +00:00
// Calculate the twist per segment caused by rotate_from_to() instead of a simple Euler rotation around Z.
//
function helical_twist_per_segment ( r , pitch , sides ) = //! Calculate the twist around Z that rotate_from_to() introduces
let ( step_angle = 360 / sides ,
lt = 2 * r * sin ( step_angle ) , // length of tangent between two facets
slope = atan ( 2 * pitch / sides / lt ) // slope of tangents
) step_angle * sin ( slope ) ; // angle tangent should rotate around z projected onto axis rotate_from_to() uses
2019-06-08 22:10:47 +01:00
//
2022-02-08 19:08:10 +00:00
// Generate all the transforms for the profile of the swept volume.
2019-06-08 22:10:47 +01:00
//
2024-04-21 08:47:44 +01:00
function sweep_transforms ( path , loop = false , twist = 0 , initial_rotation = undef ) =
2019-06-08 22:10:47 +01:00
let ( len = len ( path ) ,
last = len - 1 ,
tangents = [ tangent ( path , loop ? last : 0 , 0 , 1 ) ,
for ( i = [ 1 : last - 1 ] ) tangent ( path , i - 1 , i , i + 1 ) ,
tangent ( path , last - 1 , last , loop ? 0 : last ) ] ,
2022-02-08 19:08:10 +00:00
lengths = [ for ( i = 0 , t = 0 ; i < len ; t = t + norm ( path [ min ( i + 1 , last ) ] - path [ i ] ) , i = i + 1 ) t ] ,
length = lengths [ last ] ,
2024-04-21 08:47:44 +01:00
rotations = [ for ( i = 0 , rot = is_undef ( initial_rotation ) ? fs_frame ( tangents ) : rot3_z ( initial_rotation ) ;
2019-06-08 22:10:47 +01:00
i < len ;
i = i + 1 ,
rot = i < len ? rotate_from_to ( tangents [ i - 1 ] , tangents [ i ] ) * rot : undef ) rot ] ,
2022-06-21 06:54:08 +01:00
mismatch = loop ? calculate_twist ( rotations [ 0 ] , rotations [ last ] ) : 0 ,
rotation = mismatch + twist
2019-06-08 22:10:47 +01:00
)
[ for ( i = [ 0 : last ] )
2022-02-08 19:08:10 +00:00
let ( za = rotation * lengths [ i ] / length )
orientate ( path [ i ] , rotations [ i ] * rot3_z ( za ) )
] ;
//
// Generate all the surface points of the swept volume.
//
function skin_points ( profile , path , loop , twist = 0 ) =
let ( profile4 = [ for ( p = profile ) [ p . x , p . y , p . z , 1 ] ] ,
transforms = sweep_transforms ( path , loop , twist )
)
[ for ( t = transforms )
each profile4 * t
2019-06-08 22:10:47 +01:00
] ;
2020-02-22 19:44:01 +00:00
function cap ( facets , segment = 0 , end ) = //! Create the mesh for an end cap
let ( reverse = is_undef ( end ) ? segment : end )
[ for ( i = [ 0 : facets - 1 ] ) facets * segment + ( reverse ? i : facets - 1 - i ) ] ;
2019-06-08 22:10:47 +01:00
2019-07-04 12:03:38 +01:00
function quad ( p , a , b , c , d ) = norm ( p [ a ] - p [ c ] ) > norm ( p [ b ] - p [ d ] ) ? [ [ b , c , d ] , [ b , d , a ] ] : [ [ a , b , c ] , [ a , c , d ] ] ;
2019-06-08 22:10:47 +01:00
2020-02-22 19:44:01 +00:00
function skin_faces ( points , npoints , facets , loop , offset = 0 ) = //! Create the mesh for the swept volume without end caps
[ for ( i = [ 0 : facets - 1 ] , s = [ 0 : npoints - ( loop ? 1 : 2 ) ] )
let ( j = s + offset , k = loop ? ( j + 1 ) % npoints : j + 1 )
each quad ( points ,
j * facets + i ,
j * facets + ( i + 1 ) % facets ,
k * facets + ( i + 1 ) % facets ,
k * facets + i ) ] ;
2019-06-08 22:10:47 +01:00
function sweep ( path , profile , loop = false , twist = 0 ) = //! Generate the point list and face list of the swept volume
let (
2020-02-22 19:44:01 +00:00
npoints = len ( path ) ,
2019-06-08 22:10:47 +01:00
facets = len ( profile ) ,
points = skin_points ( profile , path , loop , twist ) ,
2020-02-22 19:44:01 +00:00
skin_faces = skin_faces ( points , npoints , facets , loop ) ,
faces = loop ? skin_faces : concat ( [ cap ( facets ) ] , skin_faces , [ cap ( facets , npoints - 1 ) ] )
2024-04-21 08:47:44 +01:00
) [ points , faces ] ;
2019-06-08 22:10:47 +01:00
2020-11-04 22:27:31 +00:00
module sweep ( path , profile , loop = false , twist = 0 , convexity = 1 ) { //! Draw a polyhedron that is the swept volume
2019-06-08 22:10:47 +01:00
mesh = sweep ( path , profile , loop , twist ) ;
2020-11-04 22:27:31 +00:00
polyhedron ( points = mesh [ 0 ] , faces = mesh [ 1 ] , convexity = convexity ) ;
2019-06-08 22:10:47 +01:00
}
2020-02-22 19:44:01 +00:00
function circle_points ( r = 1 , z = 0 , dir = - 1 ) = //! Generate the points of a circle, setting z makes a single turn spiral
2019-06-08 22:10:47 +01:00
let ( sides = r2sides ( r ) )
2020-02-22 19:44:01 +00:00
[ for ( i = [ 0 : sides - 1 ] ) let ( a = dir * i * 360 / sides ) [ r * cos ( a ) , r * sin ( a ) , z * i / sides ] ] ;
2019-06-08 22:10:47 +01:00
function rectangle_points ( w , h ) = [ [ - w / 2 , - h / 2 , 0 ] , [ - w / 2 , h / 2 , 0 ] , [ w / 2 , h / 2 , 0 ] , [ w / 2 , - h / 2 , 0 ] ] ; //! Generate the points of a rectangle
function arc_points ( r , a = [ 90 , 0 , 180 ] , al = 90 ) = //! Generate the points of a circular arc
let ( sides = ceil ( r2sides ( r ) * al / 360 ) , tf = rotate ( a ) )
[ for ( i = [ 0 : sides ] ) let ( t = i * al / sides ) transform ( [ r * sin ( t ) , r * cos ( t ) , 0 ] , tf ) ] ;
2020-12-24 16:04:59 +00:00
function before ( path1 , path2 ) = //! Translate `path1` so its end meets the start of `path2` and then concatenate
2019-06-08 22:10:47 +01:00
let ( end = len ( path1 ) - 1 , offset = path2 [ 0 ] - path1 [ end ] )
concat ( [ for ( i = [ 0 : end - 1 ] ) path1 [ i ] + offset ] , path2 ) ;
2020-12-24 16:04:59 +00:00
function after ( path1 , path2 ) = //! Translate `path2` so its start meets the end of `path1` and then concatenate
2019-06-08 22:10:47 +01:00
let ( end1 = len ( path1 ) - 1 , end2 = len ( path2 ) - 1 , offset = path1 [ end1 ] - path2 [ 0 ] )
concat ( path1 , [ for ( i = [ 1 : end2 ] ) path2 [ i ] + offset ] ) ;
2022-02-06 23:44:23 +00:00
function rounded_path ( path ) = //! Convert a rounded_path, consisting of a start coordinate, vertex / radius pairs and then an end coordinate, to a path of points for sweep.
let ( len = len ( path ) ) assert ( len > 3 && len % 2 = = 0 ) [
path [ 0 ] , // First point has no radius
for ( i = [ 1 : 2 : len - 3 ] ) let ( // Step through the vertices with radii, i.e. not the first or last
prev = max ( i - 2 , 0 ) , // Index of previous point, might be the first point, which is a special case
p0 = path [ prev ] , // Point before the vertex
p1 = path [ i ] , // Vertex
r = path [ i + 1 ] , // Radius of shortcut curve
p2 = path [ i + 2 ] , // Point after the vertex
v1 = assert ( Len ( p0 ) = = 3 , str ( "expected path[" , prev , "] to be a vertex coordinate, got " , p0 ) )
assert ( Len ( p1 ) = = 3 , str ( "expected path[" , i , "] to be a vertex coordinate, got " , p1 ) )
assert ( Len ( p2 ) = = 3 , str ( "expected path[" , i + 2 , "] to be a vertex coordinate, got " , p2 ) )
assert ( is_num ( r ) , str ( "expected path[" , i + 1 , "] to be a radius, got " , r ) )
p0 - p1 , // Calculate vectors between vertices
v2 = p2 - p1 ,
a = angle_between ( v1 , - v2 ) , // Angle turned through
2022-02-15 10:44:13 +00:00
d = r * tan ( a / 2 ) , // Distance from vertex to tangents
room = min ( norm ( v1 ) , norm ( v2 ) ) , // Maximum distance
arc_start = assert ( d < = room ,
str ( "Can't fit radius " , r , " into corner at vertex path[" , i , "] = " , p1 , " only room for radius " , room / tan ( a / 2 ) ) )
p1 + unit ( v1 ) * d , // Calc the start position
2022-02-06 23:44:23 +00:00
z_axis = unit ( cross ( v1 , v2 ) ) , // z_axis is perpendicular to both vectors
centre = arc_start + unit ( cross ( z_axis , v1 ) ) * r , // Arc center is a radius away, and perpendicular to v1 and the z_axis.
x_axis = arc_start - centre , // Make the x_axis along the radius to the start point, includes radius a scale factor
y_axis = cross ( x_axis , z_axis ) , // y_axis perpendicular to the other two
2022-02-15 10:44:13 +00:00
sides = ceil ( r2sides ( r ) * a / 360 ) // Sides needed to make the arc
2022-02-06 23:44:23 +00:00
)
for ( j = [ 0 : sides ] , t = a * j / sides ) // For each vertex in the arc
cos ( t ) * x_axis + sin ( t ) * y_axis + centre , // Circular arc in the tiled xy plane.
path [ len - 1 ] , // Last point has no radius
] ;
2022-02-08 19:08:10 +00:00
function segmented_path ( path , min_segment ) = [ //! Add points to a path to enforce a minimum segment length
for ( i = [ 0 : len ( path ) - 2 ] )
2024-04-21 08:47:44 +01:00
let ( delta =
assert ( path [ i ] ! = path [ i + 1 ] , str ( "Coincident points at path[" , i , "] = " , path [ i ] ) )
path [ i + 1 ] - path [ i ] ,
segs = ceil ( norm ( delta ) / min_segment )
)
for ( j = [ 0 : segs - 1 ] )
path [ i ] + delta * j / segs , // Linear interpolation
path [ len ( path ) - 1 ]
2022-02-08 19:08:10 +00:00
] ;
2024-04-21 08:47:44 +01:00
function offset_paths ( path , offsets , twists = 0 ) = let ( //! Create new paths offset from the original, optionally spiralling around it
transforms = sweep_transforms ( path , twist = 360 * twists , initial_rotation = 0 )
) [ for ( o = offsets ) let ( initial = [ o . x , o . y , o . z , 1 ] ) [ for ( t = transforms ) initial * t ] ] ;
2022-06-22 06:02:36 +01:00
function spiral_paths ( path , n , r , twists , start_angle ) = let ( //! Create a new paths which spiral around the given path. Use for making twisted cables
2022-02-15 10:44:13 +00:00
segment = twists ? path_length ( path ) / twists / r2sides ( 2 * r ) : inf ,
2022-03-01 08:12:30 +00:00
transforms = sweep_transforms ( segmented_path ( path , segment ) , twist = 360 * twists )
2022-02-08 19:08:10 +00:00
) [ for ( i = [ 0 : n - 1 ] ) let ( initial = [ r , 0 , 0 , 1 ] * rotate ( start_angle + i * 360 / n ) ) [ for ( t = transforms ) initial * t ] ] ;
function rounded_path_vertices ( path ) = [ path [ 0 ] , for ( i = [ 1 : 2 : len ( path ) - 1 ] ) path [ i ] ] ; //! Show the unrounded version of a rounded_path for debug
2024-04-21 08:47:44 +01:00
module show_path ( path , r = 0.1 ) //! Show a path using a chain of hulls for debugging, duplicate points are highlighted.
2022-02-08 19:08:10 +00:00
for ( i = [ 0 : len ( path ) - 2 ] ) {
hull ( $fn = 16 ) {
translate ( path [ i ] )
2024-04-21 08:47:44 +01:00
sphere ( r ) ;
2022-02-08 19:08:10 +00:00
translate ( path [ i + 1 ] )
2024-04-21 08:47:44 +01:00
sphere ( r ) ;
2022-02-08 19:08:10 +00:00
}
if ( path [ i ] = = path [ i + 1 ] )
translate ( path [ i ] )
2024-04-21 08:47:44 +01:00
color ( "red" ) sphere ( $fn = 16 , r * 4 ) ;
2022-02-08 19:08:10 +00:00
}
2024-09-30 01:58:04 +01:00
function move_along ( j , z , path_S ) =
j >= len ( path_S ) - 1 || z < = path_S [ j ] ? j : move_along ( j + 1 , z , path_S ) ;
function spiral_wrap ( path , profile , pitch , turns ) = //! Create a path that spirals around the specified profile with the given pitch.
let (
transforms = sweep_transforms ( path , loop = false , twist = 0 ) ,
plen = len ( profile ) ,
S = path_length ( profile ) ,
profile = [
for ( i = 0 , s = 0 ; i < plen ; s = s + norm ( profile [ ( i + 1 ) % plen ] - profile [ i ] ) , i = i + 1 )
let ( p = profile [ i ] ) [ p . x , p . y , p . z + pitch * s / S , 1 ]
] ,
path_len = len ( path ) ,
path_S = [ for ( i = 0 , s = 0 ; i < path_len ; s = s + norm ( path [ ( i + 1 ) % path_len ] - path [ i ] ) , i = i + 1 ) s ] ,
2024-10-02 08:41:41 +01:00
n = turns * plen
2024-09-30 01:58:04 +01:00
) [
for ( i = 0 , j = 0 , k = 0 , zstep = 0 ;
i < n ;
i = i + 1 ,
k = i % plen ,
zstep = floor ( i / plen ) * pitch ,
j = move_along ( j , zstep + profile [ k ] . z , path_S ) )
if ( ! i || k ) ( profile [ k ] + [ 0 , 0 , zstep - path_S [ j ] , 0 ] ) * transforms [ j ]
] ;