1
0
mirror of https://github.com/nophead/NopSCADlib.git synced 2025-08-10 17:33:57 +02:00

changes after review

This commit is contained in:
SmoothieAq
2021-03-14 12:48:14 +01:00
parent 240334784d
commit 573c50774b
3 changed files with 21 additions and 43 deletions

View File

@@ -155,7 +155,6 @@ function circle_intersect(c1, r1, c2, r2) = //! Calculate one point where tw
a = atan2(v.z, v.x) - acos((sqr(d) + sqr(r2) - sqr(r1)) / (2 * d * r2)) // Cosine rule to find angle from c2
) c2 + r2 * [cos(a), 0, sin(a)]; // Point on second circle
function slice(v, range) = [ for (i = range) v[i] ]; //! slice a section of a vector v, takes elements from v with index in the range
function map(v, func) = [ for (e = v) func(e) ]; //! make a new vector where the func function argument is applied to each element of the vector v
function mapi(v, func) = [ for (i = [0:len(v)-1]) func(i,v[i]) ]; //! make a new vector where the func function argument is applied to each element of the vector v. The func will get the index number as first argument, and the element as second argument.
function reduce(v, func, unity) = let ( r = function(i,val) i == len(v) ? val : r(i + 1, func(val, v[i])) ) r(0, unity); //! reduce a vector v to a single entity by applying the func function recursivly to the reduced value so far and the next element, starting with unity as the inital reduced value

View File

@@ -41,8 +41,8 @@ function rounded_polygon_arcs(points, tangents) = //! Compute the arcs at the po
len = len(points)
) [ for (i = [0: len-1])
let(
p1 = tangents[(i - 1 + len) % len].y,
p2 = tangents[i].x,
p1 = tangents[(i - 1 + len) % len][1],
p2 = tangents[i][0],
p = points[i],
v1 = p1 - p,
v2 = p2 - p,
@@ -57,44 +57,23 @@ function rounded_polygon_arcs(points, tangents) = //! Compute the arcs at the po
) [a, v, l]
];
// we might want to remove the old rounded_polygon_tangents and to change rounded_polygon_length to use the v2 tangents
function rounded_polygon_tangents_v2(points) = //! Compute the straight sections between a point and the next point, for each section [start_point, end_point, length]
function rounded_polygon_tangents(points) = //! Compute the straight sections between a point and the next point, for each section [start_point, end_point, length]
let(len = len(points))
[ for(i = [0 : len - 1])
let(ends = circle_tangent(points[i], points[(i + 1) % len]))
[ends.x, ends.y, norm(ends.x - ends.y)]
[ends[0], ends[1], norm(ends[0] - ends[1])]
];
function rounded_polygon_tangents(points) = //! Compute the straight sections between a point and the next point, needed to draw and to compute the lengths
let(len = len(points))
[for(i = [0 : len - 1])
let(ends = circle_tangent(points[i], points[(i + 1) % len]))
for(end = [0, 1])
ends[end]];
//function sumv(v, i = 0, sum = 0) = i == len(v) ? sum : sumv(v, i + 1, sum + v[i]); // moved to maths.scad
// the cross product of 2D vectors is the area of the parallelogram between them. We use the sign of this to decide if the angle is bigger than 180.
function rounded_polygon_length(points, tangents) = //! Calculate the length given the point list and the list of tangents computed by ` rounded_polygon_tangents`
let(
len = len(points),
indices = [0 : len - 1],
straights = [for(i = indices) norm(tangents[2 * i] - tangents[2 * i + 1])],
arcs = [for(i = indices) let(p1 = tangents[2 * i + 1],
p2 = tangents[(2 * i + 2) % (2 * len)],
corner = points[(i + 1) % len],
c = [corner.x, corner.y],
v1 = p1 - c,
v2 = p2 - c,
r = abs(corner.z),
a = acos((v1 * v2) / sqr(r))) r ? PI * (cross(v1, v2) <= 0 ? a : 360 - a) * r / 180 : 0]
)
sumv(concat(straights, arcs));
arcs = rounded_polygon_arcs(points, tangents)
) sumv( map( concat(tangents, arcs), function(e) e[2] ) );
module rounded_polygon(points, _tangents = undef) { //! Draw the rounded polygon from the point list, can pass the tangent list to save it being calculated
len = len(points);
indices = [0 : len - 1];
tangents = _tangents ? _tangents : rounded_polygon_tangents(points);
tangents = [ for (t = _tangents ? _tangents : rounded_polygon_tangents(points)) each [t.x, t.y] ];
difference(convexity = points) {
union() {

View File

@@ -65,7 +65,7 @@ module belt(type, points, gap = 0, gap_pos = undef, belt_colour = grey(20), toot
pointsx = info[2]; // array of [x,y,r], r is negative if left-angle (points may have pulleys as third element, but pointsx have radi)
tangents = info[3];
arcs = info[4];
length = _belt_length(type, info, open, gap);
length = ceil(_belt_length(type, info, open, gap) / pitch) * pitch;
part = str(type[0],pitch);
vitamin(str("xbelt(", no_point(part), "x", width, ", ", points, "): Belt ", part," x ", width, "mm x ", length, "mm"));
@@ -101,10 +101,10 @@ module belt(type, points, gap = 0, gap_pos = undef, belt_colour = grey(20), toot
for (i = [(open?1:0):len-(open?2:1)]) {
p = pointsx[i];
arc = arcs[i];
translate([p.x,p.y,0]) rotate([0,0,arc.y]) {
mirrored = !xor(twisted[i], p.z < 0) ? 1 : 0;
color(tooth_colour) rotate_extrude(angle=arc.x) translate([abs(p.z),0,0]) mirror([mirrored,0,0]) beltp();
color(belt_colour) rotate_extrude(angle=arc.x) translate([abs(p.z),0,0]) mirror([mirrored,0,0]) beltb();
translate([p.x,p.y,0]) rotate([0,0,arc[1]]) {
mirrored = xor(twisted[i], p[2] < 0) ? 0 : 1;
color(tooth_colour) rotate_extrude(angle=arc[0]) translate([abs(p[2]),0,0]) mirror([mirrored,0,0]) beltp();
color(belt_colour) rotate_extrude(angle=arc[0]) translate([abs(p[2]),0,0]) mirror([mirrored,0,0]) beltb();
}
}
@@ -121,7 +121,7 @@ let(
dotwist = function(i,istwisted) let( in = (i + 1) % len )
is_list(twist) ? twist[i] :
!is_undef(twist) ? i == twist :
open && is_list(points[in].z) && auto_twist ? !pulley_teeth(points[in].z) && !xor(isleft(in),istwisted) :
open && is_list(points[in][2]) && auto_twist ? !pulley_teeth(points[in][2]) && !xor(isleft(in),istwisted) :
false,
twisted = [ for (
i = 0,
@@ -134,13 +134,13 @@ let(
twist = dotwist(i,istwisted),
nexttwisted = xor(twist,istwisted)
) [twist,istwisted] ],
pointsx = mapi(points, function(i, p) !is_list(p.z) ? p : [p.x, p.y, let( // if p.z is not a list it is just r, otherwise it is taken to be a pulley and we calculate r
pointsx = mapi(points, function(i, p) !is_list(p[2]) ? p : [p.x, p.y, let( // if p[2] is not a list it is just r, otherwise it is taken to be a pulley and we calculate r
isleft = isleft(i),
r = belt_pulley_pr(type, p.z, twisted=!xor(pulley_teeth(p.z),xor(isleft, twisted[i].y)))
r = belt_pulley_pr(type, p[2], twisted=!xor(pulley_teeth(p[2]),xor(isleft, twisted[i][1])))
) isleft ? -r : r ] ),
tangents = rounded_polygon_tangents_v2(pointsx),
tangents = rounded_polygon_tangents(pointsx),
arcs = rounded_polygon_arcs(pointsx, tangents)
) [ [ for (t = twisted) t.x ], [ for (t = twisted) t.y ], pointsx, tangents, arcs];
) [ [ for (t = twisted) t[0] ], [ for (t = twisted) t[1] ], pointsx, tangents, arcs];
function belt_pulley_pr(type, pulley, twisted=false) = //! Pitch radius. Default it expects the belt tooth to be against a toothed pulley an the backside to be against a smooth pulley (an idler). If `twisted` is true, the the belt is the other way around.
let(
@@ -157,8 +157,8 @@ function _belt_length(type, info, open, gap) = let(
len = len(info[0]),
pitch = belt_pitch(type),
d = open ? 1 : 0,
tangents = slice(info[3], [0:len - 1 - d]) ,
arcs = slice(info[4], [d:len - 1 - d]),
beltl = sumv( map( concat(tangents, arcs), function(e) e.z ) ),
tangents = slice(info[3], 0, len - d) ,
arcs = slice(info[4], d, len - d),
beltl = sumv( map( concat(tangents, arcs), function(e) e[2] ) ),
gapl = is_list(gap) ? gap.x : is_undef(gap) ? 0 : gap
) ceil((beltl - gapl) / pitch) * pitch;
) beltl - gapl;