1
0
mirror of https://github.com/nophead/NopSCADlib.git synced 2025-09-03 12:22:46 +02:00

Compare commits

...

24 Commits

Author SHA1 Message Date
Chris Palmer
73d814d2fe poly_cylinder() now has a twist parameter. 2020-12-18 09:22:39 +00:00
Chris Palmer
fa658d9eaa Moved polysink test to avoid clash in the big picture. 2020-12-17 07:28:02 +00:00
Chris
6d3f54b7a5 Merge pull request #107 from martinbudden/hanging_hole_rounding
Fixed rounding error in hangin_hole assert.
2020-12-16 21:58:40 +00:00
Chris Palmer
157ff60e19 screw_polysink now has an alternating layer option to be more printable inverted.
The screws test now tests polysinks and has printable sample.
2020-12-16 20:53:04 +00:00
Martin Budden
cbd3cf29af Fixed rounding error in hangin_hole assert. 2020-12-16 19:27:03 +00:00
Chris Palmer
bf618bb482 Whitespace fixes. 2020-12-13 10:29:54 +00:00
Chris Palmer
1e6f0a5c4d Added link to block article about screw_polysink(). 2020-12-12 10:58:54 +00:00
Chris Palmer
53c3cdb598 Added screw_polysink(). 2020-12-12 09:46:46 +00:00
Chris Palmer
f4857f6862 6mm screws added to the screw_longer_than() list. 2020-12-11 11:40:32 +00:00
Chris Palmer
1acc8d01c0 Fixed MGN5 rail hole dimension. 2020-12-11 08:39:28 +00:00
Chris Palmer
344e8d1583 Fixed countersink shape. 2020-12-10 23:27:27 +00:00
Chris Palmer
dd757a1461 screw_head_depth() now defaults to all of a cs head if no diameter specified. 2020-12-10 17:29:48 +00:00
Chris Palmer
b4f8892b1a Cs screw head shape more accurate. 2020-12-10 16:33:26 +00:00
Chris Palmer
4b033d9945 Drag chain screw positions no longer mirrored to allow teardrop holes.
Previously the lugs were mirrored but that caused mirrored teardrops in mating parts.
2020-12-05 11:33:53 +00:00
Chris Palmer
d5a711f4cc Typo in drag_chain 2020-12-04 12:08:55 +00:00
Chris Palmer
42b76ab8d3 drag_chain_link() now checks it has children when it should. 2020-12-01 18:46:14 +00:00
Chris Palmer
f18044915d Fixed nan length for rounded_polygon with zero radius corners. 2020-11-30 21:52:42 +00:00
Chris Palmer
17b12c7f31 views.py now uses enumerate() to be more Pythonic. 2020-11-29 12:21:38 +00:00
Chris Palmer
18ff4c6d46 DiBond6 sheet now grey. 2020-11-29 10:39:35 +00:00
Chris Palmer
2eecce819c Removed comment about sweep path restriction that is no longer relevant. 2020-11-29 10:22:49 +00:00
Chris Palmer
f7d81738bb pp2_colour and pp3_colour less saturated to show details better. 2020-11-29 09:49:05 +00:00
Chris Palmer
6d44124bab Made drag_chain_assembly big. 2020-11-27 23:11:47 +00:00
Chris Palmer
9bb9f09dca Simplified some of the code in box.scad in response to comments from SCA2D. 2020-11-27 18:23:44 +00:00
Chris Palmer
773a53829f Fixed drag_chains exploding when they shouldn't do. 2020-11-27 18:14:04 +00:00
36 changed files with 338 additions and 161 deletions

View File

@@ -35,8 +35,8 @@ extrusion_width = is_undef($extrusion_width) ? 0.5 : $extrusion_width; // fil
nozzle = is_undef($nozzle) ? 0.45 : $nozzle; // 3D printer nozzle
cnc_bit_r = is_undef($cnc_bit_r) ? 1.2 : $cnc_bit_r; // minimum tool radius when milling 2D objects
pp1_colour = is_undef($pp1_colour) ? [0, 146/255, 0] : $pp1_colour; // printed part colour 1, RepRap logo colour
pp2_colour = is_undef($pp2_colour) ? "red" : $pp2_colour; // printed part colour 2
pp3_colour = is_undef($pp3_colour) ? "blue" : $pp3_colour; // printed part colour 3
pp2_colour = is_undef($pp2_colour) ? "Crimson" : $pp2_colour; // printed part colour 2
pp3_colour = is_undef($pp3_colour) ? "SteelBlue" : $pp3_colour; // printed part colour 3
pp4_colour = is_undef($pp4_colour) ? "darkorange" : $pp4_colour;// printed part colour 4
show_rays = is_undef($show_rays) ? false : $show_rays; // show camera sight lines and light direction
show_threads = is_undef($show_threads) ? false : $show_threads; // show screw threads

Binary file not shown.

Before

Width:  |  Height:  |  Size: 851 KiB

After

Width:  |  Height:  |  Size: 854 KiB

View File

@@ -121,11 +121,12 @@ module grill(width, height, r = 1000, poly = false, h = 0) { //! A staggered arr
module box_corner_profile_2D(type) { //! The 2D shape of the corner profile.
t = box_sheet_slot(type);
inset = box_corner_gap(type) + box_profile_overlap(type);
difference() {
union() {
quadrant(box_hole_inset(type) + box_boss_r(type), box_boss_r(type)); // inside corner
translate([box_corner_gap(type) + box_profile_overlap(type), box_corner_gap(type) + box_profile_overlap(type)])
translate([inset, inset])
rotate(180)
quadrant(box_profile_overlap(type) + box_corner_rad(type), box_corner_rad(type)); // outside corner
}
@@ -212,33 +213,39 @@ module box_bezel(type, bottom) { //! Generates top and bottom bezel STLs
feet = bottom && box_feet(type);
t = box_sheet_slot(type);
outset = box_outset(type);
inset = box_inset(type);
inner_r = box_sheet_r(type);
foot_height = box_corner_gap(type) + sheet_thickness(box_base_sheet(type)) + washer_thickness(box_washer(type)) + screw_head_height(box_screw(type)) + box_profile_overlap(type) + 2;
cgap = box_corner_gap(type);
foot_height = cgap + sheet_thickness(box_base_sheet(type)) + washer_thickness(box_washer(type)) + screw_head_height(box_screw(type)) + box_profile_overlap(type) + 2;
foot_length = box_corner_rad(type) * 2;
height = box_bezel_height(type, bottom);
foot_extension = foot_height - height;
difference() {
w = box_width(type);
d = box_depth(type);
translate_z(-box_profile_overlap(type)) difference() {
rounded_rectangle([box_width(type) + 2 * outset, box_depth(type) + 2 * outset, feet ? foot_height : height], box_corner_rad(type), false);
tw = w + 2 * outset;
td = d + 2 * outset;
rounded_rectangle([tw, td, feet ? foot_height : height], box_corner_rad(type), false);
//
// Remove edges between the feet
//
if(feet)
hull() {
translate_z(height + 0.5)
cube([box_width(type) - 2 * foot_length, box_depth(type) + 2 * outset + 1, 1], center = true);
cube([w - 2 * foot_length, td + 1, 1], center = true);
translate_z(foot_height + 1)
cube([box_width(type) - 2 * (foot_length - foot_extension), box_depth(type) + 2 * outset + 1, 1], center = true);
cube([w - 2 * (foot_length - foot_extension), td + 1, 1], center = true);
}
if(feet)
hull() {
translate_z(height + 0.5)
cube([box_width(type) + 2 * outset + 1, box_depth(type) - 2 * foot_length, 1], center = true);
cube([tw + 1, d - 2 * foot_length, 1], center = true);
translate_z(foot_height + 1)
cube([box_width(type) + 2 * outset + 1, box_depth(type) - 2 * (foot_length - foot_extension), 1], center = true);
cube([tw + 1, d - 2 * (foot_length - foot_extension), 1], center = true);
}
}
//
@@ -247,28 +254,28 @@ module box_bezel(type, bottom) { //! Generates top and bottom bezel STLs
translate_z(-box_profile_overlap(type))
linear_extrude(2 * box_profile_overlap(type), center = true)
for(i = [-1, 1]) {
translate([i * (box_width(type) / 2 + t / 2 - sheet_slot_clearance / 2), 0])
square([t, box_depth(type) - 2 * box_corner_gap(type)], center = true);
translate([i * (w + t - sheet_slot_clearance) / 2, 0])
square([t, d - 2 * cgap], center = true);
translate([0, i * (box_depth(type) / 2 + t / 2 - sheet_slot_clearance / 2)])
square([box_width(type) - 2 * box_corner_gap(type), t], center = true);
translate([0, i * (d + t - sheet_slot_clearance) / 2])
square([w - 2 * cgap, t], center = true);
}
//
// recess for top / bottom panel
//
translate_z(box_corner_gap(type))
rounded_rectangle([box_width(type) + bezel_clearance, box_depth(type) + bezel_clearance, height], inner_r + bezel_clearance / 2, false);
translate_z(cgap)
rounded_rectangle([w + bezel_clearance, d + bezel_clearance, height], inner_r + bezel_clearance / 2, false);
//
// leave plastic over the corner profiles
//
translate_z(-box_profile_overlap(type) - 1)
linear_extrude(box_profile_overlap(type) + box_corner_gap(type) + 2)
linear_extrude(box_profile_overlap(type) + cgap + 2)
union() {
difference() {
square([box_width(type) - 2 * box_inset(type),
box_depth(type) - 2 * box_inset(type)], center = true);
square([w - 2 * inset,
d - 2 * inset], center = true);
box_corner_quadrants(type, box_width(type), box_depth(type));
box_corner_quadrants(type, w, d);
}
box_screw_hole_positions(type)
poly_circle(screw_clearance_radius(box_screw(type)));
@@ -291,7 +298,9 @@ module box_bezel_section(type, bottom, rows, cols, x, y) { //! Generates interlo
dw = bw - 2 * dowel_wall;
dh = box_bezel_height(type, bottom) - dowel_h_wall;
dh2 = box_profile_overlap(type) + box_corner_gap(type) - dowel_h_wall;
profile_overlap = box_profile_overlap(type);
dh2 = profile_overlap + box_corner_gap(type) - dowel_h_wall;
end_clearance = 0.5;
module male() {
@@ -299,14 +308,14 @@ module box_bezel_section(type, bottom, rows, cols, x, y) { //! Generates interlo
linear_extrude(dowel_length - 2 * end_clearance, center = true)
difference() {
union() {
h = dh - layer_height;
h1 = dh - layer_height;
h2 = dh2 - layer_height;
hull() {
translate([bw / 2, h / 2])
square([dw - 1, h], center = true);
translate([bw / 2, h1 / 2])
square([dw - 1, h1], center = true);
translate([bw / 2, (h - 1) / 2])
square([dw, h - 1], center = true);
translate([bw / 2, (h1 - 1) / 2])
square([dw, h1 - 1], center = true);
}
hull() {
@@ -318,7 +327,7 @@ module box_bezel_section(type, bottom, rows, cols, x, y) { //! Generates interlo
}
}
translate([bw2 / 2, 0])
square([box_sheet_slot(type), 2 * box_profile_overlap(type)], center = true);
square([box_sheet_slot(type), 2 * profile_overlap], center = true);
}
}
@@ -359,7 +368,7 @@ module box_bezel_section(type, bottom, rows, cols, x, y) { //! Generates interlo
render() difference() {
union() {
clip(xmin = 0, xmax = w, ymin = 0, ymax = h)
translate([tw / 2 - x * w, th / 2 - y * h, box_profile_overlap(type)])
translate([tw / 2 - x * w, th / 2 - y * h, profile_overlap])
box_bezel(type, bottom);
if(x < cols - 1 && y == 0)
@@ -419,10 +428,14 @@ module box_bezel_section(type, bottom, rows, cols, x, y) { //! Generates interlo
}
}
module box_screw_hole_positions(type)
module box_screw_hole_positions(type) {
inset = box_hole_inset(type);
w = box_width(type) / 2 - inset;
d = box_depth(type) / 2 - inset;
for(x = [-1, 1], y = [-1, 1])
translate([x * (box_width(type) / 2 - box_hole_inset(type)), y * (box_depth(type) / 2 - box_hole_inset(type))])
translate([x * w, y * d])
children();
}
module box_base_blank(type) { //! Generates a 2D template for the base sheet
dxf("box_base");

View File

@@ -59,11 +59,11 @@ function drag_chain_z(type) = //! Outside dimension of a 180 bend
function drag_chain(name, size, travel, wall = 1.6, bwall = 1.5, twall = 1.5, screw = M2_cap_screw, screw_lists = [[1,0,0,1],[1,0,0,1]]) = //! Constructor
[name, size, travel, wall, bwall, twall, screw, screw_lists];
function drag_chain_outer_size(type) = //! Link outer dimensions
function drag_chain_outer_size(type) = //! Link outer dimensions
let(s = drag_chain_size(type), z = s.z + drag_chain_bwall(type) + drag_chain_twall(type))
[s.x + z, s.y + 4 * drag_chain_wall(type) + 2 * clearance, z];
function screw_lug_radius(screw) = //! Radius if a screw lug
function screw_lug_radius(screw) = //! Radius of a screw lug
corrected_radius(screw_clearance_radius(screw)) + 3.1 * extrusion_width;
module screw_lug(screw, h = 0) //! Create a D shaped lug for a screw
@@ -81,23 +81,18 @@ module screw_lug(screw, h = 0) //! Create a D shaped lug for a screw
function bool2int(b) = b ? 1 : 0;
module drag_chain_screw_positions(type, end) {//! Place children at the screw positions, end = 0 for the start, 1 for the end
module drag_chain_screw_positions(type, end) { //! Place children at the screw positions, end = 0 for the start, 1 for the end
r = screw_lug_radius(drag_chain_screw(type));
s = drag_chain_size(type);
os = drag_chain_outer_size(type);
R = os.z / 2;
x0 = end ? R + norm([drag_chain_cam_x(type), R - drag_chain_twall(type)]) + clearance + r : r;
x1 = end ? os.x - r : os.x - 2 * R - clearance - r;
for(i = [0 : 3]) {
x = i % 2;
y = bool2int(i > 1);
for(i = [0 : 3], x = [x0, x1, x0, x1][i], y = [-1, -1, 1, 1][i])
if(drag_chain_screw_lists(type)[bool2int(end)][i])
translate([(x0 + x1) / 2, 0])
mirror([x, 0])
mirror([0, y])
translate([(x1 - x0) / 2, s.y / 2 + r])
children();
}
translate([x, y * (s.y / 2 + r)])
let($a = [180, 0, 180, 0][i])
children();
}
function drag_chain_cam_x(type) = // how far the cam sticks out
@@ -108,8 +103,7 @@ function drag_chain_cam_x(type) = // how far the cam sticks out
twall = drag_chain_twall(type)
) min(sqrt(max(sqr(cam_r) - sqr(r - twall), 0)), r);
module drag_chain_link(type, start = false, end = false) { //! One link of the chain, special case for start and end
module drag_chain_link(type, start = false, end = false, check_kids = true) { //! One link of the chain, special case for start and end
stl(str(drag_chain_name(type), "_drag_chain_link", start ? "_start" : end ? "_end" : ""));
s = drag_chain_size(type);
@@ -220,15 +214,21 @@ module drag_chain_link(type, start = false, end = false) { //! One link of the c
if(start || end) {
drag_chain_screw_positions(type, end)
screw_lug(drag_chain_screw(type), os.z);
rotate($a)
screw_lug(drag_chain_screw(type), os.z);
if(check_kids) {
custom = drag_chain_screw_lists(type)[bool2int(end)] == [0, 0, 0, 0];
assert($children == bool2int(custom), str("wrong number of children for ", end ? "end" : "start", " STL customisation: ", $children));
}
children();
}
}
if(start || end)
translate_z(-eps)
drag_chain_screw_positions(type, end)
poly_cylinder(r = screw_clearance_radius(drag_chain_screw(type)), h = os.z + 2 * eps, center = false);
rotate($a)
poly_cylinder(r = screw_clearance_radius(drag_chain_screw(type)), h = os.z + 2 * eps, center = false);
}
@@ -250,9 +250,8 @@ module drag_chain_link(type, start = false, end = false) { //! One link of the c
}
}
//! 1. Remove the support material from the links with side cutters.
//! 1. Clip the links together with the special ones at the ends.
module drag_chain_assembly(type, pos = 0) { //! Drag chain assembly
// Need to use a wrapper because can't define nested modules in an assembly
module _drag_chain_assembly(type, pos = 0) {
s = drag_chain_size(type);
x = (1 + exploded()) * s.x;
r = drag_chain_radius(type) * x / s.x;
@@ -279,7 +278,7 @@ module drag_chain_assembly(type, pos = 0) { //! Drag chain assembly
module link(n) // Position and colour link with origin at the hinge hole
translate([-z / 2, 0, -z / 2]) {
stl_colour(n < 0 || n == npoints - 1 ? pp3_colour : n % 2 ? pp1_colour : pp2_colour)
drag_chain_link(type, start = n == -1, end = n == npoints - 1)
drag_chain_link(type, start = n == -1, end = n == npoints - 1, check_kids = false)
let($fasteners = 0) children();
let($fasteners = 1) children();
}
@@ -287,22 +286,36 @@ module drag_chain_assembly(type, pos = 0) { //! Drag chain assembly
screws = drag_chain_screw_lists(type);
custom_start = screws[0] == [0, 0, 0, 0];
custom_end = screws[1] == [0, 0, 0, 0];
assert($children == bool2int(custom_start) + bool2int(custom_end), "wrong number of children for end customisation");
assembly(str(drag_chain_name(type), "_drag_chain")) {
for(i = [0 : npoints - 2]) let(v = points[i+1] - points[i])
translate(points[i])
rotate([0, -atan2(v.z, v.x), 0])
link(i);
assert($children == bool2int(custom_start) + bool2int(custom_end), str("wrong number of children for end customisation: ", $children));
translate(points[0] - [x, 0, 0])
link(-1)
if(custom_start)
children(0);
for(i = [0 : npoints - 2]) let(v = points[i + 1] - points[i])
translate(points[i])
rotate([0, -atan2(v.z, v.x), 0])
link(i);
translate(points[npoints - 1])
hflip()
link(npoints - 1)
if(custom_end)
children(custom_start ? 1 : 0);
}
translate(points[0] - [x, 0, 0])
link(-1)
if(custom_start)
children(0);
translate(points[npoints - 1])
hflip()
link(npoints - 1)
if(custom_end)
children(custom_start ? 1 : 0);
}
//! 1. Remove the support material from the links with side cutters.
//! 1. Clip the links together with the special ones at the ends.
module drag_chain_assembly(type, pos = 0) //! Drag chain assembly
assembly(str(drag_chain_name(type), "_drag_chain"), big = true)
if($children == 2)
_drag_chain_assembly(type, pos) {
children(0);
children(1);
}
else if($children == 1)
_drag_chain_assembly(type, pos)
children(0);
else
_drag_chain_assembly(type, pos);

View File

@@ -2904,6 +2904,8 @@ These items are sysmtrical, so by default the origin is in the centre but it can
## Screws
Machine screws and wood screws with various head styles.
For an explanation of ```screw_polysink()``` see <https://hydraraptor.blogspot.com/2020/12/sinkholes.html>.
[vitamins/screws.scad](vitamins/screws.scad) Object definitions.
@@ -2930,9 +2932,10 @@ Machine screws and wood screws with various head styles.
| Function | Description |
|:--- |:--- |
| ```screw_boss_diameter(type)``` | Boss big enough for nut trap and washer |
| ```screw_head_depth(type, d)``` | How far a counter sink head will go into a straight hole diameter d |
| ```screw_head_depth(type, d = 0)``` | How far a counter sink head will go into a straight hole diameter d |
| ```screw_longer_than(x)``` | Returns shortest screw length longer or equal to x |
| ```screw_nut_radius(type)``` | Radius of matching nut |
| ```screw_polysink_r(type, z)``` | Countersink hole profile corrected for rounded staircase extrusions. |
| ```screw_shorter_than(x)``` | Returns longest screw length shorter than or equal to x |
### Modules
@@ -2940,7 +2943,8 @@ Machine screws and wood screws with various head styles.
|:--- |:--- |
| ```screw(type, length, hob_point = 0, nylon = false)``` | Draw specified screw, optionally hobbed or nylon |
| ```screw_and_washer(type, length, star = false, penny = false)``` | Screw with a washer which can be standard or penny and an optional star washer on top |
| ```screw_countersink(type)``` | Countersink shape |
| ```screw_countersink(type, drilled = true)``` | Countersink shape |
| ```screw_polysink(type, h = 100, alt = false)``` | A countersink hole made from stacked polyholes for printed parts |
![screws](tests/png/screws.png)
@@ -2979,6 +2983,11 @@ Machine screws and wood screws with various head styles.
| 1 | ```screw(No6_cs_screw, 30)``` | Screw No6 cs wood x 30mm |
| 1 | ```screw(No6_screw, 30)``` | Screw No6 pan wood x 30mm |
### Printed
| Qty | Filename |
| ---:|:--- |
| 1 | polysink.stl |
<a href="#top">Top</a>
@@ -4592,13 +4601,13 @@ to the assembly, for example to add inserts.
| ```drag_chain_outer_size(type)``` | Link outer dimensions |
| ```drag_chain_radius(type)``` | The bend radius at the pivot centres |
| ```drag_chain_z(type)``` | Outside dimension of a 180 bend |
| ```screw_lug_radius(screw)``` | Radius if a screw lug |
| ```screw_lug_radius(screw)``` | Radius of a screw lug |
### Modules
| Module | Description |
|:--- |:--- |
| ```drag_chain_assembly(type, pos = 0)``` | Drag chain assembly |
| ```drag_chain_link(type, start = false, end = false)``` | One link of the chain, special case for start and end |
| ```drag_chain_link(type, start = false, end = false, check_kids = true)``` | One link of the chain, special case for start and end |
| ```drag_chain_screw_positions(type, end)``` | Place children at the screw positions, end = 0 for the start, 1 for the end |
| ```screw_lug(screw, h = 0)``` | Create a D shaped lug for a screw |
@@ -5852,7 +5861,7 @@ A sector of a circle between two angles.
Utility to generate a polhedron by sweeping a 2D profile along a 3D path and utilities for generating paths.
The initial orientation is the Y axis of the profile points towards the initial center of curvature, Frenet-Serret style.
This means the first three points must not be colinear. Subsequent rotations use the minimum rotation method.
Subsequent rotations use the minimum rotation method.
The path can be open or closed. If closed sweep ensures that the start and end have the same rotation to line up.
An additional twist around the path can be specified. If the path is closed this should be a multiple of 360.
@@ -6107,6 +6116,16 @@ it gets the linear dimensions right. See <https://hydraraptor.blogspot.com/2011/
The module provides `poly_circle()`, `poly_cylinder()` and `poly_ring()` that is useful for making printed washers and pillars.
`poly_cylinder()` has a `twist` parameter which can be set to make the polygon rotate each layer.
This can be used to mitigate the number of sides being small and make small holes stronger and more round, but is quite slow due to the
large increase in the number of facets.
When set to 1 the polygons alternate each layer, when set higher the rotation takes `twist + 1` layers to repeat.
A small additional rotation is added to make the polygon rotate one more side over the length of the hole to make it appear round when
veiwed end on.
When `twist` is set the resulting cylinder is extended by `eps` at each end so that the exact length of the hole can be used without
leaving a scar on either surface.
[utils/core/polyholes.scad](utils/core/polyholes.scad) Implementation.
@@ -6124,7 +6143,7 @@ The module provides `poly_circle()`, `poly_cylinder()` and `poly_ring()` that is
|:--- |:--- |
| ```drill(r, h = 100, center = true)``` | Make a cylinder for drilling holes suitable for CNC routing, set h = 0 for circle |
| ```poly_circle(r, sides = 0)``` | Make a circle adjusted to print the correct size |
| ```poly_cylinder(r, h, center = false, sides = 0, chamfer = false)``` | Make a cylinder adjusted to print the correct size |
| ```poly_cylinder(r, h, center = false, sides = 0, chamfer = false, twist = 0)``` | Make a cylinder adjusted to print the correct size |
| ```poly_drill(r, h = 100, center = true)``` | Make a cylinder for drilling holes suitable for CNC routing if cnc_bit_r is non zero, otherwise a poly_cylinder. |
| ```poly_ring(or, ir, sides = 0)``` | Make a 2D ring adjusted to have the correct internal radius |
| ```poly_tube(or, ir, h, center = false)``` | Make a tube adjusted to have the correct internal radius |
@@ -6158,6 +6177,11 @@ The module provides `poly_circle()`, `poly_cylinder()` and `poly_ring()` that is
| 1 | ```rod(9.5, 43)``` | Smooth rod 9.5mm x 43mm |
| 1 | ```rod(9, 41)``` | Smooth rod 9mm x 41mm |
### Printed
| Qty | Filename |
| ---:|:--- |
| 1 | polyhole.stl |
<a href="#top">Top</a>

View File

@@ -308,8 +308,7 @@ def views(target, do_assemblies = None):
if printed:
print('### 3D Printed parts', file = doc_file)
keys = sorted(list(printed.keys()))
for i in range(len(keys)):
p = keys[i]
for i, p in enumerate(keys):
print('%s %d x %s |' % ('\n|' if not (i % 3) else '', printed[p]["count"], p), file = doc_file, end = '')
if (i % 3) == 2 or i == len(printed) - 1:
n = (i % 3) + 1
@@ -324,8 +323,7 @@ def views(target, do_assemblies = None):
if routed:
print("### CNC Routed parts", file = doc_file)
keys = sorted(list(routed.keys()))
for i in range(len(keys)):
r = keys[i]
for i, r in enumerate(keys):
print('%s %d x %s |' % ('\n|' if not (i % 3) else '', routed[r]["count"], r), file = doc_file, end = '')
if (i % 3) == 2 or i == len(routed) - 1:
n = (i % 3) + 1
@@ -340,8 +338,7 @@ def views(target, do_assemblies = None):
if sub_assemblies:
print("### Sub-assemblies", file = doc_file)
keys = sorted(list(sub_assemblies.keys()))
for i in range(len(keys)):
a = keys[i]
for i, a in enumerate(keys):
print('%s %d x %s |' % ('\n|' if not (i % 3) else '', sub_assemblies[a], a), file = doc_file, end = '')
if (i % 3) == 2 or i == len(keys) - 1:
n = (i % 3) + 1

Binary file not shown.

Before

Width:  |  Height:  |  Size: 133 KiB

After

Width:  |  Height:  |  Size: 133 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

After

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 67 KiB

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 106 KiB

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 74 KiB

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 133 KiB

After

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 148 KiB

After

Width:  |  Height:  |  Size: 152 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 111 KiB

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 114 KiB

After

Width:  |  Height:  |  Size: 136 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 128 KiB

After

Width:  |  Height:  |  Size: 129 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

After

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 160 KiB

After

Width:  |  Height:  |  Size: 181 KiB

View File

@@ -21,30 +21,60 @@ include <../utils/core/core.scad>
use <../vitamins/rod.scad>
include <../vitamins/sheets.scad>
module polyholes() {
module positions()
for(i = [1 : 10]) {
translate([(i * i + i) / 2 + 3 * i , 8])
let($r = i / 2)
module positions()
for(i = [1 : 10]) {
translate([(i * i + i) / 2 + 3 * i , 8])
let($r = i / 2)
children();
let(d = i + 0.5)
translate([(d * d + d) / 2 + 3 * d, 19])
let($r = d / 2)
children();
}
let(d = i + 0.5)
translate([(d * d + d) / 2 + 3 * d, 19])
let($r = d / 2)
children();
}
module polyhole_stl() {
stl("polyhole");
stl_colour(pp1_colour) linear_extrude(3, center = true)
linear_extrude(3, center = true)
difference() {
square([100, 27]);
positions()
poly_circle(r = $r);
}
}
positions()
module alt_polyhole_stl() {
holes = [2.5, 2, 1.5];
n = len(holes);
size = [n * 10, 10, 10];
difference() {
translate([-size.x / n / 2, $preview ? 0 : -size.y / 2])
cube($preview ? [size.x, size.y / 2, size.z] : size);
for(i = [0 : n - 1])
translate([i * 10, 0])
if(i % 2)
translate_z(size.z)
poly_cylinder(r = holes[i] / 2, h = 2 * size.z, center = true, twist = i + 1);
else
poly_cylinder(r = holes[i] / 2, h = size.z, center = false, twist = i + 1);
}
}
module polyholes() {
stl_colour(pp1_colour)
polyhole_stl();
positions()
rod(d = 2 * $r, l = 8 * $r + 5);
//
// Alternating polyholes
//
translate([30, -40])
alt_polyhole_stl();
//
// Poly rings
//
ir = 3 / 2;
@@ -74,4 +104,11 @@ module polyholes() {
}
}
polyholes();
if($preview)
polyholes();
else {
polyhole_stl();
translate([50, -20])
alt_polyhole_stl();
}

View File

@@ -18,20 +18,46 @@
//
include <../core.scad>
module screws()
for(y = [0 : len(screw_lists) -1])
for(x = [0 : len(screw_lists[y]) -1]) {
screw = screw_lists[y][x];
if(screw) {
length = screw_head_type(screw) == hs_grub ? 6
: screw_radius(screw) <= 1.5 ? 10
: screw_max_thread(screw) ? screw_longer_than(screw_max_thread(screw) + 5)
: 30;
translate([x * 20, y * 20])
screw(screw, length);
}
module polysink_stl() {
stl("polysink");
cs_screws = [for(list = screw_lists, screw = list) if(screw_head_type(screw) == hs_cs_cap) screw];
n = len(cs_screws);
size = [n * 20, 20, 10];
difference() {
translate([-size.x / n / 2, $preview ? 0 : -size.y / 2])
cube($preview ? [size.x, size.y / 2, size.z] : size);
for(i = [0 : n - 1])
let(s = cs_screws[i])
translate([i * 20, 0]) {
translate_z(size.z)
screw_polysink(s, 2 * size.z + 1);
screw_polysink(s, 2 * size.z + 1, alt = true);
}
}
}
module screws() {
for(y = [0 : len(screw_lists) -1])
for(x = [0 : len(screw_lists[y]) -1]) {
screw = screw_lists[y][x];
if(screw) {
length = screw_head_type(screw) == hs_grub ? 6
: screw_radius(screw) <= 1.5 ? 10
: screw_max_thread(screw) ? screw_longer_than(screw_max_thread(screw) + 5)
: 30;
translate([x * 20, y * 20])
screw(screw, length);
}
}
translate([80, 20])
polysink_stl();
}
if($preview)
let($show_threads = true)
screws();
else
polysink_stl();

View File

@@ -22,6 +22,16 @@
//! it gets the linear dimensions right. See <https://hydraraptor.blogspot.com/2011/02/polyholes.html>
//!
//! The module provides `poly_circle()`, `poly_cylinder()` and `poly_ring()` that is useful for making printed washers and pillars.
//!
//! `poly_cylinder()` has a `twist` parameter which can be set to make the polygon rotate each layer.
//! This can be used to mitigate the number of sides being small and make small holes stronger and more round, but is quite slow due to the
//! large increase in the number of facets.
//! When set to 1 the polygons alternate each layer, when set higher the rotation takes `twist + 1` layers to repeat.
//! A small additional rotation is added to make the polygon rotate one more side over the length of the hole to make it appear round when
//! veiwed end on.
//!
//! When `twist` is set the resulting cylinder is extended by `eps` at each end so that the exact length of the hole can be used without
//! leaving a scar on either surface.
//
function sides(r) = max(round(4 * r), 3); //! Optimium number of sides for specified radius
function corrected_radius(r, n = 0) = r / cos(180 / (n ? n : sides(r))); //! Adjusted radius to make flats lie on the circle
@@ -32,9 +42,26 @@ module poly_circle(r, sides = 0) { //! Make a circle adjusted to print the corre
circle(r = corrected_radius(r,n), $fn = n);
}
module poly_cylinder(r, h, center = false, sides = 0, chamfer = false) {//! Make a cylinder adjusted to print the correct size
extrude_if(h, center)
poly_circle(r, sides);
module poly_cylinder(r, h, center = false, sides = 0, chamfer = false, twist = 0) {//! Make a cylinder adjusted to print the correct size
if(twist) {
slices = ceil(h / layer_height);
twist = min(twist, slices - 1);
sides = sides ? sides : sides(r);
rot = 360 / sides / (twist + 1) * (1 + 1 / slices);
if(center)
for(side = [0, 1])
mirror([0, 0, side])
poly_cylinder(r = r, h = h / 2, sides = sides, twist = twist);
else
render(convexity = 5)
for(i = [0 : slices - 1])
translate_z(i * layer_height - eps)
rotate(rot * i)
poly_cylinder(r = r, h = layer_height + 2 * eps, sides = sides);
}
else
extrude_if(h, center)
poly_circle(r, sides);
if(h && chamfer)
poly_cylinder(r + layer_height, center ? layer_height * 2 : layer_height, center, sides = sides ? sides : sides(r));

View File

@@ -35,7 +35,7 @@ module hanging_hole(z, ir, h = 100, h2 = 100) { //! Hole radius ```ir``` hanging
poly_cylinder(r - eps, h - layer_height);
}
}
assert(z % layer_height == 0, str(z));
assert(z - layer_height * floor(z / layer_height) < eps, str(z));
infill_angle = z % (2 * layer_height) ? -45 : 45;
below = min(z + eps, h2);
big = 1000;

View File

@@ -60,7 +60,7 @@ function rounded_polygon_length(points, tangents) = //! Calculate the length giv
v1 = p1 - c,
v2 = p2 - c,
r = abs(corner.z),
a = acos((v1 * v2) / sqr(r))) PI * (cross(v1,v2) <= 0 ? a : 360 - a) * r / 180]
a = acos((v1 * v2) / sqr(r))) r ? PI * (cross(v1, v2) <= 0 ? a : 360 - a) * r / 180 : 0]
)
sumv(concat(straights, arcs));

View File

@@ -21,7 +21,7 @@
//! Utility to generate a polhedron by sweeping a 2D profile along a 3D path and utilities for generating paths.
//!
//! The initial orientation is the Y axis of the profile points towards the initial center of curvature, Frenet-Serret style.
//! This means the first three points must not be colinear. Subsequent rotations use the minimum rotation method.
//! Subsequent rotations use the minimum rotation method.
//!
//! The path can be open or closed. If closed sweep ensures that the start and end have the same rotation to line up.
//! An additional twist around the path can be specified. If the path is closed this should be a multiple of 360.

View File

@@ -21,7 +21,7 @@
// n d p r r b i r r i b s p l g
// g t t e e s e e t e l
// t h h w d w w t
// h h s t t
// h h s t t
RB5015 = ["RB5015", "Blower Runda RB5015", 51.3, 51, 15, 31.5, M4_cap_screw, 26, [27.3, 25.4], 4.5, [[4.3, 45.4], [47.3,7.4]], 20, 14, 1.5, 1.3, 1.2, 15];
PE4020 = ["PE4020", "Blower Pengda Technology 4020", 40, 40, 20, 27.5, M3_cap_screw, 22, [21.5, 20 ], 3.2, [[37,3],[3,37],[37,37]], 29.3, 17, 1.7, 1.2, 1.3, 13];
BL40x10 =["BL40x10","Square radial 4010", 40, 40,9.5, 27, M2_cap_screw, 16, [24, 20 ], 2.4, [[2,2],[38,2],[2,38],[38,38]], 30 , 9.5, 1.5, 1.5, 1.1, 1.5];

View File

@@ -29,7 +29,7 @@
// d d h d d
// d
//
F1BM2 = [ "F1BM2", 4.0, 3.6, 3.2, 2, 3.0, 1.0, 3.4, 3.1 ];
F1BM2 = [ "F1BM2", 4.0, 3.6, 3.2, 2, 3.0, 1.0, 3.4, 3.1 ];
F1BM2p5 = [ "F1BM2p5", 5.8, 4.6, 4.0, 2.5, 3.65, 1.6, 4.4, 3.9 ];
F1BM3 = [ "F1BM3", 5.8, 4.6, 4.0, 3, 3.65, 1.6, 4.4, 3.9 ];
F1BM4 = [ "F1BM4", 8.2, 6.3, 5.6, 4, 5.15, 2.3, 6.0, 5.55 ];

View File

@@ -116,7 +116,7 @@ module mains_socket(type) { //! Draw specified 13A socket
cylinder(r = screw_clearance_radius(screw), h = 100, center = true);
translate_z(height)
screw_countersink(screw);
screw_countersink(screw, drilled = false);
}
}
}

View File

@@ -33,11 +33,11 @@ SSR15_carriage = [ 40.3, 23.3, 34, 24, 4.5, 0, 26, M4_cap_screw ];
//
//
// Wr Hr E P D d h
MGN5 = [ "MGN5", 5, 3.6, 5, 15, 3.5, 2.4, 0.8, M2_cs_cap_screw, MGN5_carriage, M2_cs_cap_screw ]; // Screw holes too small for M2 heads
MGN5 = [ "MGN5", 5, 3.6, 5, 15, 3.6, 2.4, 0.8, M2_cs_cap_screw, MGN5_carriage, M2_cs_cap_screw ]; // Screw holes too small for M2 heads
MGN7 = [ "MGN7", 7, 5, 5, 15, 4.3, 2.4, 2.6, M2_cap_screw, MGN7_carriage, M2_cs_cap_screw ];
MGN9 = [ "MGN9", 9, 6, 7.5, 20, 6.0, 3.5, 3.5, M3_cap_screw, MGN9_carriage, M3_cs_cap_screw ];
MGN12= [ "MGN12", 12, 8, 10, 25, 6.0, 3.5, 4.5, M3_cap_screw, MGN12_carriage, M3_cs_cap_screw ];
MGN12H=[ "MGN12H",12, 8, 10, 25, 6.0, 3.5, 4.5, M3_cap_screw, MGN12H_carriage,M3_cs_cap_screw ];
MGN12H=[ "MGN12H",12, 8, 10, 25, 6.0, 3.5, 4.5, M3_cap_screw, MGN12H_carriage,M3_cs_cap_screw ];
MGN15= [ "MGN15", 15, 10, 10, 40, 6.0, 3.5, 5.0, M3_cap_screw, MGN15_carriage, M3_cs_cap_screw ];
SSR15= [ "SSR15", 15, 12.5,10, 60, 7.5, 4.5, 5.3, M4_cap_screw, SSR15_carriage, M4_cs_cap_screw ];

View File

@@ -19,6 +19,8 @@
//
//! Machine screws and wood screws with various head styles.
//!
//! For an explanation of ```screw_polysink()``` see <https://hydraraptor.blogspot.com/2020/12/sinkholes.html>.
//
include <../utils/core/core.scad>
@@ -41,9 +43,13 @@ function screw_pilot_hole(type) = type[11]; //! Pilot hole radius for w
function screw_clearance_radius(type) = type[12]; //! Clearance hole radius
function screw_nut_radius(type) = screw_nut(type) ? nut_radius(screw_nut(type)) : 0; //! Radius of matching nut
function screw_boss_diameter(type) = max(washer_diameter(screw_washer(type)) + 1, 2 * (screw_nut_radius(type) + 3 * extrusion_width)); //! Boss big enough for nut trap and washer
function screw_head_depth(type, d) = screw_head_height(type) ? 0 : screw_head_radius(type) - d / 2; //! How far a counter sink head will go into a straight hole diameter d
function screw_head_depth(type, d = 0) = //! How far a counter sink head will go into a straight hole diameter d
screw_head_height(type)
? 0
: let(r = screw_radius(type)) screw_head_radius(type) - max(r, d / 2) + r / 5;
function screw_longer_than(x) = x <= 5 ? 5 : //! Returns shortest screw length longer or equal to x
x <= 6 ? 6 :
x <= 8 ? 8 :
x <= 10 ? 10 :
x <= 12 ? 12 :
@@ -109,6 +115,27 @@ module screw(type, length, hob_point = 0, nylon = false) { //! Draw specified sc
cylinder(r = rad + eps, h = shank);
}
module cs_head(socket_rad, socket_depth) {
head_t = rad / 5;
head_height = head_rad + head_t;
rotate_extrude()
difference() {
polygon([[0, 0], [head_rad, 0], [head_rad, -head_t], [0, -head_height]]);
translate([0, -socket_depth + eps])
square([socket_rad, 10]);
}
translate_z(-socket_depth)
linear_extrude(socket_depth)
difference() {
circle(socket_rad + 0.1);
children();
}
}
explode(length + 10) {
if(head_type == hs_cap) {
color(colour) {
@@ -201,63 +228,76 @@ module screw(type, length, hob_point = 0, nylon = false) { //! Draw specified sc
}
if(head_type == hs_cs) {
head_height = head_rad;
socket_rad = 0.6 * head_rad;
socket_depth = 0.3 * head_rad;
socket_width = 1;
color(colour) {
rotate_extrude()
difference() {
polygon([[0, 0], [head_rad, 0], [0, -head_height]]);
color(colour)
cs_head(socket_rad, socket_depth) {
square([2 * socket_rad, socket_width], center = true);
square([socket_width, 2 * socket_rad], center = true);
}
translate([0, -socket_depth + eps])
square([socket_rad + 0.1, 10]);
}
translate_z(-socket_depth)
linear_extrude(socket_depth)
difference() {
circle(socket_rad + 0.1);
square([2 * socket_rad, socket_width], center = true);
square([socket_width, 2 * socket_rad], center = true);
}
}
shaft(socket_depth);
}
if(head_type == hs_cs_cap) {
head_height = head_rad;
color(colour) {
rotate_extrude()
difference() {
polygon([[0, 0], [head_rad, 0], [0, -head_height]]);
color(colour)
cs_head(socket_rad, socket_depth)
circle(socket_rad, $fn = 6);
translate([0, -socket_depth + eps])
square([socket_rad, 10]);
}
translate_z(-socket_depth)
linear_extrude(socket_depth)
difference() {
circle(socket_rad + 0.1);
circle(socket_rad, $fn = 6);
}
}
shaft(socket_depth);
}
}
}
module screw_countersink(type) { //! Countersink shape
module screw_countersink(type, drilled = true) { //! Countersink shape
head_type = screw_head_type(type);
head_rad = screw_head_radius(type);
head_height = head_rad;
rad = screw_radius(type);
head_t = rad / 5;
head_height = head_rad + head_t;
if(head_type == hs_cs || head_type == hs_cs_cap)
translate_z(-head_height)
cylinder(h = head_height, r1 = 0, r2 = head_rad);
if(drilled)
cylinder(h = head_height + eps, r1 = 0, r2 = head_rad + head_t);
else
intersection() {
cylinder(h = head_height + eps, r1 = 0, r2 = head_rad + head_t);
cylinder(h = head_height + eps, r = head_rad + eps);
}
}
function screw_polysink_r(type, z) = //! Countersink hole profile corrected for rounded staircase extrusions.
let(rad = screw_radius(type),
head_t = rad / 5,
head_rad = screw_head_radius(type)
)
limit(head_rad + head_t - z + (sqrt(2) - 1) * layer_height / 2, screw_clearance_radius(type), head_rad);
module screw_polysink(type, h = 100, alt = false) { //! A countersink hole made from stacked polyholes for printed parts
head_depth = screw_head_depth(type);
assert(head_depth, "Not a countersunk screw");
layers = ceil(head_depth / layer_height);
rmin = screw_clearance_radius(type);
sides = sides(rmin);
lh = layer_height + eps;
render(convexity = 5)
for(side = [0, 1]) mirror([0, 0, side]) {
for(i = [0 : layers - 1])
translate_z(i * layer_height) {
r = screw_polysink_r(type, i * layer_height + layer_height / 2);
if(alt)
rotate(i % 2 == layers % 2 ? 180 / sides : 0)
poly_cylinder(r = r, h = lh, center = false, sides = sides);
else
poly_cylinder(r = r, h = lh, center = false);
}
translate_z(layers * layer_height)
poly_cylinder(r = rmin, h = h / 2 - layers * layer_height, center = false);
}
}
module screw_and_washer(type, length, star = false, penny = false) { //! Screw with a washer which can be standard or penny and an optional star washer on top

View File

@@ -107,14 +107,14 @@ No6_screw = ["No6", "No6 pan wood", hs_pan, 3.5, 6.7, 2.2, 0, 0
No6_cs_screw = ["No6_cs", "No6 cs wood", hs_cs, 3.5, 7.0, 0, 0, 0, 0, M4_washer, false, No6_pilot_radius, No6_clearance_radius];
screw_lists = [
[ M2_cap_screw, M2p5_cap_screw, M3_cap_screw, M4_cap_screw, M5_cap_screw, M6_cap_screw, M8_cap_screw],
[ 0, 0, M3_low_cap_screw],
[ 0, 0, M3_hex_screw, M4_hex_screw, M5_hex_screw, M6_hex_screw, M8_hex_screw],
[ 0, M2p5_pan_screw, M3_pan_screw, M4_pan_screw, M5_pan_screw, M6_pan_screw, No632_pan_screw],
[ 0, No2_screw, No4_screw, No6_screw, No6_cs_screw],
[ 0, M2_cs_cap_screw,M3_cs_cap_screw, M4_cs_cap_screw],
[ 0, M2_dome_screw, M3_dome_screw, M4_dome_screw],
[ 0, 0, M3_grub_screw, M4_grub_screw]
[ M2_cap_screw, M2p5_cap_screw, M3_cap_screw, M4_cap_screw, M5_cap_screw, M6_cap_screw, M8_cap_screw],
[ 0, 0, M3_low_cap_screw],
[ M2_cs_cap_screw, 0, M3_cs_cap_screw, M4_cs_cap_screw],
[ M2_dome_screw, 0, M3_dome_screw, M4_dome_screw],
[ 0, 0, M3_hex_screw, M4_hex_screw, M5_hex_screw, M6_hex_screw, M8_hex_screw],
[ 0, M2p5_pan_screw, M3_pan_screw, M4_pan_screw, M5_pan_screw, M6_pan_screw, No632_pan_screw],
[ No2_screw, 0, No4_screw, No6_screw, No6_cs_screw],
[ 0, 0, M3_grub_screw, M4_grub_screw]
];
use <screw.scad>

View File

@@ -38,7 +38,7 @@ PMMA8 = [ "PMMA8", "Sheet acrylic", 8, [1, 1, 1, 0.5 ],
PMMA10 = [ "PMMA10", "Sheet acrylic", 10, [1, 1, 1, 0.5 ], false]; // ~3/8"
glass2 = [ "glass2", "Sheet glass", 2, [1, 1, 1, 0.25 ], false];
DiBond = [ "DiBond", "Sheet DiBond", 3, [0.2, 0.2, 0.2, 1 ], false];
DiBond6 = [ "DiBond6", "Sheet DiBond", 6, "RoyalBlue", false];
DiBond6 = [ "DiBond6", "Sheet DiBond", 6, [0.2, 0.2, 0.2, 1 ], false];
Cardboard = [ "Cardboard", "Corrugated cardboard", 5, [0.8, 0.6, 0.3, 1 ], false];
FoilTape = [ "FoilTape", "Aluminium foil tape", 0.05,[0.9, 0.9, 0.9, 1 ], false];
Foam20 = [ "Foam20", "Foam sponge", 20,[0.3, 0.3, 0.3, 1 ], true];