1
0
mirror of https://github.com/nophead/NopSCADlib.git synced 2025-09-03 20:32:35 +02:00

Compare commits

...

84 Commits

Author SHA1 Message Date
Chris Palmer
8d22940506 Project blurb can now be split with into sections with markdown horizonal rules
made with asterisks.
If an image is include in the first section the default image is supressed.
2020-12-28 20:49:37 +00:00
Chris Palmer
31bfa3b268 Merge branch 'master' of https://github.com/nophead/NopSCADlib.git 2020-12-26 20:09:06 +00:00
Chris Palmer
ec44fe96b4 openscad.py now works from the command line. 2020-12-26 20:08:47 +00:00
Chris
9e50d1217d Merge pull request #118 from martinbudden/carriage_fix
Fixed error in carriage_size function.
2020-12-26 19:46:20 +00:00
Martin Budden
87c8bbb9a5 Fixed error in carriage_size function. 2020-12-26 19:42:29 +00:00
Chris Palmer
ed1cc8b488 Fixed typo. 2020-12-24 16:23:22 +00:00
Chris Palmer
4cac382581 Single backtick now used for all code quotes. 2020-12-24 16:04:59 +00:00
Chris Palmer
04b98a3786 One backquote instead of three for code markup test. 2020-12-24 15:19:07 +00:00
Chris Palmer
6f8ff606fa Removed woven_sheet() from the readme.
Removed redundent code.
2020-12-24 09:01:51 +00:00
Chris Palmer
acd5de0fbd Fixed extra BOM entries for woven sheet.
Added render colour to BOM for 3D sheets.
2020-12-24 08:56:54 +00:00
Chris Palmer
cc1e3baaf6 Reimplemeted woven sheets with an eye to speed and interface consistancy. 2020-12-23 21:44:05 +00:00
Chris Palmer
ab50b6f9a6 Merge branch 'woven_sheet' of https://github.com/martinbudden/NopSCADlib 2020-12-23 16:50:30 +00:00
Chris Palmer
d9cb604f92 Merge branch 'martinbudden-carriage_size' 2020-12-23 16:48:55 +00:00
Chris Palmer
52d2a49e1c Updated readme for carriage_size(). 2020-12-23 16:48:26 +00:00
Martin Budden
85cb54ef31 Added sheet with checkerboard texture to simulate carbon fiber. 2020-12-23 07:47:41 +00:00
Martin Budden
cd4447a2e6 Added carriage_size convenience function. 2020-12-23 07:06:58 +00:00
Chris Palmer
9699a70cf5 Merge branch 'martinbudden-rounded_right_triangle' 2020-12-22 13:02:14 +00:00
Chris Palmer
6d79e587aa Updated readme and image for rounded_right_triangle. 2020-12-22 13:00:49 +00:00
Chris Palmer
15b3b3a8c2 Merge branch 'rounded_right_triangle' of https://github.com/martinbudden/NopSCADlib into martinbudden-rounded_right_triangle 2020-12-22 12:39:17 +00:00
Chris Palmer
ec891c8013 Merge branch 'martinbudden-dogbone_xy' 2020-12-22 12:35:35 +00:00
Chris Palmer
c7811f21e0 dogbone_rectangle_x() and dogbone_rectangle_y() added. 2020-12-22 12:34:08 +00:00
Martin Budden
782deccf6b Simplified dogbone rectangles. 2020-12-22 10:34:45 +00:00
Martin Budden
69da4c1c23 Added offset parameters to dogbone_square. 2020-12-22 10:09:43 +00:00
Martin Budden
dad2bccbaa Added a rounded right triangle. 2020-12-22 00:02:00 +00:00
Martin Budden
0a00f244e4 Added dogbones with circles offset in x and y directions. 2020-12-21 23:28:39 +00:00
Chris Palmer
76ea28e88e Merge branch 'martinbudden-render_if' 2020-12-20 21:30:39 +00:00
Chris Palmer
44cf9e910b Updated readme for render_if() 2020-12-20 21:30:05 +00:00
Chris Palmer
0261362794 Merge branch 'render_if' of https://github.com/martinbudden/NopSCADlib into martinbudden-render_if 2020-12-20 17:25:39 +00:00
Chris Palmer
2e6b55bcbc Merge branch 'martinbudden-rounded_rectangle_xyz' 2020-12-20 17:24:13 +00:00
Chris Palmer
20901f0356 Updated rounded_rectangle pictures and readme. 2020-12-20 17:24:00 +00:00
Chris Palmer
77ffdcb1ac Merge branch 'rounded_rectangle_xyz' of https://github.com/martinbudden/NopSCADlib into martinbudden-rounded_rectangle_xyz 2020-12-20 16:50:51 +00:00
Chris Palmer
6ab4bad97a Polyhole no longer adds an extra twist when layers is small. 2020-12-20 10:37:41 +00:00
Martin Budden
14c6219733 Added rounded_rectangles in the XZ and YZ planes. 2020-12-20 09:16:40 +00:00
Martin Budden
b21b7b9de0 Added render_if module. 2020-12-20 08:53:42 +00:00
Chris Palmer
73d814d2fe poly_cylinder() now has a twist parameter. 2020-12-18 09:22:39 +00:00
Chris Palmer
fa658d9eaa Moved polysink test to avoid clash in the big picture. 2020-12-17 07:28:02 +00:00
Chris
6d3f54b7a5 Merge pull request #107 from martinbudden/hanging_hole_rounding
Fixed rounding error in hangin_hole assert.
2020-12-16 21:58:40 +00:00
Chris Palmer
157ff60e19 screw_polysink now has an alternating layer option to be more printable inverted.
The screws test now tests polysinks and has printable sample.
2020-12-16 20:53:04 +00:00
Martin Budden
cbd3cf29af Fixed rounding error in hangin_hole assert. 2020-12-16 19:27:03 +00:00
Chris Palmer
bf618bb482 Whitespace fixes. 2020-12-13 10:29:54 +00:00
Chris Palmer
1e6f0a5c4d Added link to block article about screw_polysink(). 2020-12-12 10:58:54 +00:00
Chris Palmer
53c3cdb598 Added screw_polysink(). 2020-12-12 09:46:46 +00:00
Chris Palmer
f4857f6862 6mm screws added to the screw_longer_than() list. 2020-12-11 11:40:32 +00:00
Chris Palmer
1acc8d01c0 Fixed MGN5 rail hole dimension. 2020-12-11 08:39:28 +00:00
Chris Palmer
344e8d1583 Fixed countersink shape. 2020-12-10 23:27:27 +00:00
Chris Palmer
dd757a1461 screw_head_depth() now defaults to all of a cs head if no diameter specified. 2020-12-10 17:29:48 +00:00
Chris Palmer
b4f8892b1a Cs screw head shape more accurate. 2020-12-10 16:33:26 +00:00
Chris Palmer
4b033d9945 Drag chain screw positions no longer mirrored to allow teardrop holes.
Previously the lugs were mirrored but that caused mirrored teardrops in mating parts.
2020-12-05 11:33:53 +00:00
Chris Palmer
d5a711f4cc Typo in drag_chain 2020-12-04 12:08:55 +00:00
Chris Palmer
42b76ab8d3 drag_chain_link() now checks it has children when it should. 2020-12-01 18:46:14 +00:00
Chris Palmer
f18044915d Fixed nan length for rounded_polygon with zero radius corners. 2020-11-30 21:52:42 +00:00
Chris Palmer
17b12c7f31 views.py now uses enumerate() to be more Pythonic. 2020-11-29 12:21:38 +00:00
Chris Palmer
18ff4c6d46 DiBond6 sheet now grey. 2020-11-29 10:39:35 +00:00
Chris Palmer
2eecce819c Removed comment about sweep path restriction that is no longer relevant. 2020-11-29 10:22:49 +00:00
Chris Palmer
f7d81738bb pp2_colour and pp3_colour less saturated to show details better. 2020-11-29 09:49:05 +00:00
Chris Palmer
6d44124bab Made drag_chain_assembly big. 2020-11-27 23:11:47 +00:00
Chris Palmer
9bb9f09dca Simplified some of the code in box.scad in response to comments from SCA2D. 2020-11-27 18:23:44 +00:00
Chris Palmer
773a53829f Fixed drag_chains exploding when they shouldn't do. 2020-11-27 18:14:04 +00:00
Chris Palmer
07766d8cf0 Added printed press_fit.scad. 2020-11-27 18:13:01 +00:00
Chris Palmer
ceac5cdb27 Fixed bug in rail screw placement when putting screws in the middle.
Rail test can now move the carriages with customiser.
2020-11-26 14:24:46 +00:00
Chris Palmer
c5b35daeac Added rail_holes() function. 2020-11-24 23:38:12 +00:00
Chris Palmer
ffb4512523 Drag chain ends can now be customised by adding children to the assembly. 2020-11-23 12:07:34 +00:00
Chris Palmer
35ffbad74c Drag chain ends now pp3_colour and explode. 2020-11-22 12:47:30 +00:00
Chris Palmer
fb685a0f42 Fixed missing screw default for ribbon_clamp_assembly(). 2020-11-22 12:04:55 +00:00
Chris Palmer
5d42b2e1ab Merge branch 'martinbudden-camera_no_lens' 2020-11-21 20:55:25 +00:00
Chris Palmer
2fe815d1bd Updated readme 2020-11-21 20:54:38 +00:00
Martin Budden
5c577cccd0 Added facility to display camera without lens. 2020-11-21 20:45:39 +00:00
Chris Palmer
1dbfafd366 Merge branch 'martinbudden-conditional_flip' 2020-11-20 12:13:44 +00:00
Chris Palmer
68b3dfb098 Updated readme. 2020-11-20 12:13:26 +00:00
Martin Budden
25dceee20a Made hflip and vflip conditional. 2020-11-20 08:46:17 +00:00
Chris Palmer
d70ddf5359 Type in drag chain blurb, fixes #100 2020-11-19 19:41:59 +00:00
Chris Palmer
70b60522ce Added drag_chain to the cover picture. 2020-11-18 16:25:45 +00:00
Chris Palmer
ecba7eaea4 Merge branch 'martinbudden-square_blower' 2020-11-18 11:31:57 +00:00
Chris Palmer
f751dd9a73 Tweaks to make interface consistent with blowers.
Added blower_exit_offset().
Fixed corner shape and exit dimensions.
Updated images and readme.
2020-11-18 11:31:40 +00:00
Chris Palmer
3f359f6839 Merge branch 'square_blower' of https://github.com/martinbudden/NopSCADlib into martinbudden-square_blower 2020-11-17 16:41:34 +00:00
Chris Palmer
3e5947c161 Added another size of ribbon clamp 2020-11-17 16:23:12 +00:00
Chris
66dc430541 Merge pull request #92 from martinbudden/belt_gap
Allow user to set y size of belt gap.
2020-11-17 16:18:44 +00:00
Chris Palmer
4dc83d62cb Finished end links. 2020-11-17 16:14:25 +00:00
Martin Budden
ebbec3c903 Allow user to set y size of belt gap. 2020-11-16 07:36:34 +00:00
Chris Palmer
9944aab73e Merge branch 'master' into drag 2020-11-15 17:49:30 +00:00
Chris Palmer
ff5e8c0372 Added ends 2020-11-15 16:28:24 +00:00
Martin Budden
17ebf36e27 Initial commit of square blower. 2020-11-15 08:16:22 +00:00
Chris Palmer
e38d9abfa0 Merge branch 'master' into drag 2020-11-14 17:46:29 +00:00
Chris Palmer
38acef9e27 Needs end pieces 2020-11-14 14:27:22 +00:00
103 changed files with 3809 additions and 2775 deletions

View File

@@ -22,37 +22,37 @@ The 7 SEGMENT.TTF font from the docs directory is needed for simulating 7 segmen
## Installation
OpenSCAD has to be setup to find libraries by setting the ```OPENSCADPATH``` environment variable to where you want to file your libraries and NopSCADlib needs to be installed
in the directory it points to. This can be done with ```git clone https://github.com/nophead/NopSCADlib.git``` while in that directory or, if you don't want to use GIT,
OpenSCAD has to be setup to find libraries by setting the `OPENSCADPATH` environment variable to where you want to file your libraries and NopSCADlib needs to be installed
in the directory it points to. This can be done with `git clone https://github.com/nophead/NopSCADlib.git` while in that directory or, if you don't want to use GIT,
by downloading https://github.com/nophead/NopSCADlib/archive/master.zip and unzipping it to a directory called NopSCADlib.
The ```NopSCADlib/scripts``` directory needs to be added to the executable search path, ```PATH``` on Windows and ```path``` on Linux and Mac.
The `NopSCADlib/scripts` directory needs to be added to the executable search path, `PATH` on Windows and `path` on Linux and Mac.
The installation can be tested by opening ```NopSCADlib/libtest.scad``` in the OpenSCAD GUI. It should render all the objects in the library in about 1 minute.
The installation can be tested by opening `NopSCADlib/libtest.scad` in the OpenSCAD GUI. It should render all the objects in the library in about 1 minute.
Running ```tests``` from the command line will run all the tests in the ```tests``` directory and build the ```readme.md``` catalog for GitHub and render it to ```readme.html```
Running `tests` from the command line will run all the tests in the `tests` directory and build the `readme.md` catalog for GitHub and render it to `readme.html`
for local preview.
## Directory structure
| Path | Contents |
|:-----|:------|
| ```NopSCADlib``` | Top level scad files, e.g. ```lib.scad``` |
| ```NopSCADlib/doc``` | Documentation like this that is not automatically generated |
| ```NopSCADlib/examples``` | Example projects |
| ```NopSCADlib/gallery``` | Pictures of items that have been made with the library |
| ```NopSCADlib/printed``` | Scad files for making reusable printed parts |
| ```NopSCADlib/scripts``` | Python scripts |
| ```NopSCADlib/tests``` | A stand alone test for each type of vitamin and most of the utilities |
| ```NopSCADlib/utils``` | Utility scad files |
| ```NopSCADlib/utils/core``` | Core utilities used by nearly everything |
| ```NopSCADlib/vitamins``` | Generally a pair of .scad files for each type of vitamin. The plural version contains object definitions to be included and it uses the singular version. |
| `NopSCADlib` | Top level scad files, e.g. `lib.scad` |
| `NopSCADlib/doc` | Documentation like this that is not automatically generated |
| `NopSCADlib/examples` | Example projects |
| `NopSCADlib/gallery` | Pictures of items that have been made with the library |
| `NopSCADlib/printed` | Scad files for making reusable printed parts |
| `NopSCADlib/scripts` | Python scripts |
| `NopSCADlib/tests` | A stand alone test for each type of vitamin and most of the utilities |
| `NopSCADlib/utils` | Utility scad files |
| `NopSCADlib/utils/core` | Core utilities used by nearly everything |
| `NopSCADlib/vitamins` | Generally a pair of .scad files for each type of vitamin. The plural version contains object definitions to be included and it uses the singular version. |
## Making a project
Each project has its own directory and that is used to derive the project's name.
There should also be a subdirectory called ```scad``` with a scad file in it that contains the main assembly.
There should also be a subdirectory called `scad` with a scad file in it that contains the main assembly.
A skeleton project looks like this: -
//! Project description in Markdown format before the first include.
@@ -72,30 +72,30 @@ A skeleton project looks like this: -
Other scad files can be added to the scad directory and included or used as required.
* Subassemblies can be added in the same format as ```main_assembly()```, i.e. a module called ```something_assembly()```, taking no parameters and calling ```assembly("something")```
* Subassemblies can be added in the same format as `main_assembly()`, i.e. a module called `something_assembly()`, taking no parameters and calling `assembly("something")`
with the rest of its contents passed as children.
It needs to be called directly or indirectly from ```main_assembly()``` to appear in the view and on the BOM.
Assembly instructions should be added directly before the module definition in comments marked with ```//!```.
It needs to be called directly or indirectly from `main_assembly()` to appear in the view and on the BOM.
Assembly instructions should be added directly before the module definition in comments marked with `//!`.
* Any printed parts should be made by a module called ```something_stl()```, taking no parameters and calling ```stl("something")``` so they appear on the BOM when called from
an assembly. Printed parts are usually ```color```ed and ```render```ed at the point they are used in the assembly.
* Any printed parts should be made by a module called `something_stl()`, taking no parameters and calling `stl("something")` so they appear on the BOM when called from
an assembly. Printed parts are usually `color`ed and `render`ed at the point they are used in the assembly.
* Any 2D routed parts should be made by a module called ```something_dxf()```, taking no parameters and calling ```dxf("something")``` so they appear on the BOM when called from an
assembly. They are generally made from a ```sheet_2D()``` with holes subtracted from it. That will also put the sheet material on the BOM.
They are then expanded to 3D using ```render_2D_sheet()``` when they are placed in an assembly.
* Any 2D routed parts should be made by a module called `something_dxf()`, taking no parameters and calling `dxf("something")` so they appear on the BOM when called from an
assembly. They are generally made from a `sheet_2D()` with holes subtracted from it. That will also put the sheet material on the BOM.
They are then expanded to 3D using `render_2D_sheet()` when they are placed in an assembly.
When ```make_all``` is run from the top level directory of the project it will create the following sub-directories and populate them:-
When `make_all` is run from the top level directory of the project it will create the following sub-directories and populate them:-
| Directory | Contents |
|:----------|:---------|
| assemblies | For each assembly: an assembled view and an exploded assembly view, in large and small formats |
| bom | A flat BOM in ```bom.txt``` for the whole project, flat BOMs in text format for each assembly and a hierarchical BOM in JSON format: ```bom.json```.|
| bom | A flat BOM in `bom.txt` for the whole project, flat BOMs in text format for each assembly and a hierarchical BOM in JSON format: `bom.json`.|
| deps | Dependency files for each scad file in the project, so that subsequent builds can be incremental |
| dxfs | DXF files for all the CNC routed parts in the project and small PNG images of them |
| stls | STL files for all the printed parts in the project and small PNG images of them |
It will also make a Markdown assembly manual called ```readme.md``` suitable for GitHub, a version rendered to HTML for viewing locally called ```readme.html``` and a second
HTML version called ```printme.html```. This has page breaks instead of horizontal rules between sections and can be converted to PDF using Chrome to make a stand alone manual.
It will also make a Markdown assembly manual called `readme.md` suitable for GitHub, a version rendered to HTML for viewing locally called `readme.html` and a second
HTML version called `printme.html`. This has page breaks instead of horizontal rules between sections and can be converted to PDF using Chrome to make a stand alone manual.
Each time OpenSCAD is run to produce STL files, DXF files or assembly views, the time it takes is recorded and compared with the previous time.
At the end the times are printed with the delta from the last run and coloured red or green if they have got significantly faster or slower.
@@ -112,7 +112,7 @@ All the vitamins and utilities are included if you include [NopSCADlib/lib.scad]
Printed parts are not included and need to be used or included explicitly, their documentation states which files need to be included rather than used.
This is the easiest way to use the library and is reasonably efficient because the only files included are the object list definitions, all the functions and modules are used, so
get shared if other files in the project include ```lib.scad``` as well, or if you have multiple projects open in the same instance of OpenSCAD.
get shared if other files in the project include `lib.scad` as well, or if you have multiple projects open in the same instance of OpenSCAD.
One downside is that any change to the library will mean all the project files need regenerating.
A more optimised approach for large projects is to include [NopSCADlib/core.scad](../core.scad) instead.
@@ -123,17 +123,17 @@ Any other vitamins used need to be included explicitly. One can copy the include
Modules that generate parts and assemblies need to take no parameters so that they can be called from the framework to make the STL files and assembly views, etc.
Sometimes parts or asemblies need to be parametric, for example fan guards take the fan as a parameter.
To work around this the ```fan_guard()``` module calls the ```stl()``` module with a variable name which has a suffix of the fan width, e.g. "fan_guard_60".
To work around this the `fan_guard()` module calls the `stl()` module with a variable name which has a suffix of the fan width, e.g. "fan_guard_60".
This ensures that if there are different sized fans in the same project the STL files have unique names.
It is then up to the user to add a wrapper to their project called ```fan_guard_60_stl()``` that calls ```fan_guard()``` with a 60mm fan: -
It is then up to the user to add a wrapper to their project called `fan_guard_60_stl()` that calls `fan_guard()` with a 60mm fan: -
module fan_guard_60_stl() fan_guard(fan60x15);
Calling ```fan_guard(fan60x15)``` draws a fan guard for a 60mm fan and puts ```fan_guard_60.stl``` on the BOM. The framework then looks for a module ```fan_guard_60_stl()``` to
Calling `fan_guard(fan60x15)` draws a fan guard for a 60mm fan and puts `fan_guard_60.stl` on the BOM. The framework then looks for a module `fan_guard_60_stl()` to
generate it.
This is OK if the fan will always be 60mm but what if the project is parametric and the fan size can vary?
To cater for that ```fan_guard()``` can be passed a ```name``` parameter to name the STL.
To cater for that `fan_guard()` can be passed a `name` parameter to name the STL.
For example a 3D printer might have a bed cooling fan and different sized machines might have different size fans.
bed_fan = fan80x38;
@@ -144,7 +144,7 @@ In this case the STL file has a constant name related to its use, regardless of
### Assembly boundaries
The ```assembly()``` module is used to mark assemblies that correspond to a step of construction.
The `assembly()` module is used to mark assemblies that correspond to a step of construction.
Each assembly named in this way gets a page in the build manual with a list of the parts and sub-assemblies that it uses, an exploded view,
some build instructions and then the assembled view.
This doesn't always correspond with how one would want to structure the code.
@@ -182,26 +182,26 @@ This is achieved by having a pair of modules: -
screw_and_washer(screw, screw_length, true);
}
Notice how the first module ```handle_assembly()``` uses ```assembly()``` and has a build instruction. It isn't used directly in a project though, ```handle_fastened_assembly()``` is
Notice how the first module `handle_assembly()` uses `assembly()` and has a build instruction. It isn't used directly in a project though, `handle_fastened_assembly()` is
what is actually called from the parent assembly.
Because it doesn't have a call to ```assembly()```, the fasteners are added to the parent but the STL and the inserts become a sub-assembly.
Because it doesn't have a call to `assembly()`, the fasteners are added to the parent but the STL and the inserts become a sub-assembly.
When the parent assembly is shown exploded the handle's screws will be exploded but the inserts won't. They only explode when the sub-assembly is shown exloded.
Note also the ```pose([225, 0, 150], [0, 0, 14])``` call before the ```assembly()``` call. This allows the sub-assembly to be posed differently in its build step but doesn't
Note also the `pose([225, 0, 150], [0, 0, 14])` call before the `assembly()` call. This allows the sub-assembly to be posed differently in its build step but doesn't
affect its orientation in the parent assembly. The pose parameters are the rotation and the translation taken from the GUI.
### Exploded diagrams
A lot of vitamins explode themselves when ```$explode=1```. This is done with module ```explode()``` that can be passed a Z offset, or a 3D vector that gives the displacement
and it draws a line from the origial position to the exploded position. The line can be offset from the origin of the component by specifying an offset vector.
A lot of vitamins explode themselves when `$explode=1`. This is done with module `explode()` that can be passed a Z offset, or a 3D vector that gives the displacement
and it draws a line from the original position to the exploded position. The line can be offset from the origin of the component by specifying an offset vector.
Often user assemblies need to add ```explode()``` in various places to explode printed parts, for example.
Often user assemblies need to add `explode()` in various places to explode printed parts, for example.
### Creating vitamins
Most vitamins are parametric and use a named list of properties to describe them is a pseudo OO style.
These lists are passed to every function or module related to the vitamin as the first parameter called ```type```.
These lists are passed to every function or module related to the vitamin as the first parameter called `type`.
They need to be included in the user code, so that the list names are visible. The functions and modules however only need to be used, not included.
This leads to a pair of files for each vitamin. One with a plural name that defines the objects and then uses the file with a singular name
@@ -216,50 +216,50 @@ These functions take a particular form, so they can be scraped out and added to
function spring_od(type) = type[1]; //! Outside diameter
Other functions and modules with ```//!``` comments will be added to the documentation as functions and modules.
Other functions and modules with `//!` comments will be added to the documentation as functions and modules.
Functions and modules without these special comments are considered private and do not appear in the documentation.
A vitamin announces itself to the BOM by calling the ```vitamin()``` module with a string description composed of two parts separated by a colon.
A vitamin announces itself to the BOM by calling the `vitamin()` module with a string description composed of two parts separated by a colon.
The first part is a string representation of the module instantiation.
This is used in the documentation to show how to instantiate every part available.
To facilitate this the first element in the type list is the name of the list as a string and is simply accessed as ```type[0]```.
To facilitate this the first element in the type list is the name of the list as a string and is simply accessed as `type[0]`.
The part of the description after the colon is free format text that appears on the BOM. Since vitamins are listed alphabetically starting the description with the broad
category of the part and leaving the more refined description to the end generates tidier parts lists.
For example ```Screw M3 pan x 30mm``` ensures all the screws appear together and are ordered by their diameter before length, although ```M3 x 30mm pan screw``` would be
For example `Screw M3 pan x 30mm` ensures all the screws appear together and are ordered by their diameter before length, although `M3 x 30mm pan screw` would be
more natural.
Vitamins are only ever previewed, so they are optimised to draw quickly in F5 and don't need to worry about being manifold.
In OpenCSG 3D difference and intersection are relatively slow and the negative volumes interfere with nearby objects when they are composed into assemblies. For this reason as much
as possible is done by unioning primitives and extruded 2D shapes. Any 3D differences or intersections are wrapped in ```render()``` so that CGAL will compute a polyhedron
as possible is done by unioning primitives and extruded 2D shapes. Any 3D differences or intersections are wrapped in `render()` so that CGAL will compute a polyhedron
that is cached and reused. This will be very slow the first time it renders but very fast afterwards.
### Panels and Platters
The ```stls``` and ```dxfs``` scripts produce a file for each part but often it is desirable to print or route collections of parts laid out together.
This can be done by adding scad files to folders called ```platters``` for STL files and ```panels``` for DXF files.
These can aggregate and lay out parts by including ```NopSCADlib/core.scad``` and using modules ```use_stl(name)``` and ```use_dxf(name)```.
The `stls` and `dxfs` scripts produce a file for each part but often it is desirable to print or route collections of parts laid out together.
This can be done by adding scad files to folders called `platters` for STL files and `panels` for DXF files.
These can aggregate and lay out parts by including `NopSCADlib/core.scad` and using modules `use_stl(name)` and `use_dxf(name)`.
These modules import the already generated singular STL and DXF files, so they are relatively fast. The name does not include the suffix.
The scad files typically also need to include other files from the project to get the dimensions of the parts to calculate their positions.
The composite part files have the same name as the scad file that generates them, with the suffix changed to ```.stl``` or ```.dxf```.
The composite part files have the same name as the scad file that generates them, with the suffix changed to `.stl` or `.dxf`.
The generated files are placed in ```stls/printed``` and ```dxfs/routed```.
Any parts that are not covered by the platters / panels are copied into the ```printed``` / ```routed``` directories, so that they contain everything to be made.
The generated files are placed in `stls/printed` and `dxfs/routed`.
Any parts that are not covered by the platters / panels are copied into the `printed` / `routed` directories, so that they contain everything to be made.
### Multiple configurations
Some parametric designs might have several configurations, for example a 3D printer with different size options. If several configurations need to be supported at the
same time multiple sets of BOMS, STLS and DXFs need to be generated in separate diectories. NopSCADlib supports this by having multiple configuration files named
```config_<target_name>.scad```. All the scripts take an optional first parameter that selects one of these config files by specifying ```target_name```.
`config_<target_name>.scad`. All the scripts take an optional first parameter that selects one of these config files by specifying `target_name`.
The target config file is selected by generating ```target.scad``` that includes ```config_<target_name>.scad```.
The rest of the project includes ```target.scad``` to use the configuration.
Additionally all the generated file directories (assemblies, bom, stls, dxfs, etc.) are placed in a sub-directory called ```<target_name>```.
The target config file is selected by generating `target.scad` that includes `config_<target_name>.scad`.
The rest of the project includes `target.scad` to use the configuration.
Additionally all the generated file directories (assemblies, bom, stls, dxfs, etc.) are placed in a sub-directory called `<target_name>`.
### Other libraries
The build scripts need to be able to locate the source files where the modules to generate the STL files and assemblies reside. They will search all the scad files
in the project plus any ```printed``` directories outside the project. This covers the printed parts in NopSCADlib but also allows other libraries of printed parts.
in the project plus any `printed` directories outside the project. This covers the printed parts in NopSCADlib but also allows other libraries of printed parts.
Other libraries of vitamins and utilities can be used provided they follow the same convensions of NopSCADlib. The build scripts don't need to search those.

View File

@@ -35,8 +35,8 @@ extrusion_width = is_undef($extrusion_width) ? 0.5 : $extrusion_width; // fil
nozzle = is_undef($nozzle) ? 0.45 : $nozzle; // 3D printer nozzle
cnc_bit_r = is_undef($cnc_bit_r) ? 1.2 : $cnc_bit_r; // minimum tool radius when milling 2D objects
pp1_colour = is_undef($pp1_colour) ? [0, 146/255, 0] : $pp1_colour; // printed part colour 1, RepRap logo colour
pp2_colour = is_undef($pp2_colour) ? "red" : $pp2_colour; // printed part colour 2
pp3_colour = is_undef($pp3_colour) ? "blue" : $pp3_colour; // printed part colour 3
pp2_colour = is_undef($pp2_colour) ? "Crimson" : $pp2_colour; // printed part colour 2
pp3_colour = is_undef($pp3_colour) ? "SteelBlue" : $pp3_colour; // printed part colour 3
pp4_colour = is_undef($pp4_colour) ? "darkorange" : $pp4_colour;// printed part colour 4
show_rays = is_undef($show_rays) ? false : $show_rays; // show camera sight lines and light direction
show_threads = is_undef($show_threads) ? false : $show_threads; // show screw threads

View File

@@ -90,6 +90,7 @@ use <utils/gears.scad>
use <utils/hanging_hole.scad>
use <utils/fillet.scad>
use <utils/rounded_polygon.scad>
use <utils/rounded_right_triangle.scad>
use <utils/layout.scad>
use <utils/round.scad>
use <utils/offset.scad>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 839 KiB

After

Width:  |  Height:  |  Size: 859 KiB

View File

@@ -52,6 +52,7 @@ use <tests/circlips.scad>
use <tests/components.scad>
use <tests/d_connectors.scad>
use <tests/displays.scad>
use <tests/drag_chain.scad>
use <tests/extrusions.scad>
use <tests/extrusion_brackets.scad>
use <tests/fans.scad>
@@ -77,6 +78,7 @@ use <tests/opengrab.scad>
use <tests/panel_meters.scad>
use <tests/PCBs.scad>
use <tests/pillars.scad>
use <tests/press_fit.scad>
use <tests/PSUs.scad>
use <tests/pulleys.scad>
use <tests/rails.scad>
@@ -136,9 +138,12 @@ cable_grommets_y = 0;
translate([x5, cable_grommets_y])
cable_grommets();
translate([x5 + 80, cable_grommets_y])
translate([x5 + 50, cable_grommets_y])
ribbon_clamps();
translate([x5 + 95, cable_grommets_y])
press_fits();
translate([x5, cable_grommets_y + 60])
fixing_blocks();
@@ -417,12 +422,16 @@ translate([x4 + 200, belts_y + 58]) {
translate([0, 60])
opengrab_test();
}
translate([x4 + 175, belts_y, -20])
drag_chains();
translate([x4, rails_y + 130])
rails();
translate([800, fans_y + 50])
translate([770, fans_y + 50])
cable_strips();
translate([x4, kp_pillow_blocks_y])

View File

@@ -23,7 +23,7 @@
//! together. The box panels can be customised to have holes and parts mounted on them by overriding the
//! definitions of `box_base()`, `box_front()`, etc.
//!
//! `box.scad` should be ```use```d and `box_assembly.scad` ```include```d.
//! `box.scad` should be `use`d and `box_assembly.scad` `include`d.
//!
//! A box is defined with a list that specifies the inside dimensions, top, bottom and side sheet materials, the
//! screw type and printed part wall thickness. This diagram shows how the various dimensions are labelled:
@@ -109,7 +109,7 @@ module grill_hole_positions(width, height, r = 1000) {
}
}
module grill(width, height, r = 1000, poly = false, h = 0) { //! A staggered array of 5mm holes to make grills in sheets. Can be constrained to be circular. Set ```poly``` ```true``` for printing, ```false``` for milling.
module grill(width, height, r = 1000, poly = false, h = 0) { //! A staggered array of 5mm holes to make grills in sheets. Can be constrained to be circular. Set `poly` `true` for printing, `false` for milling.
extrude_if(h)
if(poly)
grill_hole_positions(width, height, r)
@@ -121,11 +121,12 @@ module grill(width, height, r = 1000, poly = false, h = 0) { //! A staggered arr
module box_corner_profile_2D(type) { //! The 2D shape of the corner profile.
t = box_sheet_slot(type);
inset = box_corner_gap(type) + box_profile_overlap(type);
difference() {
union() {
quadrant(box_hole_inset(type) + box_boss_r(type), box_boss_r(type)); // inside corner
translate([box_corner_gap(type) + box_profile_overlap(type), box_corner_gap(type) + box_profile_overlap(type)])
translate([inset, inset])
rotate(180)
quadrant(box_profile_overlap(type) + box_corner_rad(type), box_corner_rad(type)); // outside corner
}
@@ -212,33 +213,39 @@ module box_bezel(type, bottom) { //! Generates top and bottom bezel STLs
feet = bottom && box_feet(type);
t = box_sheet_slot(type);
outset = box_outset(type);
inset = box_inset(type);
inner_r = box_sheet_r(type);
foot_height = box_corner_gap(type) + sheet_thickness(box_base_sheet(type)) + washer_thickness(box_washer(type)) + screw_head_height(box_screw(type)) + box_profile_overlap(type) + 2;
cgap = box_corner_gap(type);
foot_height = cgap + sheet_thickness(box_base_sheet(type)) + washer_thickness(box_washer(type)) + screw_head_height(box_screw(type)) + box_profile_overlap(type) + 2;
foot_length = box_corner_rad(type) * 2;
height = box_bezel_height(type, bottom);
foot_extension = foot_height - height;
difference() {
w = box_width(type);
d = box_depth(type);
translate_z(-box_profile_overlap(type)) difference() {
rounded_rectangle([box_width(type) + 2 * outset, box_depth(type) + 2 * outset, feet ? foot_height : height], box_corner_rad(type), false);
tw = w + 2 * outset;
td = d + 2 * outset;
rounded_rectangle([tw, td, feet ? foot_height : height], box_corner_rad(type), false);
//
// Remove edges between the feet
//
if(feet)
hull() {
translate_z(height + 0.5)
cube([box_width(type) - 2 * foot_length, box_depth(type) + 2 * outset + 1, 1], center = true);
cube([w - 2 * foot_length, td + 1, 1], center = true);
translate_z(foot_height + 1)
cube([box_width(type) - 2 * (foot_length - foot_extension), box_depth(type) + 2 * outset + 1, 1], center = true);
cube([w - 2 * (foot_length - foot_extension), td + 1, 1], center = true);
}
if(feet)
hull() {
translate_z(height + 0.5)
cube([box_width(type) + 2 * outset + 1, box_depth(type) - 2 * foot_length, 1], center = true);
cube([tw + 1, d - 2 * foot_length, 1], center = true);
translate_z(foot_height + 1)
cube([box_width(type) + 2 * outset + 1, box_depth(type) - 2 * (foot_length - foot_extension), 1], center = true);
cube([tw + 1, d - 2 * (foot_length - foot_extension), 1], center = true);
}
}
//
@@ -247,28 +254,28 @@ module box_bezel(type, bottom) { //! Generates top and bottom bezel STLs
translate_z(-box_profile_overlap(type))
linear_extrude(2 * box_profile_overlap(type), center = true)
for(i = [-1, 1]) {
translate([i * (box_width(type) / 2 + t / 2 - sheet_slot_clearance / 2), 0])
square([t, box_depth(type) - 2 * box_corner_gap(type)], center = true);
translate([i * (w + t - sheet_slot_clearance) / 2, 0])
square([t, d - 2 * cgap], center = true);
translate([0, i * (box_depth(type) / 2 + t / 2 - sheet_slot_clearance / 2)])
square([box_width(type) - 2 * box_corner_gap(type), t], center = true);
translate([0, i * (d + t - sheet_slot_clearance) / 2])
square([w - 2 * cgap, t], center = true);
}
//
// recess for top / bottom panel
//
translate_z(box_corner_gap(type))
rounded_rectangle([box_width(type) + bezel_clearance, box_depth(type) + bezel_clearance, height], inner_r + bezel_clearance / 2, false);
translate_z(cgap)
rounded_rectangle([w + bezel_clearance, d + bezel_clearance, height], inner_r + bezel_clearance / 2, false);
//
// leave plastic over the corner profiles
//
translate_z(-box_profile_overlap(type) - 1)
linear_extrude(box_profile_overlap(type) + box_corner_gap(type) + 2)
linear_extrude(box_profile_overlap(type) + cgap + 2)
union() {
difference() {
square([box_width(type) - 2 * box_inset(type),
box_depth(type) - 2 * box_inset(type)], center = true);
square([w - 2 * inset,
d - 2 * inset], center = true);
box_corner_quadrants(type, box_width(type), box_depth(type));
box_corner_quadrants(type, w, d);
}
box_screw_hole_positions(type)
poly_circle(screw_clearance_radius(box_screw(type)));
@@ -291,7 +298,9 @@ module box_bezel_section(type, bottom, rows, cols, x, y) { //! Generates interlo
dw = bw - 2 * dowel_wall;
dh = box_bezel_height(type, bottom) - dowel_h_wall;
dh2 = box_profile_overlap(type) + box_corner_gap(type) - dowel_h_wall;
profile_overlap = box_profile_overlap(type);
dh2 = profile_overlap + box_corner_gap(type) - dowel_h_wall;
end_clearance = 0.5;
module male() {
@@ -299,14 +308,14 @@ module box_bezel_section(type, bottom, rows, cols, x, y) { //! Generates interlo
linear_extrude(dowel_length - 2 * end_clearance, center = true)
difference() {
union() {
h = dh - layer_height;
h1 = dh - layer_height;
h2 = dh2 - layer_height;
hull() {
translate([bw / 2, h / 2])
square([dw - 1, h], center = true);
translate([bw / 2, h1 / 2])
square([dw - 1, h1], center = true);
translate([bw / 2, (h - 1) / 2])
square([dw, h - 1], center = true);
translate([bw / 2, (h1 - 1) / 2])
square([dw, h1 - 1], center = true);
}
hull() {
@@ -318,7 +327,7 @@ module box_bezel_section(type, bottom, rows, cols, x, y) { //! Generates interlo
}
}
translate([bw2 / 2, 0])
square([box_sheet_slot(type), 2 * box_profile_overlap(type)], center = true);
square([box_sheet_slot(type), 2 * profile_overlap], center = true);
}
}
@@ -359,7 +368,7 @@ module box_bezel_section(type, bottom, rows, cols, x, y) { //! Generates interlo
render() difference() {
union() {
clip(xmin = 0, xmax = w, ymin = 0, ymax = h)
translate([tw / 2 - x * w, th / 2 - y * h, box_profile_overlap(type)])
translate([tw / 2 - x * w, th / 2 - y * h, profile_overlap])
box_bezel(type, bottom);
if(x < cols - 1 && y == 0)
@@ -419,10 +428,14 @@ module box_bezel_section(type, bottom, rows, cols, x, y) { //! Generates interlo
}
}
module box_screw_hole_positions(type)
module box_screw_hole_positions(type) {
inset = box_hole_inset(type);
w = box_width(type) / 2 - inset;
d = box_depth(type) / 2 - inset;
for(x = [-1, 1], y = [-1, 1])
translate([x * (box_width(type) / 2 - box_hole_inset(type)), y * (box_depth(type) / 2 - box_hole_inset(type))])
translate([x * w, y * d])
children();
}
module box_base_blank(type) { //! Generates a 2D template for the base sheet
dxf("box_base");
@@ -551,25 +564,25 @@ module box_shelf_bracket_section(type, rows, cols, x, y) { //! Generates section
children();
}
module box_left_blank(type, sheet = false) { //! Generates a 2D template for the left sheet, ```sheet``` can be set to override the type
module box_left_blank(type, sheet = false) { //! Generates a 2D template for the left sheet, `sheet` can be set to override the type
dxf("box_left");
sheet_2D(subst_sheet(type, sheet), box_depth(type) - sheet_reduction(type), box_height(type) - sheet_reduction(type), 1);
}
module box_right_blank(type, sheet = false) { //! Generates a 2D template for the right sheet, ```sheet``` can be set to override the type
module box_right_blank(type, sheet = false) { //! Generates a 2D template for the right sheet, `sheet` can be set to override the type
dxf("box_right");
sheet_2D(subst_sheet(type, sheet), box_depth(type) - sheet_reduction(type), box_height(type) - sheet_reduction(type), 1);
}
module box_front_blank(type, sheet = false) { //! Generates a 2D template for the front sheet, ```sheet``` can be set to override the type
module box_front_blank(type, sheet = false) { //! Generates a 2D template for the front sheet, `sheet` can be set to override the type
dxf("box_front");
sheet_2D(subst_sheet(type, sheet), box_width(type) - sheet_reduction(type), box_height(type) - sheet_reduction(type), 1);
}
module box_back_blank(type, sheet = false) { //! Generates a 2D template for the back sheet, ```sheet``` can be set to override the type
module box_back_blank(type, sheet = false) { //! Generates a 2D template for the back sheet, `sheet` can be set to override the type
dxf("box_back");
sheet_2D(subst_sheet(type, sheet), box_width(type) - sheet_reduction(type), box_height(type) - sheet_reduction(type), 1);

View File

@@ -18,7 +18,7 @@
//
//
// The assembly is ```include```d so the panel definitions can be overridden to add holes and components.
// The assembly is `include`d so the panel definitions can be overridden to add holes and components.
// The _box_module also needs to be wrapped in the file that uses it so it can be called without
// parameters to make the assembly views. E.g. module box_assembly() _box_assembly(box);
//

View File

@@ -21,7 +21,7 @@
//! A box made from CNC cut panels butted together using printed fixing blocks. Useful for making large
//! boxes with minimal 3D printing. More blocks are added as the box gets bigger.
//!
//! Needs to be ```include```d rather than ```use```d to allow the panel definitions to be overridden to add holes
//! Needs to be `include`d rather than `use`d to allow the panel definitions to be overridden to add holes
//! and mounted components.
//!
//! A list specifies the internal dimensions, screw type, top, bottom and side sheet types and the block

View File

@@ -25,10 +25,10 @@
//!
//! Note that the block with its inserts is defined as a sub assembly, but its fasteners get added to the parent assembly.
//!
//! Specific fasteners can be omitted by setting a side's thickness to 0 and the block omitted by setting ```show_block``` to false.
//! Specific fasteners can be omitted by setting a side's thickness to 0 and the block omitted by setting `show_block` to false.
//! This allows the block and one set of fasteners to be on one assembly and the other fasteners on the mating assemblies.
//!
//! Star washers can be omitted by setting ```star_washers``` to false.
//! Star washers can be omitted by setting `star_washers` to false.
//
include <../core.scad>
use <../vitamins/insert.scad>

321
printed/drag_chain.scad Normal file
View File

@@ -0,0 +1,321 @@
//
// NopSCADlib Copyright Chris Palmer 2020
// nop.head@gmail.com
// hydraraptor.blogspot.com
//
// This file is part of NopSCADlib.
//
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
// GNU General Public License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along with NopSCADlib.
// If not, see <https://www.gnu.org/licenses/>.
//
//
//! Parametric cable drag chain to limit the bend radius of a cable run.
//!
//! Each link has a maximum bend angle of 45&deg;, so the mininium radius is proportional to the link length.
//!
//! The travel property is how far it can move in each direction, i.e. half the maximum travel if the chain is mounted in the middle of the travel.
//!
//! The ends can have screw lugs with four screw positions to choose from, specified by a list of two arrays of four bools.
//! If none are enabled then a child object is expected to customise the end and this gets unioned with the blank end.
//! If both ends are customised then two children are expected.
//! Each child is called twice, once with `$fasteners` set to 0 to augment the STL and again with `$fasteners` set to 1 to add
//! to the assembly, for example to add inserts.
//
include <../core.scad>
use <../utils/horiholes.scad>
use <../utils/maths.scad>
clearance = 0.1;
function drag_chain_name(type) = type[0]; //! The name to allow more than one in a project
function drag_chain_size(type) = type[1]; //! The internal size and link length
function drag_chain_travel(type) = type[2]; //! X travel
function drag_chain_wall(type) = type[3]; //! Side wall thickness
function drag_chain_bwall(type) = type[4]; //! Bottom wall
function drag_chain_twall(type) = type[5]; //! Top wall
function drag_chain_screw(type) = type[6]; //! Mounting screw for the ends
function drag_chain_screw_lists(type) = type[7]; //! Two lists of four bools to say which screws positions are used
function drag_chain_clearance() = clearance; //! Clearance around joints.
function drag_chain_radius(type) = //! The bend radius at the pivot centres
let(s = drag_chain_size(type))
s.x / 2 / sin(360 / 16);
function drag_chain_z(type) = //! Outside dimension of a 180 bend
let(os = drag_chain_outer_size(type), s = drag_chain_size(type))
2 * drag_chain_radius(type) + os.z;
function drag_chain(name, size, travel, wall = 1.6, bwall = 1.5, twall = 1.5, screw = M2_cap_screw, screw_lists = [[1,0,0,1],[1,0,0,1]]) = //! Constructor
[name, size, travel, wall, bwall, twall, screw, screw_lists];
function drag_chain_outer_size(type) = //! Link outer dimensions
let(s = drag_chain_size(type), z = s.z + drag_chain_bwall(type) + drag_chain_twall(type))
[s.x + z, s.y + 4 * drag_chain_wall(type) + 2 * clearance, z];
function screw_lug_radius(screw) = //! Radius of a screw lug
corrected_radius(screw_clearance_radius(screw)) + 3.1 * extrusion_width;
module screw_lug(screw, h = 0) //! Create a D shaped lug for a screw
extrude_if(h, center = false)
difference() {
r = screw_lug_radius(screw);
hull() {
circle4n(r);
translate([-r, -r])
square([2 * r, eps]);
}
poly_circle(screw_clearance_radius(screw));
}
function bool2int(b) = b ? 1 : 0;
module drag_chain_screw_positions(type, end) { //! Place children at the screw positions, end = 0 for the start, 1 for the end
r = screw_lug_radius(drag_chain_screw(type));
s = drag_chain_size(type);
os = drag_chain_outer_size(type);
R = os.z / 2;
x0 = end ? R + norm([drag_chain_cam_x(type), R - drag_chain_twall(type)]) + clearance + r : r;
x1 = end ? os.x - r : os.x - 2 * R - clearance - r;
for(i = [0 : 3], x = [x0, x1, x0, x1][i], y = [-1, -1, 1, 1][i])
if(drag_chain_screw_lists(type)[bool2int(end)][i])
translate([x, y * (s.y / 2 + r)])
let($a = [180, 0, 180, 0][i])
children();
}
function drag_chain_cam_x(type) = // how far the cam sticks out
let(s = drag_chain_size(type),
r = drag_chain_outer_size(type).z / 2,
wall = drag_chain_wall(type),
cam_r = s.x - 2 * clearance - wall - r, // inner_x_normal - clearance - r
twall = drag_chain_twall(type)
) min(sqrt(max(sqr(cam_r) - sqr(r - twall), 0)), r);
module drag_chain_link(type, start = false, end = false, check_kids = true) { //! One link of the chain, special case for start and end
stl(str(drag_chain_name(type), "_drag_chain_link", start ? "_start" : end ? "_end" : ""));
s = drag_chain_size(type);
wall = drag_chain_wall(type);
bwall = drag_chain_bwall(type);
twall = drag_chain_twall(type);
os = drag_chain_outer_size(type);
r = os.z / 2;
pin_r = r / 2;
socket_x = r;
pin_x = socket_x + s.x;
outer_normal_x = pin_x - r - clearance; // s.x - clearance
outer_end_x = end ? os.x : outer_normal_x;
inner_x = start ? 0 : outer_normal_x - wall; // s.x - clearance - wall
roof_x_normal = 2 * r - twall;
roof_x = start ? 0 : roof_x_normal;
floor_x = start ? 0 : 2 * r;
cam_x = drag_chain_cam_x(type);
assert(r + norm([drag_chain_cam_x(type), r - drag_chain_twall(type)]) + clearance <= inner_x || start, "Link must be longer");
difference() {
union() {
for(side = [-1, 1])
rotate([90, 0, 0]) {
// Outer cheeks
translate_z(side * (os.y / 2 - wall / 2))
linear_extrude(wall, center = true)
difference() {
hull() {
if(start)
square([eps, os.z]);
else
translate([socket_x, r])
rotate(180)
teardrop(r = r, h = 0);
translate([outer_end_x - eps, 0])
square([eps, os.z]);
}
if(!start)
translate([socket_x, r])
horihole(pin_r, r);
}
// Inner cheeks
translate_z(side * (s.y / 2 + wall / 2))
linear_extrude(wall, center = true)
difference() {
union() {
hull() {
if(!end) {
translate([pin_x, r])
rotate(180)
teardrop(r = r, h = 0);
translate([pin_x, twall])
square([cam_x, eps]);
}
else
translate([os.x - eps, 0])
square([eps, os.z]);
translate([inner_x, 0])
square([eps, os.z]);
}
}
// Cutout for top wall
if(!end)
intersection() {
translate([pin_x - r, 0])
square([3 * r, twall]); // When straight
translate([pin_x, r])
rotate(-45)
translate([-r + roof_x_normal, -r - twall]) // When bent fully
square(os.z);
}
}
// Pin
if(!end)
translate([pin_x, r, side * (s.y / 2 + wall + clearance)])
horicylinder(r = pin_r, z = r, h = 2 * wall);
// Cheek joint
translate([inner_x, 0, side * (s.y / 2 + wall) - 0.5])
cube([outer_end_x - inner_x, os.z, 1]);
}
// Roof, actually the floor when printed
roof_end = end ? s.x + 2 * r : s.x + r - twall - clearance;
translate([roof_x, -s.y / 2 - 0.5])
cube([roof_end - roof_x , s.y + 1, twall]);
translate([roof_x, -os.y / 2 + 0.5])
cube([s.x - clearance - roof_x, os.y - 1, twall]);
// Floor, actually the roof when printed
floor_end = end ? s.x + 2 * r : s.x + r;
translate([floor_x, -s.y / 2 - wall, os.z - bwall])
cube([floor_end - floor_x, s.y + 2 * wall, bwall]);
translate([floor_x, -os.y / 2 + 0.5, os.z - bwall])
cube([s.x - floor_x - clearance, os.y -1, bwall]);
if(start || end) {
drag_chain_screw_positions(type, end)
rotate($a)
screw_lug(drag_chain_screw(type), os.z);
if(check_kids) {
custom = drag_chain_screw_lists(type)[bool2int(end)] == [0, 0, 0, 0];
assert($children == bool2int(custom), str("wrong number of children for ", end ? "end" : "start", " STL customisation: ", $children));
}
children();
}
}
if(start || end)
translate_z(-eps)
drag_chain_screw_positions(type, end)
rotate($a)
poly_cylinder(r = screw_clearance_radius(drag_chain_screw(type)), h = os.z + 2 * eps, center = false);
}
if(show_supports() && !end) {
for(side = [-1, 1]) {
w = 2.1 * extrusion_width;
translate([s.x + r + cam_x - w / 2, side * (s.y / 2 + wall / 2), twall / 2])
cube([w, wall, twall], center = true);
h = round_to_layer(r - pin_r / sqrt(2));
y = s.y / 2 + max(wall + w / 2 + clearance, 2 * wall + clearance - w / 2);
translate([s.x + r, side * y, h / 2])
cube([pin_r * sqrt(2), w, h], center = true);
gap = cam_x - pin_r / sqrt(2) + extrusion_width;
translate([s.x + r + cam_x - gap / 2, side * (s.y / 2 + wall + clearance / 2), layer_height / 2])
cube([gap, 2 * wall + clearance, layer_height], center = true);
}
}
}
// Need to use a wrapper because can't define nested modules in an assembly
module _drag_chain_assembly(type, pos = 0) {
s = drag_chain_size(type);
x = (1 + exploded()) * s.x;
r = drag_chain_radius(type) * x / s.x;
travel = drag_chain_travel(type);
links = ceil(travel / s.x);
actual_travel = links * s.x;
z = drag_chain_outer_size(type).z;
zb = z / 2; // z of bottom track
c = [actual_travel / 2 + pos / 2, 0, r + zb]; // centre of bend
points = [ // Calculate list of hinge points
for(i = 0, p = [0, 0, z / 2 + 2 * r]; i < links + 5;
i = i + 1,
dx = p.z > c.z ? x : -x,
p = max(p.x + dx, p.x) <= c.x ? p + [dx, 0, 0] // Straight sections
: let(q = circle_intersect(p, x, c, r))
q.x <= c.x ? [p.x - sqrt(sqr(x) - sqr(p.z - zb)), 0, zb] // Transition back to straight
: q) // Circular section
p
];
npoints = len(points);
module link(n) // Position and colour link with origin at the hinge hole
translate([-z / 2, 0, -z / 2]) {
stl_colour(n < 0 || n == npoints - 1 ? pp3_colour : n % 2 ? pp1_colour : pp2_colour)
drag_chain_link(type, start = n == -1, end = n == npoints - 1, check_kids = false)
let($fasteners = 0) children();
let($fasteners = 1) children();
}
screws = drag_chain_screw_lists(type);
custom_start = screws[0] == [0, 0, 0, 0];
custom_end = screws[1] == [0, 0, 0, 0];
assert($children == bool2int(custom_start) + bool2int(custom_end), str("wrong number of children for end customisation: ", $children));
for(i = [0 : npoints - 2]) let(v = points[i + 1] - points[i])
translate(points[i])
rotate([0, -atan2(v.z, v.x), 0])
link(i);
translate(points[0] - [x, 0, 0])
link(-1)
if(custom_start)
children(0);
translate(points[npoints - 1])
hflip()
link(npoints - 1)
if(custom_end)
children(custom_start ? 1 : 0);
}
//! 1. Remove the support material from the links with side cutters.
//! 1. Clip the links together with the special ones at the ends.
module drag_chain_assembly(type, pos = 0) //! Drag chain assembly
assembly(str(drag_chain_name(type), "_drag_chain"), big = true)
if($children == 2)
_drag_chain_assembly(type, pos) {
children(0);
children(1);
}
else if($children == 1)
_drag_chain_assembly(type, pos)
children(0);
else
_drag_chain_assembly(type, pos);

View File

@@ -17,7 +17,7 @@
// If not, see <https://www.gnu.org/licenses/>.
//
//! Pintable fan finger guard to match the specified fan. To be ```include```d, not ```use```d.
//! Pintable fan finger guard to match the specified fan. To be `include`d, not `use`d.
//!
//! The ring spacing as well as the number of spokes can be specified, if zero a gasket is generated instead of a guard.
//

View File

@@ -25,10 +25,10 @@
//!
//! Note that the block with its inserts is defined as a sub assembly, but its fasteners get added to the parent assembly.
//!
//! Specific fasteners can be omitted by setting a side's thickness to 0 and the block omitted by setting ```show_block``` to false.
//! Specific fasteners can be omitted by setting a side's thickness to 0 and the block omitted by setting `show_block` to false.
//! This allows the block and one set of fasteners to be on one assembly and the other fasteners on the mating assemblies.
//!
//! Star washers can be omitted by setting ```star_washers``` to false.
//! Star washers can be omitted by setting `star_washers` to false.
//
include <../core.scad>
use <../vitamins/insert.scad>

View File

@@ -25,8 +25,8 @@
//!
//! Opening the test in OpenSCAD with its customiser enabled allows these parameters to be played with.
//!
//! Note setting ```thickness1``` or ```thickness2``` to zero in the ```hinge_fastened_assembly()``` removes the screws from one side or the other and
//! setting ```show_hinge``` to false removes the hinge.
//! Note setting `thickness1` or `thickness2` to zero in the `hinge_fastened_assembly()` removes the screws from one side or the other and
//! setting `show_hinge` to false removes the hinge.
//! This allows the hinges and one set of screws to belong to one assembly and the other set of screws to another assembly.
//
include <../core.scad>

50
printed/press_fit.scad Normal file
View File

@@ -0,0 +1,50 @@
//
// NopSCADlib Copyright Chris Palmer 2020
// nop.head@gmail.com
// hydraraptor.blogspot.com
//
// This file is part of NopSCADlib.
//
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
// GNU General Public License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along with NopSCADlib.
// If not, see <https://www.gnu.org/licenses/>.
//
//
//! Utility for making printed press fit connectors to join printed parts.
//!
//! Add solvent or glue to make a permanent fixture.
//
include <../core.scad>
interference = 0.0;
bridge_droop = layer_height; //sqrt(4 * layer_height * filament_width / PI) - layer_height;
module press_fit_socket(w = 5, h = 50, horizontal = false) { //! Make a square hole to accept a peg
h = horizontal ? h : h + bridge_droop;
cube([w, w, 2 * h], center = true);
}
module press_fit_peg(h, w = 5, horizontal = false) { //! Make a rounded chamfered peg for easy insertion
module chamfered_square(w, horizontal) {
h = horizontal ? w - bridge_droop : w;
rounded_square([w, h], 1);
}
translate_z(-eps)
linear_extrude(height = h + eps - layer_height)
chamfered_square(w + interference, horizontal);
translate_z(h - layer_height - eps)
linear_extrude(height = layer_height + eps)
chamfered_square(w - layer_height, horizontal);
}

View File

@@ -81,7 +81,7 @@ module ribbon_clamp(ways, screw = screw) { //! Generate STL for given number of
}
}
module ribbon_clamp_assembly(ways, screw) pose([55, 180, 25]) //! Printed part with inserts in place
module ribbon_clamp_assembly(ways, screw = screw) pose([55, 180, 25]) //! Printed part with inserts in place
assembly(let(screw_d = screw_radius(screw) * 2)str("ribbon_clamp_", ways, screw_d != 3 ? str("_", screw_d) : "")) {
h = ribbon_clamp_height(screw);
insert = screw_insert(screw);
@@ -117,9 +117,13 @@ module ribbon_clamp_fastened_assembly(ways, thickness, screw = screw) { //! Clam
module ribbon_clamp_20_stl() ribbon_clamp(20);
module ribbon_clamp_8_2_stl() ribbon_clamp(8, M2_dome_screw);
module ribbon_clamp_7_2_stl() ribbon_clamp(8, M2_dome_screw);
//! * Place inserts into the holes and press home with a soldering iron with a conical bit heated to 200&deg;C.
module ribbon_clamp_20_assembly() ribbon_clamp_assembly(20);
//! * Place inserts into the holes and press home with a soldering iron with a conical bit heated to 200&deg;C.
module ribbon_clamp_8_2_assembly() ribbon_clamp_assembly(8, M2_dome_screw);
//! * Place inserts into the holes and press home with a soldering iron with a conical bit heated to 200&deg;C.
module ribbon_clamp_7_2_assembly() ribbon_clamp_assembly(8, M2_dome_screw);

4803
readme.md

File diff suppressed because it is too large Load Diff

View File

@@ -39,8 +39,6 @@ def _scrape_blurb(lines):
if b:
break
text += t
if len(text):
text += '\n'
return text
def scrape_blurb(scad_file):
@@ -49,6 +47,16 @@ def scrape_blurb(scad_file):
lines = file.readlines()
return _scrape_blurb(lines)
def split_blurb(lines):
""" Split blurb on horizontal rules."""
blurbs = [""]
for line in lines.split('\n')[:-1]:
if line == "***":
blurbs.append("")
else:
blurbs[-1] += line + '\n'
return blurbs
def scrape_module_blurb(lines):
""" Find the Markup lines before the last function or module. """
text = ""

View File

@@ -36,7 +36,7 @@ def doc_scripts():
print(
'''
# Python scripts
These are located in the ```scripts``` subdirectory, which needs to be added to the program search path.
These are located in the `scripts` subdirectory, which needs to be added to the program search path.
They should work with both Python 2 and Python 3.
@@ -60,7 +60,7 @@ They should work with both Python 2 and Python 3.
break
if not blurb:
print("Missing description for", file)
print("| ```%s``` | %s |" % (file, blurb), file = doc_file)
print("| `%s` | %s |" % (file, blurb), file = doc_file)
with open(dir + "/readme.html", "wt") as html_file:
do_cmd(("python -m markdown -x tables " + doc_name).split(), html_file)

View File

@@ -18,7 +18,7 @@
# You should have received a copy of the GNU General Public License along with NopSCADlib.
# If not, see <https://www.gnu.org/licenses/>.
#
#! Generates all the files for a project by running ```bom.py```, ```stls.py```, ```dxfs.py```, ```render.py``` and ```views.py```.
#! Generates all the files for a project by running `bom.py`, `stls.py`, `dxfs.py`, `render.py` and `views.py`.
import sys

View File

@@ -24,8 +24,8 @@ from __future__ import print_function
import subprocess, sys
def run_list(args, silent = False):
cmd = ["openscad"] + args
def run_list(args, silent = False, verbose = False):
cmd = ["openscad.exe"] + args
if not silent:
for arg in cmd:
print(arg, end=" ")
@@ -33,7 +33,7 @@ def run_list(args, silent = False):
with open("openscad.log", "w") as log:
rc = subprocess.call(cmd, stdout = log, stderr = log)
for line in open("openscad.log", "rt"):
if 'ERROR:' in line or 'WARNING:' in line:
if verbose or 'ERROR:' in line or 'WARNING:' in line:
print(line[:-1])
if rc:
sys.exit(rc)
@@ -43,3 +43,6 @@ def run(*args):
def run_silent(*args):
run_list(list(args), True);
if __name__ == '__main__':
run_list(sys.argv[1:], True, True)

View File

@@ -18,7 +18,7 @@
# You should have received a copy of the GNU General Public License along with NopSCADlib.
# If not, see <https://www.gnu.org/licenses/>.
#
#! Panelises DXF files so they can be routed together by running scad files found in the ```panels``` directory.
#! Panelises DXF files so they can be routed together by running scad files found in the `panels` directory.
from __future__ import print_function
import sys

View File

@@ -18,7 +18,7 @@
# You should have received a copy of the GNU General Public License along with NopSCADlib.
# If not, see <https://www.gnu.org/licenses/>.
#
#! Generates build plates of STL files for efficient printing by running scad files found in the ```platters``` directory.
#! Generates build plates of STL files for efficient printing by running scad files found in the `platters` directory.
from __future__ import print_function
import sys

View File

@@ -1,22 +1,24 @@
# Python scripts
These are located in the ```scripts``` subdirectory, which needs to be added to the program search path.
These are located in the `scripts` subdirectory, which needs to be added to the program search path.
They should work with both Python 2 and Python 3.
| Script | Function |
|:---|:---|
| ```bom.py``` | Generates BOM files for the project. |
| ```c14n_stl.py``` | OpenSCAD produces randomly ordered STL files. This script re-orders them consistently so that GIT can tell if they have changed or not. |
| ```doc_scripts.py``` | Makes this document and doc/usage.md. |
| ```dxfs.py``` | Generates DXF files for all the routed parts listed on the BOM or a specified list. |
| ```gallery.py``` | Finds projects and adds them to the gallery. |
| ```make_all.py``` | Generates all the files for a project by running ```bom.py```, ```stls.py```, ```dxfs.py```, ```render.py``` and ```views.py```. |
| ```panels.py``` | Panelises DXF files so they can be routed together by running scad files found in the ```panels``` directory. |
| ```platters.py``` | Generates build plates of STL files for efficient printing by running scad files found in the ```platters``` directory. |
| ```render.py``` | Renders STL and DXF files to PNG for inclusion in the build instructions. |
| ```set_config.py``` | Sets the target configuration for multi-target projects that have variable configurations. |
| ```stls.py``` | Generates STL files for all the printed parts listed on the BOM or a specified list. |
| ```svgs.py``` | Generates SVG files for all the routed parts listed on the BOM or a specified list. |
| ```tests.py``` | Runs all the tests in the tests directory and makes the readme file with a catalog of the results. |
| ```views.py``` | Generates exploded and unexploded assembly views and scrapes build instructions to make readme.md, readme.html and printme.html files for the project. |
| `bom.py` | Generates BOM files for the project. |
| `c14n_stl.py` | OpenSCAD produces randomly ordered STL files. This script re-orders them consistently so that GIT can tell if they have changed or not. |
| `doc_scripts.py` | Makes this document and doc/usage.md. |
| `dxf.py` | |
| `dxf2pdf.py` | |
| `dxfs.py` | Generates DXF files for all the routed parts listed on the BOM or a specified list. |
| `gallery.py` | Finds projects and adds them to the gallery. |
| `make_all.py` | Generates all the files for a project by running `bom.py`, `stls.py`, `dxfs.py`, `render.py` and `views.py`. |
| `panels.py` | Panelises DXF files so they can be routed together by running scad files found in the `panels` directory. |
| `platters.py` | Generates build plates of STL files for efficient printing by running scad files found in the `platters` directory. |
| `render.py` | Renders STL and DXF files to PNG for inclusion in the build instructions. |
| `set_config.py` | Sets the target configuration for multi-target projects that have variable configurations. |
| `stls.py` | Generates STL files for all the printed parts listed on the BOM or a specified list. |
| `svgs.py` | Generates SVG files for all the routed parts listed on the BOM or a specified list. |
| `tests.py` | Runs all the tests in the tests directory and makes the readme file with a catalog of the results. |
| `views.py` | Generates exploded and unexploded assembly views and scrapes build instructions to make readme.md, readme.html and printme.html files for the project. |

View File

@@ -219,7 +219,7 @@ def tests(tests):
if things:
body += ['### %s\n| %s | Description |\n|:--- |:--- |' % (thing.title(), heading)]
for item in sorted(things):
body += ['| ```%s``` | %s |' % (item, things[item])]
body += ['| `%s` | %s |' % (item, things[item])]
body += ['']
body += ["![%s](%s)\n" %(base_name, png_name)]
@@ -252,7 +252,7 @@ def tests(tests):
desc = ''
if thing == "vitamins":
vit = item.split(':')
name = '```' + vit[0] + '```' if vit[0] else ''
name = '`' + vit[0] + '`' if vit[0] else ''
while '[[' in name and ']]' in name:
i = name.find('[[')
j = name.find(']]') + 2

View File

@@ -35,6 +35,7 @@ import json
import blurb
import bom
import shutil
import re
from colorama import Fore
def is_assembly(s):
@@ -217,12 +218,21 @@ def views(target, do_assemblies = None):
if not main_file:
raise Exception("can't find source for main_assembly")
text = blurb.scrape_blurb(source_dir + '/' + main_file)
blurbs = blurb.split_blurb(text)
if len(text):
print(text, file = doc_file, end = '')
print(blurbs[0], file = doc_file)
else:
if print_mode:
print(Fore.MAGENTA + "Missing project description" + Fore.WHITE)
print('![Main Assembly](assemblies/%s.png)\n' % flat_bom[-1]["name"].replace('_assembly', '_assembled'), file = doc_file)
#
# Only add the image if the first blurb section doesn't contain one.
#
got_image = False
for line in blurbs[0].split('\n'):
if re.match(r'.*\!\[.*\]\(.*\).*', line):
got_image = True
if not got_image:
print('![Main Assembly](assemblies/%s.png)\n' % flat_bom[-1]["name"].replace('_assembly', '_assembled'), file = doc_file)
eop(print_mode, doc_file, first = True)
#
# Build TOC
@@ -234,6 +244,8 @@ def views(target, do_assemblies = None):
cap_name = titalise(name)
print('1. [%s](#%s)' % (cap_name, name), file = doc_file)
print(file = doc_file)
if len(blurbs) > 1:
print(blurbs[1], file = doc_file)
eop(print_mode, doc_file)
#
# Global BOM
@@ -283,6 +295,8 @@ def views(target, do_assemblies = None):
print("| %s | %s |" % (pad(grand_total, 2, 1), pad('Total %s count' % headings[t], 2)), file = doc_file)
print(file = doc_file)
if len(blurbs) > 2:
print(blurbs[2], file = doc_file)
eop(print_mode, doc_file)
#
# Assembly instructions
@@ -308,8 +322,7 @@ def views(target, do_assemblies = None):
if printed:
print('### 3D Printed parts', file = doc_file)
keys = sorted(list(printed.keys()))
for i in range(len(keys)):
p = keys[i]
for i, p in enumerate(keys):
print('%s %d x %s |' % ('\n|' if not (i % 3) else '', printed[p]["count"], p), file = doc_file, end = '')
if (i % 3) == 2 or i == len(printed) - 1:
n = (i % 3) + 1
@@ -324,8 +337,7 @@ def views(target, do_assemblies = None):
if routed:
print("### CNC Routed parts", file = doc_file)
keys = sorted(list(routed.keys()))
for i in range(len(keys)):
r = keys[i]
for i, r in enumerate(keys):
print('%s %d x %s |' % ('\n|' if not (i % 3) else '', routed[r]["count"], r), file = doc_file, end = '')
if (i % 3) == 2 or i == len(routed) - 1:
n = (i % 3) + 1
@@ -340,8 +352,7 @@ def views(target, do_assemblies = None):
if sub_assemblies:
print("### Sub-assemblies", file = doc_file)
keys = sorted(list(sub_assemblies.keys()))
for i in range(len(keys)):
a = keys[i]
for i, a in enumerate(keys):
print('%s %d x %s |' % ('\n|' if not (i % 3) else '', sub_assemblies[a], a), file = doc_file, end = '')
if (i % 3) == 2 or i == len(keys) - 1:
n = (i % 3) + 1

View File

@@ -39,7 +39,7 @@ module belt_test() {
screw = find_screw(hs_cs_cap, pulley_bore(pulley));
insert = screw_insert(screw);
rotate([0, flip ? 180 : 0, 0]) {
hflip(flip) {
pulley_assembly(pulley);
translate_z(pulley_height(pulley) + pulley_offset(pulley) + screw_head_depth(screw, pulley_bore(pulley)))
screw(screw, 20);

View File

@@ -26,6 +26,12 @@ module dogbones() {
#translate([15, 0])
dogbone_rectangle([10, 20, 5], center = false);
#translate([30, 0])
dogbone_rectangle_x([10, 20, 5], center = false);
#translate([45, 0])
dogbone_rectangle_y([10, 20, 5], center = false);
sq = 3;
translate([-5 + sq / 2 + eps, -10 + sq / 2 + eps])
%cube([sq, sq, 1], center = true);

59
tests/drag_chain.scad Normal file
View File

@@ -0,0 +1,59 @@
//
// NopSCADlib Copyright Chris Palmer 2020
// nop.head@gmail.com
// hydraraptor.blogspot.com
//
// This file is part of NopSCADlib.
//
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
// GNU General Public License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along with NopSCADlib.
// If not, see <https://www.gnu.org/licenses/>.
//
// Link length between hinges
x = 10; //[8 : 30]
// Link inner width
y = 10; //[5 : 30]
// Link inner height
z = 5; //[4 : 11]
// Side wall thickness
wall = 1.6; //[0.9: 0.1: 3]
// Bottom wall thickness
bwall = 1.5; //[1: 0.25: 3]
// Top wall thickness
twall = 1.5; //[1: 0.25: 3]
// Max travel in each direction
travel = 100;
// Current position
pos = 50; // [-100 : 1 : 100]
include <../core.scad>
use <../printed/drag_chain.scad>
include <../vitamins/leadnuts.scad>
drag_chain = drag_chain("x", [x, y, z], travel, wall = wall, bwall = bwall, twall = twall);
module drag_chains()
drag_chain_assembly(drag_chain, pos);
if($preview)
drag_chains();
else {
drag_chain_link(drag_chain);
translate([-x * 2, 0])
drag_chain_link(drag_chain, start = true);
translate([x * 2, 0])
drag_chain_link(drag_chain, end = true);
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 133 KiB

After

Width:  |  Height:  |  Size: 133 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

After

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 67 KiB

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 104 KiB

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 74 KiB

After

Width:  |  Height:  |  Size: 76 KiB

BIN
tests/png/drag_chain.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 148 KiB

After

Width:  |  Height:  |  Size: 152 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 111 KiB

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 114 KiB

After

Width:  |  Height:  |  Size: 136 KiB

BIN
tests/png/press_fit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 128 KiB

After

Width:  |  Height:  |  Size: 129 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

After

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 160 KiB

After

Width:  |  Height:  |  Size: 181 KiB

View File

@@ -21,30 +21,60 @@ include <../utils/core/core.scad>
use <../vitamins/rod.scad>
include <../vitamins/sheets.scad>
module polyholes() {
module positions()
for(i = [1 : 10]) {
translate([(i * i + i) / 2 + 3 * i , 8])
let($r = i / 2)
module positions()
for(i = [1 : 10]) {
translate([(i * i + i) / 2 + 3 * i , 8])
let($r = i / 2)
children();
let(d = i + 0.5)
translate([(d * d + d) / 2 + 3 * d, 19])
let($r = d / 2)
children();
}
let(d = i + 0.5)
translate([(d * d + d) / 2 + 3 * d, 19])
let($r = d / 2)
children();
}
module polyhole_stl() {
stl("polyhole");
stl_colour(pp1_colour) linear_extrude(3, center = true)
linear_extrude(3, center = true)
difference() {
square([100, 27]);
positions()
poly_circle(r = $r);
}
}
positions()
module alt_polyhole_stl() {
holes = [2.5, 2, 1.5];
n = len(holes);
size = [n * 10, 10, 10];
difference() {
translate([-size.x / n / 2, $preview ? 0 : -size.y / 2])
cube($preview ? [size.x, size.y / 2, size.z] : size);
for(i = [0 : n - 1])
translate([i * 10, 0])
if(i % 2)
translate_z(size.z)
poly_cylinder(r = holes[i] / 2, h = 2 * size.z, center = true, twist = i + 1);
else
poly_cylinder(r = holes[i] / 2, h = size.z, center = false, twist = i + 1);
}
}
module polyholes() {
stl_colour(pp1_colour)
polyhole_stl();
positions()
rod(d = 2 * $r, l = 8 * $r + 5);
//
// Alternating polyholes
//
translate([30, -40])
alt_polyhole_stl();
//
// Poly rings
//
ir = 3 / 2;
@@ -74,4 +104,11 @@ module polyholes() {
}
}
polyholes();
if($preview)
polyholes();
else {
polyhole_stl();
translate([50, -20])
alt_polyhole_stl();
}

71
tests/press_fit.scad Normal file
View File

@@ -0,0 +1,71 @@
//
// NopSCADlib Copyright Chris Palmer 2020
// nop.head@gmail.com
// hydraraptor.blogspot.com
//
// This file is part of NopSCADlib.
//
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
// GNU General Public License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along with NopSCADlib.
// If not, see <https://www.gnu.org/licenses/>.
//
include <../printed/press_fit.scad>
module press_fits()
{
thickness = 2;
width = 20;
vthickness = 4;
translate([0, width + 2])
difference() {
cube([width, width, thickness]);
for(x = [0.25, 0.75])
for(y = [0.25, 0.75])
translate([x * width, y * width])
press_fit_socket();
}
union() {
cube([width, width, thickness]);
for(x = [0.25, 0.75])
for(y = [0.25, 0.75])
translate([x * width, y * width, thickness])
press_fit_peg(h = thickness);
}
translate([width + 2, width + 2])
difference() {
cube([width, vthickness, width]);
for(x = [0.25, 0.75])
for(y = [0.25, 0.75])
translate([x, 0, y] * width)
rotate([90, 0, 0])
press_fit_socket();
}
translate([width + 2, 0])
union() {
cube([width, width, thickness]);
for(x = [0.25, 0.75])
for(y = [0.25, 0.75])
translate([x * width, y * width, thickness])
press_fit_peg(h = vthickness, horizontal = true);
}
}
press_fits();

View File

@@ -23,6 +23,7 @@ use <../utils/layout.scad>
use <../vitamins/nut.scad>
sheet = 3;
pos = 1; //[-1 : 0.1 : 1]
module rails()
layout([for(l = rails) carriage_width(rail_carriage(l))], 20)
@@ -33,7 +34,7 @@ module rails()
nut = screw_nut(screw);
washer = screw_washer(screw);
rail_assembly(rail, length, rail_travel(rail, length) / 2, $i<2 ? grey(20) : "green", $i<2 ? grey(20) : "red");
rail_assembly(rail, length, pos * rail_travel(rail, length) / 2, $i<2 ? grey(20) : "green", $i<2 ? grey(20) : "red");
rail_screws(rail, length, sheet + nut_thickness(nut, true) + washer_thickness(washer));

View File

@@ -25,6 +25,12 @@ module rounded_rectangles() {
translate([40, 0])
rounded_rectangle([30, 20, 10], 3);
translate([80, 0])
rounded_rectangle_xz([30, 20, 10], 3);
translate([120, 0])
rounded_rectangle_yz([30, 20, 10], 3);
}
rounded_rectangles();

View File

@@ -0,0 +1,31 @@
//
// NopSCADlib Copyright Chris Palmer 2018
// nop.head@gmail.com
// hydraraptor.blogspot.com
//
// This file is part of NopSCADlib.
//
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
// GNU General Public License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along with NopSCADlib.
// If not, see <https://www.gnu.org/licenses/>.
//
include <../global_defs.scad>
use <../utils/rounded_right_triangle.scad>
module rounded_right_triangles() {
rounded_right_triangle(10, 20, 5, 0.5);
translate([20, 0])
rounded_right_triangle(10, 20, 5, 0.5, offset = true);
}
rounded_right_triangles();

View File

@@ -18,20 +18,46 @@
//
include <../core.scad>
module screws()
for(y = [0 : len(screw_lists) -1])
for(x = [0 : len(screw_lists[y]) -1]) {
screw = screw_lists[y][x];
if(screw) {
length = screw_head_type(screw) == hs_grub ? 6
: screw_radius(screw) <= 1.5 ? 10
: screw_max_thread(screw) ? screw_longer_than(screw_max_thread(screw) + 5)
: 30;
translate([x * 20, y * 20])
screw(screw, length);
}
module polysink_stl() {
stl("polysink");
cs_screws = [for(list = screw_lists, screw = list) if(screw_head_type(screw) == hs_cs_cap) screw];
n = len(cs_screws);
size = [n * 20, 20, 10];
difference() {
translate([-size.x / n / 2, $preview ? 0 : -size.y / 2])
cube($preview ? [size.x, size.y / 2, size.z] : size);
for(i = [0 : n - 1])
let(s = cs_screws[i])
translate([i * 20, 0]) {
translate_z(size.z)
screw_polysink(s, 2 * size.z + 1);
screw_polysink(s, 2 * size.z + 1, alt = true);
}
}
}
module screws() {
for(y = [0 : len(screw_lists) -1])
for(x = [0 : len(screw_lists[y]) -1]) {
screw = screw_lists[y][x];
if(screw) {
length = screw_head_type(screw) == hs_grub ? 6
: screw_radius(screw) <= 1.5 ? 10
: screw_max_thread(screw) ? screw_longer_than(screw_max_thread(screw) + 5)
: 30;
translate([x * 20, y * 20])
screw(screw, length);
}
}
translate([80, 20])
polysink_stl();
}
if($preview)
let($show_threads = true)
screws();
else
polysink_stl();

View File

@@ -20,12 +20,30 @@ include <../utils/core/core.scad>
use <../utils/layout.scad>
include <../vitamins/sheets.scad>
include <../vitamins/screws.scad>
width = 30;
2d = true;
module sheets()
layout([for(s = sheets) width], 5)
render_sheet(sheets[$i]) sheet(sheets[$i], width, width, 2);
let(sheet = sheets[$i], w = sheet_is_woven(sheet) ? width : undef)
if(2d)
render_2D_sheet(sheet, w = w, d = w)
difference() {
sheet_2D(sheet, width, width, 2);
circle(3);
}
else
render_sheet(sheet, w = w, d = w)
difference() {
sheet(sheet, width, width, 2);
translate_z(sheet_thickness(sheet) / 2)
screw_countersink(M3_cs_cap_screw);
}
if($preview)
sheets();

View File

@@ -22,14 +22,14 @@
//
include <../global_defs.scad>
function bezier(t, v) = //! Returns a point at distance ```t``` [0 - 1] along the curve with control points ```v```
function bezier(t, v) = //! Returns a point at distance `t` [0 - 1] along the curve with control points `v`
(len(v) > 2) ? bezier(t, [for (i = [0 : len(v) - 2]) v[i] * (1 - t) + v[i + 1] * (t)])
: v[0] * (1 - t) + v[1] * (t);
function bezier_path(v, steps = 100) = //! Returns a Bezier path from control points ```v``` with ```steps``` segments
function bezier_path(v, steps = 100) = //! Returns a Bezier path from control points `v` with `steps` segments
[for(i = [0 : steps], t = i / steps) bezier(t, v)];
function bezier_length(v, delta = 0.01, t = 0, length = 0) = //! Calculate the length of a Bezier curve from control points ```v```
function bezier_length(v, delta = 0.01, t = 0, length = 0) = //! Calculate the length of a Bezier curve from control points `v`
t > 1 ? length
: bezier_length(v, delta, t + delta, length + norm(bezier(t, v) - bezier(t + delta, v)));
@@ -37,7 +37,7 @@ function adjust_bezier(v, r) =
let(extension = (v[1] - v[0]) * (r - 1))
[v[0], v[1] + extension, v[2] + extension, v[3]];
function adjust_bezier_length(v, l, eps = 0.001, r1 = 1.0, r2 = 1.5, l1, l2) = //! Adjust Bezier control points ```v``` to get the required curve length ```l```
function adjust_bezier_length(v, l, eps = 0.001, r1 = 1.0, r2 = 1.5, l1, l2) = //! Adjust Bezier control points `v` to get the required curve length `l`
let(l1 = l1 != undef ? l1 : bezier_length(adjust_bezier(v, r1)),
l2 = l2 != undef ? l2 : bezier_length(adjust_bezier(v, r2))
) abs(l1 - l) < eps ? adjust_bezier(v, r1)
@@ -45,10 +45,10 @@ function adjust_bezier_length(v, l, eps = 0.001, r1 = 1.0, r2 = 1.5, l1, l2) = /
abs(r - r1) < abs(r - r2) ? adjust_bezier_length(v, l, eps, r, r1, undef, l1)
: adjust_bezier_length(v, l, eps, r, r2, undef, l2);
function bezier_min_z(v, steps = 100, z = inf, i = 0) = //! Calculate the minimum z coordinate of a Bezier curve from control points ```v```
function bezier_min_z(v, steps = 100, z = inf, i = 0) = //! Calculate the minimum z coordinate of a Bezier curve from control points `v`
i <= steps ? bezier_min_z(v, steps, min(z, bezier(i / steps, v).z), i + 1) : z;
function adjust_bezier_z(v, z, eps = 0.001, r1 = 1, r2 = 1.5, z1, z2) = //! Adjust Bezier control points ```v``` to get the required minimum ```z```
function adjust_bezier_z(v, z, eps = 0.001, r1 = 1, r2 = 1.5, z1, z2) = //! Adjust Bezier control points `v` to get the required minimum `z`
let(z1 = z1 != undef ? z1 : bezier_min_z(adjust_bezier(v, r1)),
z2 = z2 != undef ? z2 : bezier_min_z(adjust_bezier(v, r2))
) abs(z1 - z) < eps ? adjust_bezier(v, r1)

View File

@@ -20,25 +20,25 @@
//
//! Catenary curve to model hanging wires, etc.
//!
//! Although the equation of the curve is simply ```y = a cosh(x / a)``` there is no explicit formula to calculate the constant ```a``` or the range of ```x``` given the
//! Although the equation of the curve is simply `y = a cosh(x / a)` there is no explicit formula to calculate the constant `a` or the range of `x` given the
//! length of the cable and the end point coordinates. See <https://en.wikipedia.org/wiki/Catenary#Determining_parameters>. The Newton-Raphson method is used to find
//! ```a``` numerically, see <https://en.wikipedia.org/wiki/Newton%27s_method>.
//! `a` numerically, see <https://en.wikipedia.org/wiki/Newton%27s_method>.
//!
//! The coordinates of the lowest point on the curve can be retrieved by calling ```catenary_points()``` with ```steps``` equal to zero.
//! The coordinates of the lowest point on the curve can be retrieved by calling `catenary_points()` with `steps` equal to zero.
//
include <core/core.scad>
use <maths.scad>
function catenary(t, a) = let(u = argsinh(t)) a * [u, cosh(u)]; //! Parametric catenary function linear along the length of the curve.
function catenary_s(d, a) = 2 * a * sinh(d / a); //! Length of a symmetric catenary with width ```2d```.
function catenary_ds_by_da(d, a) = 2 * sinh(d / a) - 2 * d / a * cosh(d / a); //! First derivative of the length with respect to ```a```.
function catenary_s(d, a) = 2 * a * sinh(d / a); //! Length of a symmetric catenary with width `2d`.
function catenary_ds_by_da(d, a) = 2 * sinh(d / a) - 2 * d / a * cosh(d / a); //! First derivative of the length with respect to `a`.
function catenary_find_a(d, l, a = 1, best_e = inf, best_a = 1) = //! Find the catenary constant ```a```, given half the horizontal span and the length.
function catenary_find_a(d, l, a = 1, best_e = inf, best_a = 1) = //! Find the catenary constant `a`, given half the horizontal span and the length.
assert(l > 2 * d, "Not long enough to span the gap") assert(d) let(error = abs(catenary_s(d, a) - l))
error >= best_e && error < 0.0001 ? best_a
: catenary_find_a(d, l, max(a - (catenary_s(d, a) - l) / catenary_ds_by_da(d, a), d / argsinh(1e99)), error, a);
function catenary_points(l, x, y, steps = 100) = //! Returns a list of 2D points on the curve that goes from the origin to ```(x,y)``` and has length ```l```.
function catenary_points(l, x, y, steps = 100) = //! Returns a list of 2D points on the curve that goes from the origin to `(x,y)` and has length `l`.
let(
d = x / 2,
a = catenary_find_a(d, sqrt(sqr(l) - sqr(y))), // Find a to get the correct length

View File

@@ -18,24 +18,24 @@
//
//
//! Bill Of Materials generation via echo and the ```bom.py``` script. Also handles exploded assembly views and posing.
//! Bill Of Materials generation via echo and the `bom.py` script. Also handles exploded assembly views and posing.
//! Assembly instructions can precede the module definition that makes the assembly.
//!
//! Assembly views shown in the instructions can be large or small and this is deduced by looking at the size of the printed parts involved and if any routed
//! parts are used.
//! This heuristic isn't always correct, so the default can be overridden by setting the ```big``` parameter of ```assembly``` to ```true``` or ```false```.
//! This heuristic isn't always correct, so the default can be overridden by setting the `big` parameter of `assembly` to `true` or `false`.
//!
//! The example below shows how to define a vitamin and incorporate it into an assembly with sub-assemblies and make an exploded view.
//! The resulting flat BOM is shown but heirachical BOMs are also generated for real projects.
//
function bom_mode(n = 1) = $_bom >= n && (is_undef($on_bom) || $on_bom); //! Current BOM mode, 0 = none, 1 = printed and routed parts and assemblies, 2 includes vitamins as well
function exploded() = is_undef($exploded_parent) ? $exploded : 0; //! Returns the value of ```$exploded``` if it is defined, else ```0```
function exploded() = is_undef($exploded_parent) ? $exploded : 0; //! Returns the value of `$exploded` if it is defined, else `0`
function show_supports() = !$preview || exploded(); //! True if printed support material should be shown
module no_explode() let($exploded_parent = true) children(); //! Prevent children being exploded
module no_pose() let($posed = true) children(); //! Force children not to be posed even if parent is
module explode(d, explode_children = false, offset = [0,0,0]) { //! Explode children by specified Z distance or vector ```d```, option to explode grand children
module explode(d, explode_children = false, offset = [0,0,0]) { //! Explode children by specified Z distance or vector `d`, option to explode grand children
v = is_list(d) ? d : [0, 0, d];
o = is_list(offset) ? offset : [0, 0, offset];
if($exploded && is_undef($exploded_parent) && norm(v)) {
@@ -55,7 +55,7 @@ module explode(d, explode_children = false, offset = [0,0,0]) { //! Explode
children();
}
module pose(a = [55, 0, 25], t = [0, 0, 0], exploded = undef) //! Pose an STL or assembly for rendering to png by specifying rotation ```a``` and translation ```t```, ```exploded = true for``` just the exploded view or ```false``` for unexploded only.
module pose(a = [55, 0, 25], t = [0, 0, 0], exploded = undef) //! Pose an STL or assembly for rendering to png by specifying rotation `a` and translation `t`, `exploded = true for` just the exploded view or `false` for unexploded only.
if(is_undef($pose) || !is_undef($posed) || (!is_undef(exploded) && exploded != !!exploded()))
children();
else
@@ -67,7 +67,7 @@ module pose(a = [55, 0, 25], t = [0, 0, 0], exploded = undef) //! Pose an
translate(-t)
children();
module pose_hflip(exploded = undef) //! Pose an STL or assembly for rendering to png by flipping around the Y axis, ```exploded = true for``` just the exploded view or ```false``` for unexploded only.
module pose_hflip(exploded = undef) //! Pose an STL or assembly for rendering to png by flipping around the Y axis, `exploded = true for` just the exploded view or `false` for unexploded only.
if(is_undef($pose) || !is_undef($posed) || (!is_undef(exploded) && exploded != !!exploded()))
children();
else
@@ -75,7 +75,7 @@ module pose_hflip(exploded = undef) //! Pose an STL or assembly for render
hflip()
children();
module pose_vflip(exploded = undef) //! Pose an STL or assembly for rendering to png by flipping around the X axis, ```exploded = true for``` just the exploded view or ```false``` for unexploded only.
module pose_vflip(exploded = undef) //! Pose an STL or assembly for rendering to png by flipping around the X axis, `exploded = true for` just the exploded view or `false` for unexploded only.
if(is_undef($pose) || !is_undef($posed) || (!is_undef(exploded) && exploded != !!exploded()))
children();
else
@@ -84,7 +84,7 @@ module pose_vflip(exploded = undef) //! Pose an STL or assembly for render
children();
module assembly(name, big = undef) { //! Name an assembly that will appear on the BOM, there needs to a module named ```<name>_assembly``` to make it. ```big``` can force big or small assembly diagrams.
module assembly(name, big = undef) { //! Name an assembly that will appear on the BOM, there needs to a module named `<name>_assembly` to make it. `big` can force big or small assembly diagrams.
if(bom_mode()) {
args = is_undef(big) ? "" : str("(big=", big, ")");
echo(str("~", name, "_assembly", args, "{"));
@@ -101,20 +101,20 @@ module assembly(name, big = undef) { //! Name an assembly that will appear on
echo(str("~}", name, "_assembly"));
}
module stl_colour(colour = pp1_colour, alpha = 1) { //! Colour an stl where it is placed in an assembly. ```alpha``` can be used to make it appear transparent.
module stl_colour(colour = pp1_colour, alpha = 1) { //! Colour an stl where it is placed in an assembly. `alpha` can be used to make it appear transparent.
$stl_colour = colour;
color(colour, alpha)
children();
}
module stl(name) { //! Name an stl that will appear on the BOM, there needs to a module named ```<name>_stl``` to make it
module stl(name) { //! Name an stl that will appear on the BOM, there needs to a module named `<name>_stl` to make it
if(bom_mode()) {
colour = is_undef($stl_colour) ? pp1_colour : $stl_colour;
echo(str("~", name, ".stl(colour='", colour, "')"));
}
}
module dxf(name) { //! Name a dxf that will appear on the BOM, there needs to a module named ```<name>_dxf``` to make it
module dxf(name) { //! Name a dxf that will appear on the BOM, there needs to a module named `<name>_dxf` to make it
if(bom_mode()) {
if(is_undef($dxf_colour))
echo(str("~", name, ".dxf"));
@@ -123,9 +123,9 @@ module dxf(name) { //! Name a dxf that will appear on the B
}
}
function value_string(value) = is_string(value) ? str("\"", value, "\"") : str(value); //! Convert ```value``` to a string or quote it if it is already a string
function value_string(value) = is_string(value) ? str("\"", value, "\"") : str(value); //! Convert `value` to a string or quote it if it is already a string
function arg(value, default, name = "") = //! Create string for arg if not default, helper for ```vitamin()```
function arg(value, default, name = "") = //! Create string for arg if not default, helper for `vitamin()`
value == default ? ""
: name ? str(", ", name, " = ", value_string(value))
: str(", ", value_string(value));

View File

@@ -29,18 +29,18 @@ function mm(x) = x;
function cm(x) = x * 10.0; //! cm to mm conversion
function m(x) = x * 1000.0; //! m to mm conversion
function sqr(x) = x * x; //! Returns the square of ```x```
function sqr(x) = x * x; //! Returns the square of `x`
function echoit(x) = echo(x) x; //! Echo expression and return it, useful for debugging
function no_point(str) = chr([for(c = str(str)) if(c == ".") ord("p") else ord(c)]);//! Replace decimal point in string with 'p'
function in(list, x) = !!len([for(v = list) if(v == x) true]); //! Returns true if ```x``` is an element in the ```list```
function Len(x) = is_list(x) ? len(x) : 0; //! Returns the length of a list or 0 if ```x``` is not a list
function in(list, x) = !!len([for(v = list) if(v == x) true]); //! Returns true if `x` is an element in the `list`
function Len(x) = is_list(x) ? len(x) : 0; //! Returns the length of a list or 0 if `x` is not a list
function r2sides(r) = $fn ? $fn : ceil(max(min(360/ $fa, r * 2 * PI / $fs), 5)); //! Replicates the OpenSCAD logic to calculate the number of sides from the radius
function r2sides4n(r) = floor((r2sides(r) + 3) / 4) * 4; //! Round up the number of sides to a multiple of 4 to ensure points land on all axes
function limit(x, min, max) = max(min(x, max), min); //! Force x in range min <= x <= max
module translate_z(z) translate([0, 0, z]) children(); //! Shortcut for Z only translations
module vflip() rotate([180, 0, 0]) children(); //! Invert children by doing a 180&deg; flip around the X axis
module hflip() rotate([0, 180, 0]) children(); //! Invert children by doing a 180&deg; flip around the Y axis
module vflip(flip=true) rotate([flip ? 180 : 0, 0, 0]) children(); //! Invert children by doing a 180&deg; flip around the X axis
module hflip(flip=true) rotate([0, flip ? 180: 0, 0]) children(); //! Invert children by doing a 180&deg; flip around the Y axis
module ellipse(xr, yr) scale([1, yr / xr]) circle4n(xr); //! Draw an ellipse
function slice_str(str, start, end, s ="") = start >= end ? s : slice_str(str, start + 1, end, str(s, str[start])); // Helper for slice()
@@ -52,7 +52,14 @@ function slice(list, start = 0, end = undef) = let( //! Slice a list or string w
) is_string(list) ? slice_str(list, start, end) : [for(i = [start : 1 : end - 1]) list[i]];
module extrude_if(h, center = true) //! Extrudes 2D object to 3D when ```h``` is nonzero, otherwise leaves it 2D
module render_if(render = true, convexity = 2) //! Renders an object if `render` is true, otherwise leaves it unrendered
if (render)
render(convexity = convexity)
children();
else
children();
module extrude_if(h, center = true) //! Extrudes 2D object to 3D when `h` is nonzero, otherwise leaves it 2D
if(h)
linear_extrude(h, center = center, convexity = 2) // 3D
children();
@@ -74,7 +81,7 @@ module semi_circle(r, d = undef) //! A semi circle in the pos
square([2 * sq, sq]);
}
module right_triangle(width, height, h, center = true) //! A right angled triangle with the 90&deg; corner at the origin. 3D when ```h``` is nonzero, otherwise 2D
module right_triangle(width, height, h, center = true) //! A right angled triangle with the 90&deg; corner at the origin. 3D when `h` is nonzero, otherwise 2D
extrude_if(h, center = center)
polygon(points = [[0,0], [width, 0], [0, height]]);

View File

@@ -22,6 +22,16 @@
//! it gets the linear dimensions right. See <https://hydraraptor.blogspot.com/2011/02/polyholes.html>
//!
//! The module provides `poly_circle()`, `poly_cylinder()` and `poly_ring()` that is useful for making printed washers and pillars.
//!
//! `poly_cylinder()` has a `twist` parameter which can be set to make the polygon rotate each layer.
//! This can be used to mitigate the number of sides being small and make small holes stronger and more round, but is quite slow due to the
//! large increase in the number of facets.
//! When set to 1 the polygons alternate each layer, when set higher the rotation takes `twist + 1` layers to repeat.
//! A small additional rotation is added to make the polygon rotate one more side over the length of the hole to make it appear round when
//! veiwed end on.
//!
//! When `twist` is set the resulting cylinder is extended by `eps` at each end so that the exact length of the hole can be used without
//! leaving a scar on either surface.
//
function sides(r) = max(round(4 * r), 3); //! Optimium number of sides for specified radius
function corrected_radius(r, n = 0) = r / cos(180 / (n ? n : sides(r))); //! Adjusted radius to make flats lie on the circle
@@ -32,9 +42,26 @@ module poly_circle(r, sides = 0) { //! Make a circle adjusted to print the corre
circle(r = corrected_radius(r,n), $fn = n);
}
module poly_cylinder(r, h, center = false, sides = 0, chamfer = false) {//! Make a cylinder adjusted to print the correct size
extrude_if(h, center)
poly_circle(r, sides);
module poly_cylinder(r, h, center = false, sides = 0, chamfer = false, twist = 0) {//! Make a cylinder adjusted to print the correct size
if(twist) {
slices = ceil(h / layer_height);
twists = min(twist + 1, slices);
sides = sides ? sides : sides(r);
rot = 360 / sides / twists * (twists < slices ? (1 + 1 / slices) : 1);
if(center)
for(side = [0, 1])
mirror([0, 0, side])
poly_cylinder(r = r, h = h / 2, sides = sides, twist = twist);
else
render(convexity = 5)
for(i = [0 : slices - 1])
translate_z(i * layer_height - eps)
rotate(rot * i)
poly_cylinder(r = r, h = layer_height + 2 * eps, sides = sides);
}
else
extrude_if(h, center)
poly_circle(r, sides);
if(h && chamfer)
poly_cylinder(r + layer_height, center ? layer_height * 2 : layer_height, center, sides = sides ? sides : sides(r));

View File

@@ -20,14 +20,28 @@
//
//! Rectangle with rounded corners.
//
module rounded_square(size, r, center = true) //! Like ```square()``` but with with rounded corners
module rounded_square(size, r, center = true) //! Like `square()` but with with rounded corners
{
$fn = r2sides4n(r);
offset(r) offset(-r) square(size, center = center);
}
module rounded_rectangle(size, r, center = true, xy_center = true) //! Like ```cube()``` but corners rounded in XY plane and separate centre options for xy and z.
module rounded_rectangle(size, r, center = true, xy_center = true) //! Like `cube()` but corners rounded in XY plane and separate centre options for xy and z.
{
linear_extrude(size[2], center = center)
rounded_square([size[0], size[1]], r, xy_center);
linear_extrude(size.z, center = center)
rounded_square([size.x, size.y], r, xy_center);
}
module rounded_rectangle_xz(size, r, center = true, xy_center = true) //! Like `cube()` but corners rounded in XZ plane and separate centre options for xy and z.
{
translate([xy_center ? 0 : size.x / 2, xy_center ? 0 : size.y / 2, center ? 0 : size.z / 2])
rotate([90, 0, 0])
rounded_rectangle([size.x, size.z, size.y], r, center = true, xy_center = true);
}
module rounded_rectangle_yz(size, r, center = true, xy_center = true) //! Like `cube()` but corners rounded in YX plane and separate centre options for xy and z.
{
translate([xy_center ? 0 : size.x / 2, xy_center ? 0 : size.y / 2, center ? 0 : size.z / 2])
rotate([90, 0, 90])
rounded_rectangle([size.y, size.z, size.x], r, center = true, xy_center = true);
}

View File

@@ -20,7 +20,7 @@
//! Redefines `sphere()` to always have a vertex on all six half axes I.e. vertices at the poles and the equator and `$fn` a multiple of four.
//! This ensures `hull` and `minkowski` results have the correct dimensions when spheres are placed at the corners.
module sphere(r = 1, d = undef) { //! Override ```sphere``` so that has vertices on all three axes. Has the advantage of giving correct dimensions when hulled
module sphere(r = 1, d = undef) { //! Override `sphere` so that has vertices on all three axes. Has the advantage of giving correct dimensions when hulled
R = is_undef(d) ? r : d / 2;
rotate_extrude($fn = r2sides4n(R))
rotate(-90)

View File

@@ -24,7 +24,7 @@
//! Using teardrop_plus() or setting the plus option on other modules will elongate the teardrop vertically by the layer height, so when sliced the staircase tips
//! do not intrude into the circle. See <https://hydraraptor.blogspot.com/2020/07/horiholes-2.html>
//
module teardrop(h, r, center = true, truncate = true, chamfer = 0, plus = false) { //! For making horizontal holes that don't need support material, set ```truncate = false``` to make traditional RepRap teardrops that don't even need bridging
module teardrop(h, r, center = true, truncate = true, chamfer = 0, plus = false) { //! For making horizontal holes that don't need support material, set `truncate = false` to make traditional RepRap teardrops that don't even need bridging
module teardrop_2d(r, truncate) {
er = layer_height / 2 - eps; // Extrustion edge radius
R = plus ? r + er : r; // Corrected radius

View File

@@ -23,24 +23,36 @@
//
include <../utils/core/core.scad>
module dogbone_square(size, r = cnc_bit_r, center = true) //! Square with circles at the corners
module dogbone_square(size, r = cnc_bit_r, center = true, x_offset, y_offset) //! Square with circles at the corners, with optional offsets
{
x_offset = is_undef(x_offset) ? r / sqrt(2) : x_offset;
y_offset = is_undef(y_offset) ? r / sqrt(2) : y_offset;
union() {
square(size, center = center);
if(r > 0) {
origin = center ? [0, 0] : size / 2;
offset = r / sqrt(2);
for(x = [-1, 1], y = [-1, 1])
translate(origin + [x * (size.x / 2 - offset), y * (size.y / 2 - offset)])
translate(origin + [x * (size.x / 2 - x_offset), y * (size.y / 2 - y_offset)])
drill(r, 0);
}
}
}
module dogbone_rectangle(size, r = cnc_bit_r, center = true, xy_center = true) //! Rectangle with cylinders at the corners
module dogbone_rectangle(size, r = cnc_bit_r, center = true, xy_center = true, x_offset, y_offset) //! Rectangle with cylinders at the corners
{
extrude_if(h = size.z, center = center)
dogbone_square([size.x, size.y], r, xy_center);
dogbone_square([size.x, size.y], r, xy_center, x_offset, y_offset);
}
module dogbone_rectangle_x(size, r = cnc_bit_r, center = true, xy_center = true) //! Rectangle with cylinders at the corners, offset in the x direction
{
dogbone_rectangle(size = size, r = r, center = center, x_offset = 0, y_offset = r);
}
module dogbone_rectangle_y(size, r = cnc_bit_r, center = true, xy_center = true) //! Rectangle with cylinders at the corners, offset in the y direction
{
dogbone_rectangle(size = size, r = r, center = center, x_offset = r, y_offset = 0);
}

View File

@@ -24,17 +24,17 @@
//! <https://khkgears.net/new/gear_knowledge/gear_technical_reference/calculation_gear_dimensions.html>
//! and <https://www.tec-science.com/mechanical-power-transmission/involute-gear/calculation-of-involute-gears/>
//!
//! ```involute_gear_profile()``` returns a polygon that can have the bore and spokes, etc, subtracted from it before linear extruding it to 3D.
//! Helical gears can be made using ```twist``` and bevel gears using ```scale``` parameters of ```linear_extrude()```.
//! `involute_gear_profile()` returns a polygon that can have the bore and spokes, etc, subtracted from it before linear extruding it to 3D.
//! Helical gears can be made using `twist` and bevel gears using `scale` parameters of `linear_extrude()`.
//!
//! Gears with less than 19 teeth (when pressure angle is 20) are profile shifted to avoid undercutting the tooth root. 7 teeth is considered
//! the practical minimum.
//!
//! The clearance between tip and root defaults to module / 6, but can be overridden by setting the ```clearance``` parameter.
//! The clearance between tip and root defaults to module / 6, but can be overridden by setting the `clearance` parameter.
//!
//! The origin of the rack is the left end of the pitch line and its width is below the pitch line. I.e. it does not include the addendum.
//!
//! ```involute_worm_profile()``` returns a tooth profile that can be passed to ```thread()``` to make worms.
//! `involute_worm_profile()` returns a tooth profile that can be passed to `thread()` to make worms.
//
include <core/core.scad>
use <maths.scad>

View File

@@ -22,7 +22,7 @@
//
include <../utils/core/core.scad>
module hanging_hole(z, ir, h = 100, h2 = 100) { //! Hole radius ```ir``` hanging at the specified ```z``` value above a void who's shape is given by a 2D child
module hanging_hole(z, ir, h = 100, h2 = 100) { //! Hole radius `ir` hanging at the specified `z` value above a void who's shape is given by a 2D child
module polyhole(r, h, n = 8) {
if(h > 0)
rotate(180 / n) {
@@ -35,7 +35,7 @@ module hanging_hole(z, ir, h = 100, h2 = 100) { //! Hole radius ```ir``` hanging
poly_cylinder(r - eps, h - layer_height);
}
}
assert(z % layer_height == 0, str(z));
assert(z - layer_height * floor(z / layer_height) < eps, str(z));
infill_angle = z % (2 * layer_height) ? -45 : 45;
below = min(z + eps, h2);
big = 1000;

View File

@@ -20,7 +20,7 @@
//
//! Utilities for depicting the staircase slicing of horizontal holes made with [`teardrop_plus()`](#teardrops), see <https://hydraraptor.blogspot.com/2020/07/horiholes-2.html>
//!
//! ```horicylinder()``` makes cylinders that fit inside a round hole. Layers that are less than 2 filaments wide and layers that need more than a 45 degree overhang are omitted.
//! `horicylinder()` makes cylinders that fit inside a round hole. Layers that are less than 2 filaments wide and layers that need more than a 45 degree overhang are omitted.
//
include <../utils/core/core.scad>

View File

@@ -22,11 +22,11 @@
//
include <../global_defs.scad>
function layout_offset(widths, i, gap = 2) = //! Calculate the offset for the ```i```th item
function layout_offset(widths, i, gap = 2) = //! Calculate the offset for the `i`th item
i == 0 ? widths[0] / 2
: layout_offset(widths, i - 1, gap) + widths[i - 1] / 2 + gap + widths[i] / 2;
module layout(widths, gap = 2, no_offset = false) //! Layout children passing ```$i```
module layout(widths, gap = 2, no_offset = false) //! Layout children passing `$i`
translate([no_offset ? -widths[0] / 2 : 0, 0])
for($i = [0 : 1 : len(widths) - 1])
translate([layout_offset(widths, $i, gap), 0])

View File

@@ -33,7 +33,7 @@ function argcosh(x) = ln(x + sqrt(sqr(x) - 1)); //! inverse hyperbolic cosine
function argtanh(x) = ln((1 + x) / (1 - x)) / 2;//! inverse hyperbolic tangent
function argcoth(x) = ln((x + 1) / (x - 1)) / 2;//! inverse hyperbolic cotangent
function translate(v) = let(u = is_list(v) ? len(v) == 2 ? [v.x, v.y, 0] //! Generate a 4x4 translation matrix, ```v``` can be ```[x, y]```, ```[x, y, z]``` or ```z```
function translate(v) = let(u = is_list(v) ? len(v) == 2 ? [v.x, v.y, 0] //! Generate a 4x4 translation matrix, `v` can be `[x, y]`, `[x, y, z]` or `z`
: v
: [0, 0, v])
[ [1, 0, 0, u.x],
@@ -41,7 +41,7 @@ function translate(v) = let(u = is_list(v) ? len(v) == 2 ? [v.x, v.y, 0] //! Gen
[0, 0, 1, u.z],
[0, 0, 0, 1] ];
function rotate(a, v) = //! Generate a 4x4 rotation matrix, ```a``` can be a vector of three angles or a single angle around ```z```, or around axis ```v```
function rotate(a, v) = //! Generate a 4x4 rotation matrix, `a` can be a vector of three angles or a single angle around `z`, or around axis `v`
is_undef(v) ? let(av = is_list(a) ? a : [0, 0, a],
cx = cos(av[0]),
cy = cos(av[1]),
@@ -80,7 +80,7 @@ function rot2_z(a) = //! Generate a 2x2 matrix to rotate around z
[ [ c, -s],
[ s, c] ];
function scale(v) = let(s = is_list(v) ? v : [v, v, v]) //! Generate a 4x4 matrix that scales by ```v```, which can be a vector of xyz factors or a scalar to scale all axes equally
function scale(v) = let(s = is_list(v) ? v : [v, v, v]) //! Generate a 4x4 matrix that scales by `v`, which can be a vector of xyz factors or a scalar to scale all axes equally
[
[s.x, 0, 0, 0],
[0, s.y, 0, 0],
@@ -88,11 +88,11 @@ function scale(v) = let(s = is_list(v) ? v : [v, v, v]) //! Generate a 4x4 matr
[0, 0, 0, 1]
];
function vec3(v) = [v.x, v.y, v.z]; //! Return a 3 vector with the first three elements of ```v```
function vec4(v) = [v.x, v.y, v.z, 1]; //! Return a 4 vector with the first three elements of ```v```
function vec3(v) = [v.x, v.y, v.z]; //! Return a 3 vector with the first three elements of `v`
function vec4(v) = [v.x, v.y, v.z, 1]; //! Return a 4 vector with the first three elements of `v`
function transform(v, m) = vec3(m * [v.x, v.y, v.z, 1]); //! Apply 4x4 transform to a 3 vector by extending it and cropping it again
function transform_points(path, m) = [for(p = path) transform(p, m)]; //! Apply transform to a path
function unit(v) = let(n = norm(v)) n ? v / n : v; //! Convert ```v``` to a unit vector
function unit(v) = let(n = norm(v)) n ? v / n : v; //! Convert `v` to a unit vector
function transpose(m) = [ for(j = [0 : len(m[0]) - 1]) [ for(i = [0 : len(m) - 1]) m[i][j] ] ]; //! Transpose an arbitrary size matrix

View File

@@ -24,7 +24,7 @@
//! If `chamfer_base` is true then the bottom edge is made suitable for 3D printing by chamfering when the angle gets shallower than 45 degrees.
include <../utils/core/core.scad>
module offset_3D(r, chamfer_base = false) { //! Offset 3D shape by specified radius ```r```, positive or negative.
module offset_3D(r, chamfer_base = false) { //! Offset 3D shape by specified radius `r`, positive or negative.
module ball(r)
if(chamfer_base)
rotate_extrude()

View File

@@ -22,7 +22,7 @@
//
include <../utils/core/core.scad>
module quadrant(w, r, center = false) { //! Draw a square with one rounded corner, can be centered on the arc centre, when ```center``` is ```true```.
module quadrant(w, r, center = false) { //! Draw a square with one rounded corner, can be centered on the arc centre, when `center` is `true`.
h = is_list(w) ? w.y : w;
w = is_list(w) ? w.x : w;
offset_w = center ? r - w : 0;

View File

@@ -40,7 +40,7 @@ module rounded_corner(r, h, r2, ir = 0) { //! 2D version
}
}
module rounded_cylinder(r, h, r2, ir = 0, angle = 360) //! Rounded cylinder given radius ```r```, height ```h```, optional internal radius ```ir``` and optional ```angle```
module rounded_cylinder(r, h, r2, ir = 0, angle = 360) //! Rounded cylinder given radius `r`, height `h`, optional internal radius `ir` and optional `angle`
{
rotate_extrude(angle = angle)
rounded_corner(r, h, r2, ir);

View File

@@ -48,7 +48,7 @@ function rounded_polygon_tangents(points) = //! Compute the straight sections ne
function sumv(v, i = 0, sum = 0) = i == len(v) ? sum : sumv(v, i + 1, sum + v[i]);
// the cross product of 2D vectors is the area of the parallelogram between them. We use the sign of this to decide if the angle is bigger than 180.
function rounded_polygon_length(points, tangents) = //! Calculate the length given the point list and the list of tangents computed by ``` rounded_polygon_tangents```
function rounded_polygon_length(points, tangents) = //! Calculate the length given the point list and the list of tangents computed by ` rounded_polygon_tangents`
let(
len = len(points),
indices = [0 : len - 1],
@@ -60,7 +60,7 @@ function rounded_polygon_length(points, tangents) = //! Calculate the length giv
v1 = p1 - c,
v2 = p2 - c,
r = abs(corner.z),
a = acos((v1 * v2) / sqr(r))) PI * (cross(v1,v2) <= 0 ? a : 360 - a) * r / 180]
a = acos((v1 * v2) / sqr(r))) r ? PI * (cross(v1, v2) <= 0 ? a : 360 - a) * r / 180 : 0]
)
sumv(concat(straights, arcs));

View File

@@ -0,0 +1,46 @@
//
// NopSCADlib Copyright Chris Palmer 2018
// nop.head@gmail.com
// hydraraptor.blogspot.com
//
// This file is part of NopSCADlib.
//
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
// GNU General Public License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along with NopSCADlib.
// If not, see <https://www.gnu.org/licenses/>.
//
//
//! Draw a 3D right triangle with rounded edges. Intended to be embedded in other parts. Can be optionally offset by the filleted amount.
//
include <../utils/core/core.scad>
include <NopSCADlib/utils/core/rounded_rectangle.scad>
module rounded_right_triangle(x, y, z, fillet, center = true, offset = false) { //! Draw a 3D right triangle with rounded edges.
fillet = max(fillet, eps);
size = [x + (offset ? 2 * fillet : 0), y + (offset ? 2 * fillet : 0), z];
translate([offset ? -2 * fillet : 0, offset ? -2 * fillet : 0, center ? 0 : size.z / 2])
hull() {
translate([0, fillet, size.z / 2])
rotate([90, 90, 0])
rounded_rectangle([size.z, 2 * fillet, eps], fillet - eps, center = false, xy_center = false);
translate([0, size.y, size.z / 2])
rotate([90, 90, 0])
rounded_rectangle([size.z, 2 * fillet, eps], fillet - eps, center = false, xy_center = false);
translate([fillet, 0, size.z / 2])
rotate([0, 90, 0])
rounded_rectangle([size.z, 2 * fillet, eps], fillet - eps, center = false, xy_center = false);
translate([size.x, 0, size.z / 2])
rotate([0, 90, 0])
rounded_rectangle([size.z, 2 * fillet, eps], fillet - eps, center = false, xy_center = false);
}
}

View File

@@ -22,7 +22,7 @@
//
include <../utils/core/core.scad>
module sector(r, start_angle, end_angle) { //! Create specified sector given radius ```r```, ```start_angle``` and ```end_angle```
module sector(r, start_angle, end_angle) { //! Create specified sector given radius `r`, `start_angle` and `end_angle`
R = r * sqrt(2) + 1;
if(end_angle > start_angle)

View File

@@ -21,7 +21,7 @@
//! Utility to generate a polhedron by sweeping a 2D profile along a 3D path and utilities for generating paths.
//!
//! The initial orientation is the Y axis of the profile points towards the initial center of curvature, Frenet-Serret style.
//! This means the first three points must not be colinear. Subsequent rotations use the minimum rotation method.
//! Subsequent rotations use the minimum rotation method.
//!
//! The path can be open or closed. If closed sweep ensures that the start and end have the same rotation to line up.
//! An additional twist around the path can be specified. If the path is closed this should be a multiple of 360.
@@ -172,10 +172,10 @@ function arc_points(r, a = [90, 0, 180], al = 90) = //! Generate the points of a
let(sides = ceil(r2sides(r) * al / 360), tf = rotate(a))
[for(i = [0 : sides]) let(t = i * al / sides) transform([r * sin(t), r * cos(t), 0], tf)];
function before(path1, path2) = //! Translate ```path1``` so its end meets the start of ```path2``` and then concatenate
function before(path1, path2) = //! Translate `path1` so its end meets the start of `path2` and then concatenate
let(end = len(path1) - 1, offset = path2[0] - path1[end])
concat([for(i = [0 : end - 1]) path1[i] + offset], path2);
function after(path1, path2) = //! Translate ```path2``` so its start meets the end of ```path1``` and then concatenate
function after(path1, path2) = //! Translate `path2` so its start meets the end of `path1` and then concatenate
let(end1 = len(path1) - 1, end2 = len(path2) - 1, offset = path1[end1] - path2[0])
concat(path1, [for(i = [1 : end2]) path2[i] + offset]);

View File

@@ -20,7 +20,7 @@
//
//! Utilities for making threads with sweep. They can be used to model screws, nuts, studding, leadscrews, etc, and also to make printed threads.
//!
//! The ends can be tapered, flat or chamfered by setting the ```top``` and ```bot``` parameters to -1 for tapered, 0 for a flat cut and positive to
//! The ends can be tapered, flat or chamfered by setting the `top` and `bot` parameters to -1 for tapered, 0 for a flat cut and positive to
//! specify a chamfer angle.
//!
//! Threads are by default solid, so the male version is wrapped around a cylinder and the female inside a tube. This can be suppressed to just get the helix, for
@@ -32,8 +32,8 @@
//! a cylinder. To get around this a colour can be passed to thread that is used to colour the cylinder and then toned down to colour the helix.
//!
//! Making the ends requires a CGAL intersection, which make threads relatively slow. For this reason they are generally disabled when using the GUI but can
//! be enabled by setting ```$show_threads``` to ```true```. When the tests are run, by default, threads are enabled only for things that feature them like screws.
//! This behaviour can be changed by setting a ```NOPSCADLIB_SHOW_THREADS``` environment variable to ```false``` to disable all threads and ```true``` to enable all threads.
//! be enabled by setting `$show_threads` to `true`. When the tests are run, by default, threads are enabled only for things that feature them like screws.
//! This behaviour can be changed by setting a `NOPSCADLIB_SHOW_THREADS` environment variable to `false` to disable all threads and `true` to enable all threads.
//! The same variable also affects the generation of assembly diagrams.
//!
//! Threads obey the $fn, $fa, $fs variables.

View File

@@ -28,11 +28,11 @@ module ring(or, ir) //! Create a ring with specified external and internal radii
circle4n(ir);
}
module tube(or, ir, h, center = true) //! Create a tube with specified external and internal radii and height ```h```
module tube(or, ir, h, center = true) //! Create a tube with specified external and internal radii and height `h`
linear_extrude(h, center = center, convexity = 5)
ring(or, ir);
module woven_tube(or, ir, h, center= true, colour = grey(30), colour2, warp = 2, weft) {//! Create a woven tube with specified external and internal radii, height ```h```, colours, warp and weft
module woven_tube(or, ir, h, center= true, colour = grey(30), colour2, warp = 2, weft) {//! Create a woven tube with specified external and internal radii, height `h`, colours, warp and weft
colour2 = colour2 ? colour2 : colour * 0.8;
weft = weft ? weft : warp;
warp_count = max(floor(PI * or / warp), 0.5);
@@ -68,4 +68,3 @@ module woven_tube(or, ir, h, center= true, colour = grey(30), colour2, warp = 2,
}
}
}

View File

@@ -74,7 +74,7 @@ module orientate_axial(length, height, pitch, wire_d) { // Orient horizontal or
}
}
module ax_res(type, value, tol = 5, pitch = 0) { //! Through hole axial resistor. If ```pitch``` is zero the minimum is used. If below the minimum the resistor is placed vertical.
module ax_res(type, value, tol = 5, pitch = 0) { //! Through hole axial resistor. If `pitch` is zero the minimum is used. If below the minimum the resistor is placed vertical.
vitamin(str("ax_res(", type[0], ", ", value, arg(tol, 5, "tol"), "): Resistor ", value, " Ohms ", tol, "% ",ax_res_wattage(type), "W"));
wire_d = ax_res_wire(type);

View File

@@ -24,7 +24,7 @@
//! To make the back of the belt run against a smooth pulley on the outside of the loop specify a negative pitch radius.
//!
//! By default the path is a closed loop but a gap length and position can be specified to make open loops.
//! To draw the gap its XY position is specified by ```gap_pos```. ```gap_pos.z``` can be used to specify a rotation if the gap is not at the bottom of the loop.
//! To draw the gap its XY position is specified by `gap_pos`. `gap_pos.z` can be used to specify a rotation if the gap is not at the bottom of the loop.
//!
//! Individual teeth are not drawn, instead they are represented by a lighter colour.
//
@@ -54,7 +54,7 @@ module belt(type, points, gap = 0, gap_pos = undef, belt_colour = grey(20), toot
tangents = rounded_polygon_tangents(points);
length = ceil((rounded_polygon_length(points, tangents) - gap) / pitch) * pitch;
length = ceil((rounded_polygon_length(points, tangents) - (is_list(gap) ? gap.x + gap.y : gap)) / pitch) * pitch;
module shape() rounded_polygon(points, tangents);
@@ -65,7 +65,7 @@ module belt(type, points, gap = 0, gap_pos = undef, belt_colour = grey(20), toot
translate([gap_pos.x, gap_pos.y])
rotate(is_undef(gap_pos.z) ? 0 : gap_pos.z)
translate([0, ph - thickness / 2])
square([gap, thickness + eps], center = true);
square(is_list(gap) ? [gap.x, gap.y + thickness + eps] : [gap, thickness + eps], center = true);
color(belt_colour)
linear_extrude(width, center = true)

View File

@@ -22,6 +22,8 @@
//
include <../utils/core/core.scad>
use <../utils/rounded_cylinder.scad>
use <../utils/quadrant.scad>
use <screw.scad>
function blower_length(type) = type[2]; //! Length of enclosing rectangle
function blower_width(type) = type[3]; //! Width of enclosing rectangle
@@ -39,8 +41,87 @@ function blower_top(type) = type[14]; //! Thickness of the top
function blower_wall(type) = type[15]; //! Side wall thickness
function blower_lug(type) = type[16]; //! Height of the lugs
function blower_casing_is_square(type) = len(blower_screw_holes(type)) > 3; //! True for square radial fans, false for spiral shape radial blowers
function blower_exit_offset(type) = blower_casing_is_square(type) ? blower_length(type) / 2 : blower_exit(type) / 2; //! Offset of exit's centre from the edge
fan_colour = grey(20);
module blower_fan(type, casing_is_square) {
module squarish(s, n) {
polygon([
for(i = [0 : n]) [i * s.x / n, s.y + (i % 2) * eps],
for(i = [0 : n]) [s.x - i * s.x / n, (i % 2) * eps],
]);
}
depth = blower_depth(type);
blade_ir = blower_hub(type) / 2 + 0.5; // slight gap between main part of blades and hub
blade_len = casing_is_square
? (blower_bore(type) - 1) / 2 - blade_ir // fan constrained by bore hole
: blower_width(type) - blower_axis(type).x- blower_wall(type) - blade_ir; // fan extends to casing
blade_thickness = 0.75;
blade_count = 25;
base_offset = 1;
translate([blower_axis(type).x, blower_axis(type).y, blower_base(type) + base_offset])
linear_extrude(blower_hub_height(type) - 0.5 - blower_base(type) - base_offset, center = false, convexity = 4, twist = -30, slices = round(depth / 2))
for(i = [0 : blade_count - 1])
rotate((360 * i) / blade_count)
translate([blade_ir, -blade_thickness / 2])
squarish([blade_len, blade_thickness], round(blade_len / 2));
}
module blower_square(type) { //! Draw a square blower
width = blower_width(type);
depth = blower_depth(type);
wall = blower_wall(type);
hole_pitch = (blower_screw_holes(type)[1].x - blower_screw_holes(type)[0].x) / 2;
corner_radius = width / 2 - hole_pitch;
corner_inset = (width - blower_exit(type)) / 2;
module square_inset_corners(remove_center = false)
difference() {
//overall outside
square([width, width], center = false);
if (remove_center) {
// cut out the inside, leaving the corners
translate([corner_inset + wall, -eps])
square([width - 2 * (wall + corner_inset), width - wall + eps], center = false);
translate([wall, corner_inset + wall])
square([width - 2 * wall, width - 2 * (wall + corner_inset)], center = false);
} else {
// cut out the bore for the fan
translate(blower_axis(type))
circle(d = blower_bore(type));
}
// corner inset
translate([width / 2, width / 2])
for(i = [0 : 3])
rotate(i * 90)
translate([-width / 2 - eps, -width/ 2 - eps])
quadrant(corner_inset, corner_inset - corner_radius);
}
base_height = blower_base(type);
linear_extrude(base_height)
difference () {
rounded_square([width, width], corner_radius, center = false);
blower_hole_positions(type)
circle(d = blower_screw_hole(type));
}
translate_z(base_height)
linear_extrude(depth - base_height)
square_inset_corners(remove_center = true);
translate_z(depth - base_height)
linear_extrude(blower_top(type))
square_inset_corners();
}
module blower(type) { //! Draw specified blower
length = blower_length(type);
width = blower_width(type);
@@ -70,55 +151,63 @@ module blower(type) { //! Draw specified blower
vitamin(str("blower(", type[0], "): ", type[1]));
is_square = blower_casing_is_square(type); // Description starts with square!
color(fan_colour) {
// screw lugs
linear_extrude(blower_lug(type), center = false)
for(hole = blower_screw_holes(type))
difference() {
hull() {
if (is_square) {
blower_square(type);
} else {
// screw lugs
linear_extrude(blower_lug(type), center = false)
for(hole = blower_screw_holes(type))
difference() {
hull() {
translate(hole)
circle(d = blower_screw_hole(type) + 2 * blower_wall(type));
translate(blower_axis(type))
circle(d = blower_screw_hole(type) + 2 * blower_wall(type) + 7);
}
translate(hole)
circle(d = blower_screw_hole(type) + 2 * blower_wall(type));
circle(d = blower_screw_hole(type));
translate(blower_axis(type))
circle(d = blower_screw_hole(type) + 2 * blower_wall(type) + 7);
}
translate(hole)
circle(d = blower_screw_hole(type));
shape(true);
}
shape(true);
}
// rotor
translate(concat(blower_axis(type), [blower_base(type) + 1]))
rounded_cylinder(r = blower_hub(type) / 2, h = blower_hub_height(type) - blower_base(type) - 1, r2 = 1);
*%square([length, width]);
*%square([length, width]);
// base
linear_extrude(blower_base(type))
difference() {
shape();
translate(concat(blower_axis(type), [blower_base(type)]))
circle(d = 2);
}
// sides
linear_extrude(depth)
difference() {
shape();
offset(-blower_wall(type))
shape(true);
}
// top
translate_z(depth -blower_top(type))
linear_extrude(blower_top(type))
// base
linear_extrude(blower_base(type))
difference() {
shape();
translate(concat(blower_axis(type), [blower_base(type)]))
circle(d = blower_bore(type));
}
circle(d = 2);
}
// sides
linear_extrude(depth)
difference() {
shape();
offset(-blower_wall(type))
shape(true);
}
// top
translate_z(depth -blower_top(type))
linear_extrude(blower_top(type))
difference() {
shape();
translate(concat(blower_axis(type), [blower_base(type)]))
circle(d = blower_bore(type));
}
}
// rotor
translate(concat(blower_axis(type), [blower_base(type) + 1]))
rounded_cylinder(r = blower_hub(type) / 2, h = blower_hub_height(type) - blower_base(type) - 1, r2 = 1);
blower_fan(type, is_square);
}
}

View File

@@ -16,10 +16,16 @@
// You should have received a copy of the GNU General Public License along with NopSCADlib.
// If not, see <https://www.gnu.org/licenses/>.
//
// l w d b s h a s s e h b t w l
// e i e o c u x c c x u a o a u
// n d p r r b i r r i b s p l g
// g t t e e s e e t e l
// t h h w d w w t
// h h s t t
RB5015 = ["RB5015", "Blower Runda RB5015", 51.3, 51, 15, 31.5, M4_cap_screw, 26, [27.3, 25.4], 4.5, [[4.3, 45.4], [47.3,7.4]], 20, 14, 1.5, 1.3, 1.2, 15];
PE4020 = ["PE4020", "Blower Pengda Technology 4020", 40, 40, 20, 27.5, M3_cap_screw, 22, [21.5, 20 ], 3.2, [[37,3],[3,37],[37,37]], 29.3, 17, 1.7, 1.2, 1.3, 13];
BL40x10 =["BL40x10","Square radial 4010", 40, 40,9.5, 27, M2_cap_screw, 16, [24, 20 ], 2.4, [[2,2],[38,2],[2,38],[38,38]], 30 , 9.5, 1.5, 1.5, 1.1, 1.5];
RB5015 = ["RB5015", "Blower Runda RB5015", 51.3, 51, 15, 31.5, M4_cap_screw, 26, [27.3, 25.4], 4.5, [[4.3, 45.4], [47.3,7.4]], 20, 14, 1.5, 1.3, 1.2, 15];
PE4020 = ["PE4020", "Blower Pengda Technology 4020", 40, 40, 20, 27.5, M3_cap_screw, 22, [21.5, 20 ], 3.2, [[37,3],[3,37],[37,37]], 29.3, 17, 1.7, 1.2, 1.3, 13];
blowers = [PE4020, RB5015];
blowers = [BL40x10, PE4020, RB5015];
use <blower.scad>

View File

@@ -29,7 +29,7 @@ function camera_lens(type) = type[4]; //! Stack of lens parts, can be r
function camera_connector_pos(type) = type[5]; //! The flex connector block for the camera itself's position
function camera_connector_size(type)= type[6]; //! The flex connector block for the camera itself's size
module camera_lens(type, offset = 0) //! Draw the lens stack, with optional offset for making a clearance hole
module camera_lens(type, offset = 0, show_lens = true) //! Draw the lens stack, with optional offset for making a clearance hole
color(grey(20))
translate(camera_lens_offset(type))
for(p = camera_lens(type)) {
@@ -39,24 +39,25 @@ module camera_lens(type, offset = 0) //! Draw the lens stack, with optional offs
if(size.x)
rounded_rectangle(size + [2 * offset, 2 * offset, round_to_layer(offset)], r, center = false);
else
translate_z(size.y)
rotate_extrude()
difference() {
square([r, size.z + round_to_layer(offset)]);
if (show_lens)
translate_z(size.y)
rotate_extrude()
difference() {
square([r, size.z + round_to_layer(offset)]);
if(app)
translate([0, size.z])
hull() {
translate([0, -eps])
square([app.y, eps * 2]);
if(app)
translate([0, size.z])
hull() {
translate([0, -eps])
square([app.y, eps * 2]);
translate([0, -app.z])
square([app.x, app.z]);
}
}
translate([0, -app.z])
square([app.x, app.z]);
}
}
}
module camera(type) { //! Draw specified PCB camera
module camera(type, show_lens = true) { //! Draw specified PCB camera
vitamin(str("camera(", type[0], "): ", type[1]));
pcb = camera_pcb(type);
@@ -64,7 +65,7 @@ module camera(type) { //! Draw specified PCB camera
pcb(pcb);
translate_z(pcb_thickness(pcb)) {
camera_lens(type);
camera_lens(type, show_lens = show_lens);
conn = camera_connector_size(type);
if(conn) {

View File

@@ -209,7 +209,7 @@ module al_clad_resistor_assembly(type, value, sleeved = true) { //* Draw alumini
function TO220_thickness() = 1.5; //! Thickness of the tab of a TO220
module TO220(description, leads = 3, lead_length = 16) { //! Draw a TO220 package, use ```description``` to describe what it is
module TO220(description, leads = 3, lead_length = 16) { //! Draw a TO220 package, use `description` to describe what it is
width = 10.2;
inset = 1.5;
hole = 3.3;

View File

@@ -122,7 +122,7 @@ module fan_hole_positions(type, z = undef) { //! Position children at the screw
children();
}
module fan_holes(type, poly = false, screws = true, h = 100) { //! Make all the holes for the fan, or just the aperture if ```screws``` is false. Set ```poly``` true for poly_holes.
module fan_holes(type, poly = false, screws = true, h = 100) { //! Make all the holes for the fan, or just the aperture if `screws` is false. Set `poly` true for poly_holes.
hole_pitch = fan_hole_pitch(type);
screw = fan_screw(type);

View File

@@ -89,7 +89,7 @@ module insert(type) { //! Draw specified insert
}
}
module insert_hole(type, counterbore = 0, horizontal = false) { //! Make a hole to take an insert, ```counterbore``` is the extra length for the screw
module insert_hole(type, counterbore = 0, horizontal = false) { //! Make a hole to take an insert, `counterbore` is the extra length for the screw
h = insert_hole_length(type);
render(convexity = 2)

View File

@@ -29,7 +29,7 @@
// d d h d d
// d
//
F1BM2 = [ "F1BM2", 4.0, 3.6, 3.2, 2, 3.0, 1.0, 3.4, 3.1 ];
F1BM2 = [ "F1BM2", 4.0, 3.6, 3.2, 2, 3.0, 1.0, 3.4, 3.1 ];
F1BM2p5 = [ "F1BM2p5", 5.8, 4.6, 4.0, 2.5, 3.65, 1.6, 4.4, 3.9 ];
F1BM3 = [ "F1BM3", 5.8, 4.6, 4.0, 3, 3.65, 1.6, 4.4, 3.9 ];
F1BM4 = [ "F1BM4", 8.2, 6.3, 5.6, 4, 5.15, 2.3, 6.0, 5.55 ];

View File

@@ -21,7 +21,7 @@
//! LED strip lights that can be cut to size.
//!
//! The definitions are for the full length but they can be cut to size by specifying how many segments,
//! which can by calcuated using ```light_strip_segments(type, max_length)```.
//! which can by calcuated using `light_strip_segments(type, max_length)`.
//!
//! The `light_strip_clip()` module makes a clip to go around the light that can be incorporated into a printed bracket to hold it.
//

View File

@@ -116,7 +116,7 @@ module mains_socket(type) { //! Draw specified 13A socket
cylinder(r = screw_clearance_radius(screw), h = 100, center = true);
translate_z(height)
screw_countersink(screw);
screw_countersink(screw, drilled = false);
}
}
}

View File

@@ -20,7 +20,7 @@
//
//! Microview OLED display with on board AVR by geekammo / Sparkfun.
//!
//! ```microview()``` generates the model. ```microview(true)``` makes an object to cut out a panel aperture for it.
//! `microview()` generates the model. `microview(true)` makes an object to cut out a panel aperture for it.
//!
//! Uses STL files copyright geekammo and licenced with MIT license, see [microview/LICENSE.txt](vitamins/microview/LICENSE.txt).
//

View File

@@ -20,12 +20,12 @@
//
//! Nitrile rubber O-rings.
//!
//! Just a black torus specified by internal diameter, ```id``` and ```minor_d``` plus a BOM entry.
//! Can be shown stretched by specifying the ```actual_id```.
//! Just a black torus specified by internal diameter, `id` and `minor_d` plus a BOM entry.
//! Can be shown stretched by specifying the `actual_id`.
//
include <../utils/core/core.scad>
module O_ring(id, minor_d, actual_id = 0) { //! Draw O-ring with specified internal diameter and minor diameter. ```actual_id``` can be used to stretch it around something.
module O_ring(id, minor_d, actual_id = 0) { //! Draw O-ring with specified internal diameter and minor diameter. `actual_id` can be used to stretch it around something.
vitamin(str("O_ring(", id, ", ", minor_d, "): O-ring nitrile ", id, "mm x ", minor_d, "mm"));
D = actual_id > id ? actual_id : id; // allow it to be stretched

View File

@@ -40,18 +40,23 @@ function carriage_length(type) = type[0]; //! Overall length
function carriage_block_length(type) = type[1]; //! Length of the metal part
function carriage_width(type) = type[2]; //! Width of carriage
function carriage_height(type) = type[3]; //! Height of carriage
function carriage_size(type) = [ type[0], type[2], type[3] ]; //! Size of carriage
function carriage_clearance(type) = type[4]; //! Gap under the carriage
function carriage_pitch_x(type) = type[5]; //! Screw hole x pitch
function carriage_pitch_y(type) = type[6]; //! Screw hole y pitch
function carriage_screw(type) = type[7]; //! Carriage screw type
function carriage_screw_depth(type) = 2 * screw_radius(carriage_screw(type)); //! Carriage thread depth
function rail_holes(type, length) = //! Number of holes in a rail given its `length`
floor((length - 2 * rail_end(type)) / rail_pitch(type)) + 1;
module rail_hole_positions(type, length, first = 0, screws = 100, both_ends = true) { //! Position children over screw holes
pitch = rail_pitch(type);
holes = floor((length - 2 * rail_end(type)) / pitch) + 1;
for(i = [first : holes - 1 - first])
if(i < screws || (holes - i <= screws && both_ends))
translate([i * pitch - length / 2 + (length - (holes -1) * pitch) / 2, 0, 0])
holes = rail_holes(type, length);
last = first + screws;
for(i = [first : holes - 1], j = holes - 1 - i)
if(i < last || both_ends && (j >= first && j < last))
translate([i * pitch - length / 2 + (length - (holes - 1) * pitch) / 2, 0])
children();
}
@@ -104,24 +109,27 @@ module carriage(type, rail, end_colour = grey(20), wiper_colour = grey(20)) { //
module carriage_end(type, end_w, end_h, end_l) {
wiper_length = 0.5;
color(wiper_colour) translate_z(-end_l/2) linear_extrude(wiper_length)
color(wiper_colour) translate_z(-end_l / 2) linear_extrude(wiper_length)
difference() {
translate([-end_w/2, carriage_clearance(type)])
translate([-end_w / 2, carriage_clearance(type)])
square([end_w, end_h]);
cutout();
}
color(end_colour) translate_z(wiper_length-end_l/2) linear_extrude(end_l-wiper_length)
color(end_colour) translate_z(wiper_length-end_l / 2) linear_extrude(end_l - wiper_length)
difference() {
translate([-end_w/2, carriage_clearance(type)])
translate([-end_w / 2, carriage_clearance(type)])
square([end_w, end_h]);
cutout();
}
}
translate([-(block_l+end_l)/2,0,0])
translate([-(block_l + end_l) / 2, 0])
rotate([90, 0, 90])
carriage_end(type, end_w, end_h, end_l);
translate([(block_l+end_l)/2,0,0])
translate([(block_l + end_l) / 2, 0])
rotate([90, 0, -90])
carriage_end(type, end_w, end_h, end_l);
}
@@ -171,7 +179,6 @@ module rail_assembly(type, length, pos, carriage_end_colour = grey(20), carriage
translate([pos, 0])
carriage(rail_carriage(type), type, carriage_end_colour, carriage_wiper_colour);
}
module rail_screws(type, length, thickness, screws = 100) { //! Place screws in the rail
@@ -187,6 +194,6 @@ module rail_screws(type, length, thickness, screws = 100) { //! Place screws in
screw(end_screw, end_screw_len);
translate_z(rail_screw_height(type, screw))
rail_hole_positions(type, length, index_screws, screws)
rail_hole_positions(type, length, index_screws, min(screws, rail_holes(type, length)) - 2 * index_screws)
screw(screw, screw_len);
}

View File

@@ -33,11 +33,11 @@ SSR15_carriage = [ 40.3, 23.3, 34, 24, 4.5, 0, 26, M4_cap_screw ];
//
//
// Wr Hr E P D d h
MGN5 = [ "MGN5", 5, 3.6, 5, 15, 3.5, 2.4, 0.8, M2_cs_cap_screw, MGN5_carriage, M2_cs_cap_screw ]; // Screw holes too small for M2 heads
MGN5 = [ "MGN5", 5, 3.6, 5, 15, 3.6, 2.4, 0.8, M2_cs_cap_screw, MGN5_carriage, M2_cs_cap_screw ]; // Screw holes too small for M2 heads
MGN7 = [ "MGN7", 7, 5, 5, 15, 4.3, 2.4, 2.6, M2_cap_screw, MGN7_carriage, M2_cs_cap_screw ];
MGN9 = [ "MGN9", 9, 6, 7.5, 20, 6.0, 3.5, 3.5, M3_cap_screw, MGN9_carriage, M3_cs_cap_screw ];
MGN12= [ "MGN12", 12, 8, 10, 25, 6.0, 3.5, 4.5, M3_cap_screw, MGN12_carriage, M3_cs_cap_screw ];
MGN12H=[ "MGN12H",12, 8, 10, 25, 6.0, 3.5, 4.5, M3_cap_screw, MGN12H_carriage,M3_cs_cap_screw ];
MGN12H=[ "MGN12H",12, 8, 10, 25, 6.0, 3.5, 4.5, M3_cap_screw, MGN12H_carriage,M3_cs_cap_screw ];
MGN15= [ "MGN15", 15, 10, 10, 40, 6.0, 3.5, 5.0, M3_cap_screw, MGN15_carriage, M3_cs_cap_screw ];
SSR15= [ "SSR15", 15, 12.5,10, 60, 7.5, 4.5, 5.3, M4_cap_screw, SSR15_carriage, M4_cs_cap_screw ];

View File

@@ -19,6 +19,8 @@
//
//! Machine screws and wood screws with various head styles.
//!
//! For an explanation of `screw_polysink()` see <https://hydraraptor.blogspot.com/2020/12/sinkholes.html>.
//
include <../utils/core/core.scad>
@@ -41,9 +43,13 @@ function screw_pilot_hole(type) = type[11]; //! Pilot hole radius for w
function screw_clearance_radius(type) = type[12]; //! Clearance hole radius
function screw_nut_radius(type) = screw_nut(type) ? nut_radius(screw_nut(type)) : 0; //! Radius of matching nut
function screw_boss_diameter(type) = max(washer_diameter(screw_washer(type)) + 1, 2 * (screw_nut_radius(type) + 3 * extrusion_width)); //! Boss big enough for nut trap and washer
function screw_head_depth(type, d) = screw_head_height(type) ? 0 : screw_head_radius(type) - d / 2; //! How far a counter sink head will go into a straight hole diameter d
function screw_head_depth(type, d = 0) = //! How far a counter sink head will go into a straight hole diameter d
screw_head_height(type)
? 0
: let(r = screw_radius(type)) screw_head_radius(type) - max(r, d / 2) + r / 5;
function screw_longer_than(x) = x <= 5 ? 5 : //! Returns shortest screw length longer or equal to x
x <= 6 ? 6 :
x <= 8 ? 8 :
x <= 10 ? 10 :
x <= 12 ? 12 :
@@ -109,6 +115,27 @@ module screw(type, length, hob_point = 0, nylon = false) { //! Draw specified sc
cylinder(r = rad + eps, h = shank);
}
module cs_head(socket_rad, socket_depth) {
head_t = rad / 5;
head_height = head_rad + head_t;
rotate_extrude()
difference() {
polygon([[0, 0], [head_rad, 0], [head_rad, -head_t], [0, -head_height]]);
translate([0, -socket_depth + eps])
square([socket_rad, 10]);
}
translate_z(-socket_depth)
linear_extrude(socket_depth)
difference() {
circle(socket_rad + 0.1);
children();
}
}
explode(length + 10) {
if(head_type == hs_cap) {
color(colour) {
@@ -201,63 +228,76 @@ module screw(type, length, hob_point = 0, nylon = false) { //! Draw specified sc
}
if(head_type == hs_cs) {
head_height = head_rad;
socket_rad = 0.6 * head_rad;
socket_depth = 0.3 * head_rad;
socket_width = 1;
color(colour) {
rotate_extrude()
difference() {
polygon([[0, 0], [head_rad, 0], [0, -head_height]]);
color(colour)
cs_head(socket_rad, socket_depth) {
square([2 * socket_rad, socket_width], center = true);
square([socket_width, 2 * socket_rad], center = true);
}
translate([0, -socket_depth + eps])
square([socket_rad + 0.1, 10]);
}
translate_z(-socket_depth)
linear_extrude(socket_depth)
difference() {
circle(socket_rad + 0.1);
square([2 * socket_rad, socket_width], center = true);
square([socket_width, 2 * socket_rad], center = true);
}
}
shaft(socket_depth);
}
if(head_type == hs_cs_cap) {
head_height = head_rad;
color(colour) {
rotate_extrude()
difference() {
polygon([[0, 0], [head_rad, 0], [0, -head_height]]);
color(colour)
cs_head(socket_rad, socket_depth)
circle(socket_rad, $fn = 6);
translate([0, -socket_depth + eps])
square([socket_rad, 10]);
}
translate_z(-socket_depth)
linear_extrude(socket_depth)
difference() {
circle(socket_rad + 0.1);
circle(socket_rad, $fn = 6);
}
}
shaft(socket_depth);
}
}
}
module screw_countersink(type) { //! Countersink shape
module screw_countersink(type, drilled = true) { //! Countersink shape
head_type = screw_head_type(type);
head_rad = screw_head_radius(type);
head_height = head_rad;
rad = screw_radius(type);
head_t = rad / 5;
head_height = head_rad + head_t;
if(head_type == hs_cs || head_type == hs_cs_cap)
translate_z(-head_height)
cylinder(h = head_height, r1 = 0, r2 = head_rad);
if(drilled)
cylinder(h = head_height + eps, r1 = 0, r2 = head_rad + head_t);
else
intersection() {
cylinder(h = head_height + eps, r1 = 0, r2 = head_rad + head_t);
cylinder(h = head_height + eps, r = head_rad + eps);
}
}
function screw_polysink_r(type, z) = //! Countersink hole profile corrected for rounded staircase extrusions.
let(rad = screw_radius(type),
head_t = rad / 5,
head_rad = screw_head_radius(type)
)
limit(head_rad + head_t - z + (sqrt(2) - 1) * layer_height / 2, screw_clearance_radius(type), head_rad);
module screw_polysink(type, h = 100, alt = false) { //! A countersink hole made from stacked polyholes for printed parts
head_depth = screw_head_depth(type);
assert(head_depth, "Not a countersunk screw");
layers = ceil(head_depth / layer_height);
rmin = screw_clearance_radius(type);
sides = sides(rmin);
lh = layer_height + eps;
render(convexity = 5)
for(side = [0, 1]) mirror([0, 0, side]) {
for(i = [0 : layers - 1])
translate_z(i * layer_height) {
r = screw_polysink_r(type, i * layer_height + layer_height / 2);
if(alt)
rotate(i % 2 == layers % 2 ? 180 / sides : 0)
poly_cylinder(r = r, h = lh, center = false, sides = sides);
else
poly_cylinder(r = r, h = lh, center = false);
}
translate_z(layers * layer_height)
poly_cylinder(r = rmin, h = h / 2 - layers * layer_height, center = false);
}
}
module screw_and_washer(type, length, star = false, penny = false) { //! Screw with a washer which can be standard or penny and an optional star washer on top

View File

@@ -107,14 +107,14 @@ No6_screw = ["No6", "No6 pan wood", hs_pan, 3.5, 6.7, 2.2, 0, 0
No6_cs_screw = ["No6_cs", "No6 cs wood", hs_cs, 3.5, 7.0, 0, 0, 0, 0, M4_washer, false, No6_pilot_radius, No6_clearance_radius];
screw_lists = [
[ M2_cap_screw, M2p5_cap_screw, M3_cap_screw, M4_cap_screw, M5_cap_screw, M6_cap_screw, M8_cap_screw],
[ 0, 0, M3_low_cap_screw],
[ 0, 0, M3_hex_screw, M4_hex_screw, M5_hex_screw, M6_hex_screw, M8_hex_screw],
[ 0, M2p5_pan_screw, M3_pan_screw, M4_pan_screw, M5_pan_screw, M6_pan_screw, No632_pan_screw],
[ 0, No2_screw, No4_screw, No6_screw, No6_cs_screw],
[ 0, M2_cs_cap_screw,M3_cs_cap_screw, M4_cs_cap_screw],
[ 0, M2_dome_screw, M3_dome_screw, M4_dome_screw],
[ 0, 0, M3_grub_screw, M4_grub_screw]
[ M2_cap_screw, M2p5_cap_screw, M3_cap_screw, M4_cap_screw, M5_cap_screw, M6_cap_screw, M8_cap_screw],
[ 0, 0, M3_low_cap_screw],
[ M2_cs_cap_screw, 0, M3_cs_cap_screw, M4_cs_cap_screw],
[ M2_dome_screw, 0, M3_dome_screw, M4_dome_screw],
[ 0, 0, M3_hex_screw, M4_hex_screw, M5_hex_screw, M6_hex_screw, M8_hex_screw],
[ 0, M2p5_pan_screw, M3_pan_screw, M4_pan_screw, M5_pan_screw, M6_pan_screw, No632_pan_screw],
[ No2_screw, 0, No4_screw, No6_screw, No6_cs_screw],
[ 0, 0, M3_grub_screw, M4_grub_screw]
];
use <screw.scad>

View File

@@ -63,7 +63,7 @@ module scs_bearing_block(type) { //! Draw the specified SCS bearing block
bearing = scs_bearing(type);
clip = scs_circlip(type);
module right_trapezoid(base, top, height, h = 0, center = true) {//! A right angled trapezoid with the 90&deg; corner at the origin. 3D when ```h``` is nonzero, otherwise 2D
module right_trapezoid(base, top, height, h = 0, center = true) {//! A right angled trapezoid with the 90&deg; corner at the origin. 3D when `h` is nonzero, otherwise 2D
extrude_if(h, center = center)
polygon(points = [ [0,0], [base, 0], [top, height], [0, height] ]);
}

View File

@@ -27,14 +27,22 @@
//!
//! The "Colour" parameter is a quad-array: [R, G, B, Alpha], or can be a named colour, see [OpenSCAD_User_Manual](https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#color).
//!
//! For speed sheets should be modelled in 2D by subtracting holes from 2D templates made by ```sheet_2D()``` and then extruded to 3D with ```render_2D_sheet()```.
//! Note that modules that drill holes will return a 2D object if ```h``` is set to 0 to facilitate this.
//! For speed sheets should be modelled in 2D by subtracting holes from 2D templates made by `sheet_2D()` and then extruded to 3D with `render_2D_sheet()`.
//! Note that modules that drill holes will return a 2D object if `h` is set to 0 to facilitate this.
//!
//! If 3D features are needed, for example countersinks, then sheets can be modelled in 3D using `sheet()` and then coloured with `render_sheet()`.
//!
//! When woven sheets (e.g. carbon fibre) are rendered it is necessary to specify the dimensions again to `render_sheet()` or `render_2D_sheet()`.
//
include <../utils/core/core.scad>
function sheet_thickness(type) = type[2]; //! Thickness
function sheet_colour(type) = type[3]; //! Colour
function sheet_is_soft(type) = type[4]; //! Is soft enough for wood screws
function sheet_is_woven(type) = !is_undef(type[5]); //! Is a woven sheet, eg carbon fiber
function sheet_warp(type) = type[5]; //! Wovern sheet warp
function sheet_weft(type) = type[6]; //! Wovern sheet weft
function sheet_colour2(type) = type[7]; //! Second colour for a woven sheet
module corner(r) {
if(r > 0)
@@ -78,12 +86,66 @@ module sheet(type, w, d, corners = [0, 0, 0, 0]) //! Draw specified sheet
linear_extrude(sheet_thickness(type), center = true)
sheet_2D(type, w, d, corners);
module render_sheet(type, colour = false) //! Render a sheet in the correct colour after holes have been subtracted
color(colour ? colour : sheet_colour(type))
render() children();
module render_sheet(type, colour = false, colour2 = false, w = undef, d = undef) { //! Render a sheet in the correct colour after holes have been subtracted
woven = sheet_is_woven(type);
t = sheet_thickness(type);
colour = colour ? colour : sheet_colour(type);
colour2 = colour2 ? colour2 : sheet_colour2(type);
let($dxf_colour = colour)
color(woven ? colour2 : colour)
render()
scale([1, 1, woven ? (t - 2 * eps) / t : 1])
children();
module render_2D_sheet(type, colour = false) //! Extrude a 2D sheet template and give it the correct colour
let($dxf_colour = colour ? colour : sheet_colour(type))
color($dxf_colour)
linear_extrude(sheet_thickness(type), center = true)
if(woven)
for(side = [-1, 1], z = side * (t - eps) / 2)
translate_z(z)
woven_sheet(type, eps, colour, colour2, w, d)
projection(cut = true)
translate_z(-z)
not_on_bom()
children();
}
module render_2D_sheet(type, colour = false, colour2 = false, w = undef, d = undef) { //! Extrude a 2D sheet template and give it the correct colour
colour = colour ? colour : sheet_colour(type);
colour2 = colour2 ? colour2 : sheet_colour2(type);
let($dxf_colour = colour)
if(sheet_is_woven(type))
woven_sheet(type, sheet_thickness(type), colour, colour2, w, d)
children();
else
color($dxf_colour)
linear_extrude(sheet_thickness(type), center = true)
children();
}
module woven_sheet(type, thickness, colour, colour2, w, d) { // Create a woven 2D sheet with specified thickness and colours
warp = sheet_warp(type);
weft = sheet_weft(type);
warp_doublet_count = assert(!is_undef(w) && !is_undef(d), "Must specify the dimensions to render woven sheets") ceil(w / (2 * warp));
weft_count = ceil(d / weft);
module chequerboard(odd = 0)
translate([-w / 2, -d / 2])
for (y = [0 : weft_count - 1], x = [0 : warp_doublet_count - 1])
translate([warp * (2 * x + ((y + odd) % 2)), weft * y])
square([warp, weft]);
color(colour)
linear_extrude(thickness)
intersection() {
chequerboard();
children();
}
if(thickness > eps)
color(colour2)
linear_extrude(thickness)
intersection() {
chequerboard(1);
not_on_bom()
children();
}
}

View File

@@ -22,7 +22,7 @@
//
//
// [ Code, Description, Thickness, Color, Soft]
// [ Code, Description, Thickness, Color, Soft, Warp, Weft, Color2]
//
mdf_colour = "#BEA587"; // sampled from a photo
@@ -38,14 +38,18 @@ PMMA8 = [ "PMMA8", "Sheet acrylic", 8, [1, 1, 1, 0.5 ],
PMMA10 = [ "PMMA10", "Sheet acrylic", 10, [1, 1, 1, 0.5 ], false]; // ~3/8"
glass2 = [ "glass2", "Sheet glass", 2, [1, 1, 1, 0.25 ], false];
DiBond = [ "DiBond", "Sheet DiBond", 3, [0.2, 0.2, 0.2, 1 ], false];
DiBond6 = [ "DiBond6", "Sheet DiBond", 6, "RoyalBlue", false];
DiBond6 = [ "DiBond6", "Sheet DiBond", 6, [0.2, 0.2, 0.2, 1 ], false];
Cardboard = [ "Cardboard", "Corrugated cardboard", 5, [0.8, 0.6, 0.3, 1 ], false];
FoilTape = [ "FoilTape", "Aluminium foil tape", 0.05,[0.9, 0.9, 0.9, 1 ], false];
Foam20 = [ "Foam20", "Foam sponge", 20,[0.3, 0.3, 0.3, 1 ], true];
AL6 = [ "AL6", "Aluminium tooling plate", 6, [0.9, 0.9, 0.9, 1 ], false];
AL8 = [ "AL8", "Aluminium tooling plate", 8, [0.9, 0.9, 0.9, 1 ], false];
Steel06 = [ "Steel06", "Sheet mild steel", 0.6,"silver" , false];
CF1 = [ "CF1", "Sheet carbon fiber", 1, grey(30), false, 2, 2, grey(25)];
CF2 = [ "CF2", "Sheet carbon fiber", 2, grey(30), false, 2, 2, grey(25)];
CF3 = [ "CF3", "Sheet carbon fiber", 3, grey(30), false, 2, 2, grey(25)];
sheets = [MDF6, MDF10, MDF12, MDF19, PMMA2, PMMA3, PMMA6, PMMA8, PMMA10, glass2, DiBond, DiBond6, Cardboard, FoilTape, Foam20, AL6, AL8, Steel06];
sheets = [CF1, CF2, CF3, MDF6, MDF10, MDF12, MDF19, PMMA2, PMMA3, PMMA6, PMMA8, PMMA10, glass2, DiBond, DiBond6, Cardboard, FoilTape, Foam20, AL6, AL8, Steel06];
use <sheet.scad>

Some files were not shown because too many files have changed in this diff Show More