1
0
mirror of https://github.com/JustinSDK/dotSCAD.git synced 2025-08-16 19:54:29 +02:00

delete doc

This commit is contained in:
Justin Lin
2021-03-04 20:12:31 +08:00
parent 3dcd8210c2
commit 65c67442cb
6 changed files with 0 additions and 104 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

View File

@@ -1,44 +0,0 @@
# voronoi2d
Create a [Voronoi diagram](https://en.wikipedia.org/wiki/Voronoi_diagram). The initial region for each cell is calculated automatically from the given points by the following code:
xs = [for(p = points) p[0]];
ys = [for(p = points) abs(p[1])];
region_size = max([(max(xs) - min(xs) / 2), (max(ys) - min(ys)) / 2]);
**Since:** 1.3
## Parameters
- `points` : Points for each cell.
- `spacing` : Distance between cells. Default to 1.
- `r`, `delta`, `chamfer` : The outlines of each cell can be moved outward or inward. These parameters have the same effect as [`offset`](https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#offset).
- `region_type` : The initial shape for each cell can be `"square"` or `"circle"`. Default to `"square"`.
## Examples
use <voronoi2d.scad>;
points = [for(i = [0:50]) rands(-20, 20, 2)];
voronoi2d(points);
translate([60, 0, 0])
voronoi2d(points, region_type = "circle");
![voronoi2d](images/lib3x-voronoi2d-1.JPG)
use <voronoi2d.scad>;
use <hollow_out.scad>;
xs = rands(0, 40, 50);
ys = rands(0, 20, 50);
points = [for(i = [0:len(xs) - 1]) [xs[i], ys[i]]];
difference() {
square([40, 20]);
voronoi2d(points);
}
hollow_out(shell_thickness = 1) square([40, 20]);
![voronoi2d](images/lib3x-voronoi2d-2.JPG)

View File

@@ -1,60 +0,0 @@
# voronoi3d
Create a 3D version of [Voronoi diagram](https://en.wikipedia.org/wiki/Voronoi_diagram). The initial space for each cell is calculated automatically from the given points by the following code:
xs = [for(p = points) p[0]];
ys = [for(p = points) abs(p[1])];
zs = [for(p = points) abs(p[2])];
space_size = max([(max(xs) - min(xs) / 2), (max(ys) - min(ys)) / 2, (max(zs) - min(zs)) / 2]);
// cube([space_size, space_size * 2, space_size * 2]);
The preview or rendering of 3D Voronoi is slow. If you want to use this module, render and export the 3D Voronoi model first. Then, `import` the model to do what you want.
**Since:** 1.3.
## Parameters
- `points` : Points for each cell.
- `spacing` : Distance between cells. Default to 1.
## Examples
use <voronoi3d.scad>;
r = 30;
zas = rands(0, 359, 12);
yas = rands(0, 179, 12);
points = [
for(i = [0:len(zas) - 1])
[
r * cos(yas[i]) * cos(zas[i]),
r * cos(yas[i]) * sin(zas[i]),
r * sin(yas[i])
]
];
#for(pt = points) {
translate(pt) cube(1);
}
intersection() {
sphere(r);
voronoi3d(points);
}
![voronoi3d](images/lib3x-voronoi3d-1.JPG)
If you render, export and save the previous model as `voronoi3d.stl`, the following code will generate a Voronoi sphere.
r = 30;
thickness = 2;
difference() {
sphere(r);
scale(1.01) import("voronoi3d.stl");
sphere(r - thickness);
}
![voronoi3d](images/lib3x-voronoi3d-2.JPG)