1
0
mirror of https://github.com/JustinSDK/dotSCAD.git synced 2025-08-18 04:21:16 +02:00
This commit is contained in:
Justin Lin
2021-03-17 18:12:43 +08:00
parent 0a3cdf8a55
commit d16fd5cb29
2 changed files with 352 additions and 332 deletions

View File

@@ -0,0 +1,351 @@
use <util/flat.scad>;
use <util/has.scad>;
use <util/sum.scad>;
use <util/rand.scad>;
use <util/slice.scad>;
use <util/some.scad>;
use <util/every.scad>;
use <util/map/hashmap.scad>;
use <util/map/hashmap_put.scad>;
use <util/map/hashmap_get.scad>;
use <util/map/hashmap_keys.scad>;
use <util/map/hashmap_values.scad>;
use <util/map/hashmap_entries.scad>;
use <util/set/hashset.scad>;
use <util/set/hashset_has.scad>;
function weights_of_tiles(sample) =
let(
symbols = flat(sample),
leng = len(symbols),
weights = hashmap(number_of_buckets = sqrt(leng))
)
_weights_of_tiles(weights, symbols, leng);
function _weights_of_tiles(weights, symbols, leng, i = 0) =
i == leng ? weights :
let(
tile = symbols[i],
w = hashmap_get(weights, tile)
)
w == undef ?
_weights_of_tiles(hashmap_put(weights, tile, 1), symbols, leng, i + 1) :
_weights_of_tiles(hashmap_put(weights, tile, w + 1), symbols, leng, i + 1);
/*
oo-style
wave_function(width, height, weights)
- wf_width(wf)
- wf_height(wf)
- wf_weights(wf)
- wf_eigenstates(wf)
- wf_eigenstates_at(wf, x, y)
- wf_is_all_collapsed(wf)
- wf_remove(wf, x, y, removedStates)
- wf_collapse(wf, x, y)
- wf_entropy(wf, x, y)
- wf_coord_min_entropy(wf)
- wf_not_collapsed_coords(wf)
*/
function wave_function(width, height, weights) =
[width, height, weights, _initialEigenstates(width, height, weights)];
function _initialEigenstates(width, height, weights) =
let(
keys = hashmap_keys(weights),
row = [for(x = [0:width - 1]) keys]
)
[for(y = [0:height - 1]) row];
function wf_width(wf) = wf[0];
function wf_height(wf) = wf[1];
function wf_weights(wf) = wf[2];
function wf_eigenstates(wf) = wf[3];
function wf_eigenstates_at(wf, x, y) = wf_eigenstates(wf)[y][x];
function wf_is_all_collapsed(wf) = every(
wf_eigenstates(wf),
function(row) every(row, function(states) len(states) == 1)
);
function wf_remove(wf, x, y, removedStates) = _replaceStatesAt(wf, x, y, [
for(state = wf_eigenstates_at(wf, x, y))
if(!has(removedStates, state))
state
]);
function wf_collapse(wf, x, y) =
let(
weights = wf_weights(wf),
states_xy = wf_eigenstates_at(wf, x, y),
weights_xy = hashmap([
for(state = hashmap_keys(weights))
if(has(states_xy, state))
[state, hashmap_get(weights, state)]
]),
totalWeights = sum(hashmap_values(weights_xy)),
threshold = rand() * totalWeights,
states_weights = hashmap_entries(weights_xy)
)
_wf_collapse(wf, x, y, states_weights, len(states_weights), threshold);
function _wf_collapse(wf, x, y, states_weights, leng, threshold, i = 0) =
i == leng ? wf :
let(
state = states_weights[i][0],
weight = states_weights[i][1],
t = threshold - weight
)
t < 0 ? _oneStateAt(wf, x, y, state) : _wf_collapse(wf, x, y, states_weights, leng, t, i + 1);
function _oneStateAt(wf, x, y, state) = _replaceStatesAt(wf, x, y, [state]);
// Shannon entropy
function wf_entropy(wf, x, y) =
let(
states = wf_eigenstates_at(wf, x, y),
weights = wf_weights(wf),
state_leng = len(states),
sumOfWeights_sumOfWeightLogWeights = _wf_entropy(weights, states, state_leng, 0, 0),
sumOfWeights = sumOfWeights_sumOfWeightLogWeights[0],
sumOfWeightLogWeights = sumOfWeights_sumOfWeightLogWeights[1]
)
ln(sumOfWeights) - (sumOfWeightLogWeights / sumOfWeights);
function _wf_entropy(weights, states, state_leng, sumOfWeights, sumOfWeightLogWeights, i = 0) =
i == state_leng ? [sumOfWeights, sumOfWeightLogWeights] :
let(
opt = states[i],
weight = hashmap_get(weights, opt)
)
_wf_entropy(weights, states, state_leng, sumOfWeights + weight, sumOfWeightLogWeights + weight * ln(weight), i + 1);
function _replaceStatesAt(wf, x, y, states) =
let(
eigenstates = wf_eigenstates(wf),
rowsBeforeY = slice(eigenstates, 0, y),
rowY = eigenstates[y],
rowsAfterY = slice(eigenstates, y + 1),
statesBeforeX = slice(rowY, 0, x),
statesAfterX = slice(rowY, x + 1),
newRowY = concat(
statesBeforeX,
[states],
statesAfterX
)
)
[
wf_width(wf),
wf_height(wf),
wf_weights(wf),
concat(
rowsBeforeY,
[newRowY],
rowsAfterY
)
];
function wf_not_collapsed_coords(wf) = [
for(y = [0:wf_height(wf) - 1])
for(x = [0:wf_width(wf) - 1])
if(len(wf_eigenstates_at(wf, x, y)) != 1)
[x, y]
];
function wf_coord_min_entropy(wf) =
let(
coords = wf_not_collapsed_coords(wf),
coords_leng = len(coords),
entropyCoord = coords[0],
entropy = wf_entropy(wf, entropyCoord[0], entropyCoord[1]) - (rand() / 1000)
)
_wf_coord_min_entropy(wf, coords, coords_leng, entropy, entropyCoord);
function _wf_coord_min_entropy(wf, coords, coords_leng, entropy, entropyCoord, i = 1) =
i == coords_leng ? entropyCoord :
let(
coord = coords[i],
noisedEntropy = wf_entropy(wf, coord[0], coord[1]) - (rand() / 1000)
)
noisedEntropy < entropy ? _wf_coord_min_entropy(wf, coords, coords_leng, noisedEntropy, coord, i + 1) :
_wf_coord_min_entropy(wf, coords, coords_leng, entropy, entropyCoord, i + 1);
/*
- tilemap(width, height, sample)
- tilemap_width(tm)
- tilemap_height(tm)
- tilemap_compatibilities(tm)
- tilemap_wf(tm)
- tilemap_check_compatibilities(tm, tile1, tile2, direction)
- tilemap_propagate(tm, x, y)
- tilemap_generate(tm)
*/
function tilemap(width, height, sample) = [
width,
height,
compatibilities_of_tiles(sample),
wave_function(width, height, weights_of_tiles(sample))
];
function tilemap_width(tm) = tm[0];
function tilemap_height(tm) = tm[1];
function tilemap_compatibilities(tm) = tm[2];
function tilemap_wf(tm) = tm[3];
function tilemap_check_compatibilities(tm, tile1, tile2, direction) =
let(compatibilities = tilemap_compatibilities(tm))
hashset_has(compatibilities, [tile1, tile2, direction]);
function tilemap_propagate(tm, x, y) =
let(stack = [[x, y]])
_tilemap_propagate(tm, stack);
function _tilemap_propagate(tm, stack) =
len(stack) == 0 ? tm :
let(
v_stack = pop(stack),
current_coord = v_stack[0],
cs = v_stack[1],
cx = current_coord[0],
cy = current_coord[1],
current_tiles = wf_eigenstates_at(tilemap_wf(tm), cx, cy),
dirs = neighbor_dirs(cx, cy, tilemap_width(tm), tilemap_height(tm)),
tm_stack = _doDirs(tm, cs, cx, cy, current_tiles, dirs, len(dirs))
)
_tilemap_propagate(tm_stack[0], tm_stack[1]);
function _doDirs(tm, stack, cx, cy, current_tiles, dirs, leng, i = 0) =
i == leng ? [tm, stack] :
let(
dir = dirs[i],
nbrx = cx + dir[0],
nbry = cy + dir[1],
wf = tilemap_wf(tm),
nbr_tiles = wf_eigenstates_at(wf, nbrx, nbry),
not_compatible_nbr_tiles = [
for(nbr_tile = nbr_tiles)
if(not_compatible_nbr_tile(tm, current_tiles, nbr_tile, dir))
nbr_tile
]
)
len(not_compatible_nbr_tiles) == 0 ? _doDirs(tm, stack, cx, cy, current_tiles, dirs, leng, i + 1) :
let(
nstack = push(stack, [nbrx, nbry]),
ntm = [
tilemap_width(tm),
tilemap_height(tm),
tilemap_compatibilities(tm),
wf_remove(wf, nbrx, nbry, not_compatible_nbr_tiles)
]
)
_doDirs(ntm, nstack, cx, cy, current_tiles, dirs, leng, i + 1);
function tilemap_generate(tm) =
let(wf = tilemap_wf(tm))
wf_is_all_collapsed(wf) ? collapsed_tiles(wf) :
let(
coord = wf_coord_min_entropy(wf),
x = coord[0],
y = coord[1]
)
tilemap_generate(tilemap_propagate([
tilemap_width(tm),
tilemap_height(tm),
tilemap_compatibilities(tm),
wf_collapse(wf, x, y)
], x, y));
function neighbor_dirs(x, y, width, height) =
concat(
x > 0 ? [[-1, 0]] : [], // left
x < width - 1 ? [[ 1, 0]] : [], // right
y > 0 ? [[ 0, -1]] : [], // top
y < height - 1 ? [[ 0, 1]] : [] // bottom
);
function neighbor_compatibilities(sample, x, y, width, height) =
let(me = sample[y][x])
[for(dir = neighbor_dirs(x, y, width, height)) [me, sample[y + dir[1]][x + dir[0]], dir]];
function compatibilities_of_tiles(sample) =
let(
width = len(sample[0]),
height = len(sample)
)
hashset([
for(y = [0:height - 1])
for(x = [0:width - 1])
for(c = neighbor_compatibilities(sample, x, y, width, height))
c
]);
function collapsed_tiles(wf) =
let(
wf_h = wf_height(wf),
wf_w = wf_width(wf)
)
[
for(y = [0:wf_h - 1])
[
for(x = [0:wf_w - 1])
wf_eigenstates_at(wf, x, y)[0]
]
];
function not_compatible_nbr_tile(tm, current_tiles, nbr_tile, dir) =
!some(current_tiles, function(tile) tilemap_check_compatibilities(tm, tile, nbr_tile, dir));
function push(stack, elem) = concat([elem], stack);
function pop(stack) = [stack[0], slice(stack, 1)];
/*
sample = [
["S", "S", "S", "S", "S", "S", "S", "S", "S", "S", "S", "S", "S"],
["S", "S", "C0", "CN", "CN", "CN", "CN", "CN", "CN", "CN", "C3", "S", "S"],
["S", "S", "CW", "L", "L", "L", "L", "L", "L", "L", "CE", "S", "S"],
["S", "S", "CW", "L", "L", "L", "L", "L", "L", "L", "CE", "S", "S"],
["S", "S", "CW", "L", "L", "L", "L", "L", "L", "L", "CE", "S", "S"],
["S", "S", "CW", "L", "L", "L", "L", "L", "L", "L", "CE", "S", "S"],
["S", "S", "CW", "L", "L", "L", "L", "L", "L", "L", "CE", "S", "S"],
["S", "S", "CW", "L", "L", "L", "L", "L", "L", "L", "CE", "S", "S"],
["S", "S", "CW", "L", "L", "L", "L", "L", "L", "L", "CE", "S", "S"],
["S", "S", "C1", "CS", "CS", "CS", "CS", "CS", "CS", "CS", "C2", "S", "S"],
["S", "S", "S", "S", "S", "S", "S", "S", "S", "S", "S", "S", "S"]
];
width = 20;
height = 20;
wf = wave_function(width, height, weights);
assert(wf_width(wf) == width);
assert(wf_height(wf) == height);
assert(wf_is_all_collapsed(wf) == false);
assert(wf_remove(wf, 0, 0, []) == wf);
assert(wf_eigenstates_at(wf_remove(wf, 0, 0, ["CE"]), 0, 0) == ["C0", "C1", "CS", "C2", "C3", "S", "CW", "CN", "L"]);
for(y = [0:height - 1]) {
for(x = [0:width - 1]) {
assert(len(wf_eigenstates_at(wf_collapse(wf, x, y), x, y)) == 1);
}
}
assert(wf_entropy(wf, 0, 0) == 1.458879520793018);
assert(wf_coord_min_entropy(wf_collapse(wf, 0, 0)) != [0, 0]);
*/
/*
tm = tilemap(width, height, sample);
assert(tilemap_check_compatibilities(tm, "S", "C0", [ 1, 0]));
assert(!tilemap_check_compatibilities(tm, "S", "L", [ 1, 0]));
ntm = tilemap_propagate([
tilemap_width(tm),
tilemap_height(tm),
tilemap_compatibilities(tm),
wf_collapse(wf, 0, 0)
], 0, 0);
assert(wf_eigenstates_at(tilemap_wf(ntm), 0, 1) != wf_eigenstates_at(wf, 0, 1));
*/

View File

@@ -1,306 +1,4 @@
use <util/flat.scad>;
use <util/has.scad>;
use <util/sum.scad>;
use <util/rand.scad>;
use <util/slice.scad>;
use <util/some.scad>;
use <util/every.scad>;
use <util/map/hashmap.scad>;
use <util/map/hashmap_put.scad>;
use <util/map/hashmap_get.scad>;
use <util/map/hashmap_keys.scad>;
use <util/map/hashmap_values.scad>;
use <util/map/hashmap_entries.scad>;
use <util/set/hashset.scad>;
use <util/set/hashset_has.scad>;
function weights_of_tiles(sample) =
let(
symbols = flat(sample),
leng = len(symbols),
weights = hashmap(number_of_buckets = sqrt(leng))
)
_weights_of_tiles(weights, symbols, leng);
function _weights_of_tiles(weights, symbols, leng, i = 0) =
i == leng ? weights :
let(
tile = symbols[i],
w = hashmap_get(weights, tile)
)
w == undef ?
_weights_of_tiles(hashmap_put(weights, tile, 1), symbols, leng, i + 1) :
_weights_of_tiles(hashmap_put(weights, tile, w + 1), symbols, leng, i + 1);
/*
oo-style
wave_function(width, height, weights)
- wf_width(wf)
- wf_height(wf)
- wf_weights(wf)
- wf_eigenstates(wf)
- wf_eigenstates_at(wf, x, y)
- wf_is_all_collapsed(wf)
- wf_remove(wf, x, y, removedStates)
- wf_collapse(wf, x, y)
- wf_entropy(wf, x, y)
- wf_coord_min_entropy(wf)
- wf_not_collapsed_coords(wf)
*/
function wave_function(width, height, weights) =
[width, height, weights, _initialEigenstates(width, height, weights)];
function _initialEigenstates(width, height, weights) =
let(
keys = hashmap_keys(weights),
row = [for(x = [0:width - 1]) keys]
)
[for(y = [0:height - 1]) row];
function wf_width(wf) = wf[0];
function wf_height(wf) = wf[1];
function wf_weights(wf) = wf[2];
function wf_eigenstates(wf) = wf[3];
function wf_eigenstates_at(wf, x, y) = wf_eigenstates(wf)[y][x];
function wf_is_all_collapsed(wf) = every(
wf_eigenstates(wf),
function(row) every(row, function(states) len(states) == 1)
);
function wf_remove(wf, x, y, removedStates) = _replaceStatesAt(wf, x, y, [
for(state = wf_eigenstates_at(wf, x, y))
if(!has(removedStates, state))
state
]);
function wf_collapse(wf, x, y) =
let(
weights = wf_weights(wf),
states_xy = wf_eigenstates_at(wf, x, y),
weights_xy = hashmap([
for(state = hashmap_keys(weights))
if(has(states_xy, state))
[state, hashmap_get(weights, state)]
]),
totalWeights = sum(hashmap_values(weights_xy)),
threshold = rand() * totalWeights,
states_weights = hashmap_entries(weights_xy)
)
_wf_collapse(wf, x, y, states_weights, len(states_weights), threshold);
function _wf_collapse(wf, x, y, states_weights, leng, threshold, i = 0) =
i == leng ? wf :
let(
state = states_weights[i][0],
weight = states_weights[i][1],
t = threshold - weight
)
t < 0 ? _oneStateAt(wf, x, y, state) : _wf_collapse(wf, x, y, states_weights, leng, t, i + 1);
function _oneStateAt(wf, x, y, state) = _replaceStatesAt(wf, x, y, [state]);
// Shannon entropy
function wf_entropy(wf, x, y) =
let(
states = wf_eigenstates_at(wf, x, y),
weights = wf_weights(wf),
state_leng = len(states),
sumOfWeights_sumOfWeightLogWeights = _wf_entropy(weights, states, state_leng, 0, 0),
sumOfWeights = sumOfWeights_sumOfWeightLogWeights[0],
sumOfWeightLogWeights = sumOfWeights_sumOfWeightLogWeights[1]
)
ln(sumOfWeights) - (sumOfWeightLogWeights / sumOfWeights);
function _wf_entropy(weights, states, state_leng, sumOfWeights, sumOfWeightLogWeights, i = 0) =
i == state_leng ? [sumOfWeights, sumOfWeightLogWeights] :
let(
opt = states[i],
weight = hashmap_get(weights, opt)
)
_wf_entropy(weights, states, state_leng, sumOfWeights + weight, sumOfWeightLogWeights + weight * ln(weight), i + 1);
function _replaceStatesAt(wf, x, y, states) =
let(
eigenstates = wf_eigenstates(wf),
rowsBeforeY = slice(eigenstates, 0, y),
rowY = eigenstates[y],
rowsAfterY = slice(eigenstates, y + 1),
statesBeforeX = slice(rowY, 0, x),
statesAfterX = slice(rowY, x + 1),
newRowY = concat(
statesBeforeX,
[states],
statesAfterX
)
)
[
wf_width(wf),
wf_height(wf),
wf_weights(wf),
concat(
rowsBeforeY,
[newRowY],
rowsAfterY
)
];
function wf_not_collapsed_coords(wf) = [
for(y = [0:wf_height(wf) - 1])
for(x = [0:wf_width(wf) - 1])
if(len(wf_eigenstates_at(wf, x, y)) != 1)
[x, y]
];
function wf_coord_min_entropy(wf) =
let(
coords = wf_not_collapsed_coords(wf),
coords_leng = len(coords),
entropyCoord = coords[0],
entropy = wf_entropy(wf, entropyCoord[0], entropyCoord[1]) - (rand() / 1000)
)
_wf_coord_min_entropy(wf, coords, coords_leng, entropy, entropyCoord);
function _wf_coord_min_entropy(wf, coords, coords_leng, entropy, entropyCoord, i = 1) =
i == coords_leng ? entropyCoord :
let(
coord = coords[i],
noisedEntropy = wf_entropy(wf, coord[0], coord[1]) - (rand() / 1000)
)
noisedEntropy < entropy ? _wf_coord_min_entropy(wf, coords, coords_leng, noisedEntropy, coord, i + 1) :
_wf_coord_min_entropy(wf, coords, coords_leng, entropy, entropyCoord, i + 1);
/*
- tilemap(width, height, sample)
- tilemap_width(tm)
- tilemap_height(tm)
- tilemap_compatibilities(tm)
- tilemap_wf(tm)
- tilemap_check_compatibilities(tm, tile1, tile2, direction)
- tilemap_propagate(tm, x, y)
- tilemap_generate(tm)
*/
function tilemap(width, height, sample) = [
width,
height,
compatibilities_of_tiles(sample),
wave_function(width, height, weights_of_tiles(sample))
];
function tilemap_width(tm) = tm[0];
function tilemap_height(tm) = tm[1];
function tilemap_compatibilities(tm) = tm[2];
function tilemap_wf(tm) = tm[3];
function tilemap_check_compatibilities(tm, tile1, tile2, direction) =
let(compatibilities = tilemap_compatibilities(tm))
hashset_has(compatibilities, [tile1, tile2, direction]);
function tilemap_propagate(tm, x, y) =
let(stack = [[x, y]])
_tilemap_propagate(tm, stack);
function _tilemap_propagate(tm, stack) =
len(stack) == 0 ? tm :
let(
v_stack = pop(stack),
current_coord = v_stack[0],
cs = v_stack[1],
cx = current_coord[0],
cy = current_coord[1],
current_tiles = wf_eigenstates_at(tilemap_wf(tm), cx, cy),
dirs = neighbor_dirs(cx, cy, tilemap_width(tm), tilemap_height(tm)),
tm_stack = _doDirs(tm, cs, cx, cy, current_tiles, dirs, len(dirs))
)
_tilemap_propagate(tm_stack[0], tm_stack[1]);
function _doDirs(tm, stack, cx, cy, current_tiles, dirs, leng, i = 0) =
i == leng ? [tm, stack] :
let(
dir = dirs[i],
nbrx = cx + dir[0],
nbry = cy + dir[1],
wf = tilemap_wf(tm),
nbr_tiles = wf_eigenstates_at(wf, nbrx, nbry),
not_compatible_nbr_tiles = [
for(nbr_tile = nbr_tiles)
if(not_compatible_nbr_tile(tm, current_tiles, nbr_tile, dir))
nbr_tile
]
)
len(not_compatible_nbr_tiles) == 0 ? _doDirs(tm, stack, cx, cy, current_tiles, dirs, leng, i + 1) :
let(
nstack = push(stack, [nbrx, nbry]),
ntm = [
tilemap_width(tm),
tilemap_height(tm),
tilemap_compatibilities(tm),
wf_remove(wf, nbrx, nbry, not_compatible_nbr_tiles)
]
)
_doDirs(ntm, nstack, cx, cy, current_tiles, dirs, leng, i + 1);
function tilemap_generate(tm) =
let(wf = tilemap_wf(tm))
wf_is_all_collapsed(wf) ? collapsed_tiles(wf) :
let(
coord = wf_coord_min_entropy(wf),
x = coord[0],
y = coord[1]
)
tilemap_generate(tilemap_propagate([
tilemap_width(tm),
tilemap_height(tm),
tilemap_compatibilities(tm),
wf_collapse(wf, x, y)
], x, y));
function neighbor_dirs(x, y, width, height) =
concat(
x > 0 ? [[-1, 0]] : [], // left
x < width - 1 ? [[ 1, 0]] : [], // right
y > 0 ? [[ 0, -1]] : [], // top
y < height - 1 ? [[ 0, 1]] : [] // bottom
);
function neighbor_compatibilities(sample, x, y, width, height) =
let(me = sample[y][x])
[for(dir = neighbor_dirs(x, y, width, height)) [me, sample[y + dir[1]][x + dir[0]], dir]];
function compatibilities_of_tiles(sample) =
let(
width = len(sample[0]),
height = len(sample)
)
hashset([
for(y = [0:height - 1])
for(x = [0:width - 1])
for(c = neighbor_compatibilities(sample, x, y, width, height))
c
]);
function collapsed_tiles(wf) =
let(
wf_h = wf_height(wf),
wf_w = wf_width(wf)
)
[
for(y = [0:wf_h - 1])
[
for(x = [0:wf_w - 1])
wf_eigenstates_at(wf, x, y)[0]
]
];
function not_compatible_nbr_tile(tm, current_tiles, nbr_tile, dir) =
!some(current_tiles, function(tile) tilemap_check_compatibilities(tm, tile, nbr_tile, dir));
function push(stack, elem) = concat([elem], stack);
function pop(stack) = [stack[0], slice(stack, 1)];
use <_impl/_tiles_wfc_impl.scad>;
function tiles_wfc(width, height, sample) =
tilemap_generate(tilemap(width, height, sample));
@@ -327,33 +25,4 @@ height = 20;
echo(tiles_wfc(width, height, sample));
*/
/*
wf = wave_function(width, height, weights);
assert(wf_width(wf) == width);
assert(wf_height(wf) == height);
assert(wf_is_all_collapsed(wf) == false);
assert(wf_remove(wf, 0, 0, []) == wf);
assert(wf_eigenstates_at(wf_remove(wf, 0, 0, ["CE"]), 0, 0) == ["C0", "C1", "CS", "C2", "C3", "S", "CW", "CN", "L"]);
for(y = [0:height - 1]) {
for(x = [0:width - 1]) {
assert(len(wf_eigenstates_at(wf_collapse(wf, x, y), x, y)) == 1);
}
}
assert(wf_entropy(wf, 0, 0) == 1.458879520793018);
assert(wf_coord_min_entropy(wf_collapse(wf, 0, 0)) != [0, 0]);
*/
/*
tm = tilemap(width, height, sample);
assert(tilemap_check_compatibilities(tm, "S", "C0", [ 1, 0]));
assert(!tilemap_check_compatibilities(tm, "S", "L", [ 1, 0]));
ntm = tilemap_propagate([
tilemap_width(tm),
tilemap_height(tm),
tilemap_compatibilities(tm),
wf_collapse(wf, 0, 0)
], 0, 0);
assert(wf_eigenstates_at(tilemap_wf(ntm), 0, 1) != wf_eigenstates_at(wf, 0, 1));
*/