mirror of
https://github.com/JustinSDK/dotSCAD.git
synced 2025-04-20 22:21:52 +02:00
refactor deps
This commit is contained in:
parent
9c23eb1a46
commit
d88fd6ac55
91
src/_impl/_triangulate_impl.scad
Normal file
91
src/_impl/_triangulate_impl.scad
Normal file
@ -0,0 +1,91 @@
|
||||
function _triangulate_in_triangle(p0, p1, p2, p) =
|
||||
let(
|
||||
v0 = p0 - p,
|
||||
v1 = p1 - p,
|
||||
v2 = p2 - p,
|
||||
c0 = cross(v0, v1),
|
||||
c1 = cross(v1, v2),
|
||||
c2 = cross(v2, v0)
|
||||
)
|
||||
(c0 > 0 && c1 > 0 && c2 > 0) || (c0 < 0 && c1 < 0 && c2 < 0);
|
||||
|
||||
function _triangulate_snipable(shape_pts, u, v, w, n, indices, epsilon = 0.0001) =
|
||||
let(
|
||||
a = shape_pts[indices[u]],
|
||||
b = shape_pts[indices[v]],
|
||||
c = shape_pts[indices[w]],
|
||||
ax = a[0],
|
||||
ay = a[1],
|
||||
bx = b[0],
|
||||
by = b[1],
|
||||
cx = c[0],
|
||||
cy = c[1]
|
||||
)
|
||||
epsilon > (((bx - ax) * (cy - ay)) - ((by - ay) * (cx - ax))) ?
|
||||
false : _triangulate_snipable_sub(shape_pts, n, u, v, w, a, b, c, indices);
|
||||
|
||||
function _triangulate_snipable_sub(shape_pts, n, u, v, w, a, b, c, indices, p = 0) =
|
||||
p == n ? true : (
|
||||
((p == u) || (p == v) || (p == w)) ? _triangulate_snipable_sub(shape_pts, n, u, v, w, a, b, c, indices, p + 1) : (
|
||||
_triangulate_in_triangle(a, b, c, shape_pts[indices[p]]) ?
|
||||
false : _triangulate_snipable_sub(shape_pts, n, u, v, w, a, b, c, indices, p + 1)
|
||||
)
|
||||
);
|
||||
|
||||
// remove the elem at idx v from indices
|
||||
function _triangulate_remove_v(indices, v, num_of_vertices) =
|
||||
let(
|
||||
nv_minuns_one = num_of_vertices - 1
|
||||
)
|
||||
v == 0 ? [for(i = 1; i <= nv_minuns_one; i = i + 1) indices[i]] : (
|
||||
v == nv_minuns_one ? [for(i = 0; i < v; i = i + 1) indices[i]] : concat(
|
||||
[for(i = 0; i < v; i = i + 1) indices[i]],
|
||||
[for(i = v + 1; i <= nv_minuns_one; i = i + 1) indices[i]]
|
||||
)
|
||||
);
|
||||
|
||||
function _triangulate_zero_or_value(num_of_vertices, value) =
|
||||
num_of_vertices <= value ? 0 : value;
|
||||
|
||||
function _triangulate_real_triangulate_sub(shape_pts, collector, indices, v, num_of_vertices, count, epsilon) =
|
||||
let(
|
||||
// idxes of three consecutive vertices
|
||||
u = _triangulate_zero_or_value(num_of_vertices, v),
|
||||
vi = _triangulate_zero_or_value(num_of_vertices, u + 1),
|
||||
w = _triangulate_zero_or_value(num_of_vertices, vi + 1)
|
||||
)
|
||||
_triangulate_snipable(shape_pts, u, vi, w, num_of_vertices, indices, epsilon) ?
|
||||
_triangulate_snip(shape_pts, collector, indices, u, vi, w, num_of_vertices, count, epsilon) :
|
||||
_triangulate_real_triangulate(shape_pts, collector, indices, vi, num_of_vertices, count, epsilon);
|
||||
|
||||
function _triangulate_snip(shape_pts, collector, indices, u, v, w, num_of_vertices, count, epsilon) =
|
||||
let(
|
||||
a = indices[u],
|
||||
b = indices[v],
|
||||
c = indices[w],
|
||||
new_nv = num_of_vertices - 1
|
||||
)
|
||||
_triangulate_real_triangulate(
|
||||
shape_pts,
|
||||
concat(collector, [[a, b, c]]),
|
||||
_triangulate_remove_v(indices, v, num_of_vertices),
|
||||
v,
|
||||
new_nv,
|
||||
2 * new_nv,
|
||||
epsilon
|
||||
);
|
||||
|
||||
function _triangulate_real_triangulate(shape_pts, collector, indices, v, num_of_vertices, count, epsilon) =
|
||||
count <= 0 ? [] : (
|
||||
num_of_vertices == 2 ?
|
||||
collector : _triangulate_real_triangulate_sub(shape_pts, collector, indices, v, num_of_vertices, count - 1, epsilon)
|
||||
);
|
||||
|
||||
function _triangulate_impl(shape_pts, epsilon) =
|
||||
let(
|
||||
num_of_vertices = len(shape_pts),
|
||||
v = num_of_vertices - 1,
|
||||
indices = [for(vi = 0; vi <= v; vi = vi + 1) vi],
|
||||
count = 2 * num_of_vertices
|
||||
)
|
||||
num_of_vertices < 3 ? [] : _triangulate_real_triangulate(shape_pts, [], indices, v, num_of_vertices, count, epsilon);
|
@ -8,95 +8,6 @@
|
||||
*
|
||||
**/
|
||||
|
||||
function _triangulate_in_triangle(p0, p1, p2, p) =
|
||||
let(
|
||||
v0 = p0 - p,
|
||||
v1 = p1 - p,
|
||||
v2 = p2 - p,
|
||||
c0 = cross(v0, v1),
|
||||
c1 = cross(v1, v2),
|
||||
c2 = cross(v2, v0)
|
||||
)
|
||||
(c0 > 0 && c1 > 0 && c2 > 0) || (c0 < 0 && c1 < 0 && c2 < 0);
|
||||
|
||||
function _triangulate_snipable(shape_pts, u, v, w, n, indices, epsilon = 0.0001) =
|
||||
let(
|
||||
a = shape_pts[indices[u]],
|
||||
b = shape_pts[indices[v]],
|
||||
c = shape_pts[indices[w]],
|
||||
ax = a[0],
|
||||
ay = a[1],
|
||||
bx = b[0],
|
||||
by = b[1],
|
||||
cx = c[0],
|
||||
cy = c[1]
|
||||
)
|
||||
epsilon > (((bx - ax) * (cy - ay)) - ((by - ay) * (cx - ax))) ?
|
||||
false : _triangulate_snipable_sub(shape_pts, n, u, v, w, a, b, c, indices);
|
||||
use <_impl/_triangulate_impl.scad>;
|
||||
|
||||
function _triangulate_snipable_sub(shape_pts, n, u, v, w, a, b, c, indices, p = 0) =
|
||||
p == n ? true : (
|
||||
((p == u) || (p == v) || (p == w)) ? _triangulate_snipable_sub(shape_pts, n, u, v, w, a, b, c, indices, p + 1) : (
|
||||
_triangulate_in_triangle(a, b, c, shape_pts[indices[p]]) ?
|
||||
false : _triangulate_snipable_sub(shape_pts, n, u, v, w, a, b, c, indices, p + 1)
|
||||
)
|
||||
);
|
||||
|
||||
// remove the elem at idx v from indices
|
||||
function _triangulate_remove_v(indices, v, num_of_vertices) =
|
||||
let(
|
||||
nv_minuns_one = num_of_vertices - 1
|
||||
)
|
||||
v == 0 ? [for(i = 1; i <= nv_minuns_one; i = i + 1) indices[i]] : (
|
||||
v == nv_minuns_one ? [for(i = 0; i < v; i = i + 1) indices[i]] : concat(
|
||||
[for(i = 0; i < v; i = i + 1) indices[i]],
|
||||
[for(i = v + 1; i <= nv_minuns_one; i = i + 1) indices[i]]
|
||||
)
|
||||
);
|
||||
|
||||
function _triangulate_zero_or_value(num_of_vertices, value) =
|
||||
num_of_vertices <= value ? 0 : value;
|
||||
|
||||
function _triangulate_real_triangulate_sub(shape_pts, collector, indices, v, num_of_vertices, count, epsilon) =
|
||||
let(
|
||||
// idxes of three consecutive vertices
|
||||
u = _triangulate_zero_or_value(num_of_vertices, v),
|
||||
vi = _triangulate_zero_or_value(num_of_vertices, u + 1),
|
||||
w = _triangulate_zero_or_value(num_of_vertices, vi + 1)
|
||||
)
|
||||
_triangulate_snipable(shape_pts, u, vi, w, num_of_vertices, indices, epsilon) ?
|
||||
_triangulate_snip(shape_pts, collector, indices, u, vi, w, num_of_vertices, count, epsilon) :
|
||||
_triangulate_real_triangulate(shape_pts, collector, indices, vi, num_of_vertices, count, epsilon);
|
||||
|
||||
function _triangulate_snip(shape_pts, collector, indices, u, v, w, num_of_vertices, count, epsilon) =
|
||||
let(
|
||||
a = indices[u],
|
||||
b = indices[v],
|
||||
c = indices[w],
|
||||
new_nv = num_of_vertices - 1
|
||||
)
|
||||
_triangulate_real_triangulate(
|
||||
shape_pts,
|
||||
concat(collector, [[a, b, c]]),
|
||||
_triangulate_remove_v(indices, v, num_of_vertices),
|
||||
v,
|
||||
new_nv,
|
||||
2 * new_nv,
|
||||
epsilon
|
||||
);
|
||||
|
||||
function _triangulate_real_triangulate(shape_pts, collector, indices, v, num_of_vertices, count, epsilon) =
|
||||
count <= 0 ? [] : (
|
||||
num_of_vertices == 2 ?
|
||||
collector : _triangulate_real_triangulate_sub(shape_pts, collector, indices, v, num_of_vertices, count - 1, epsilon)
|
||||
);
|
||||
|
||||
function triangulate(shape_pts, epsilon = 0.0001) =
|
||||
let(
|
||||
num_of_vertices = len(shape_pts),
|
||||
v = num_of_vertices - 1,
|
||||
indices = [for(vi = 0; vi <= v; vi = vi + 1) vi],
|
||||
count = 2 * num_of_vertices
|
||||
)
|
||||
num_of_vertices < 3 ? [] : _triangulate_real_triangulate(shape_pts, [], indices, v, num_of_vertices, count, epsilon);
|
||||
|
||||
function triangulate(shape_pts, epsilon = 0.0001) = _triangulate_impl(shape_pts, epsilon);
|
@ -1,5 +1,5 @@
|
||||
include <unittest.scad>;
|
||||
include <triangulate.scad>;
|
||||
use <unittest.scad>;
|
||||
use <triangulate.scad>;
|
||||
|
||||
module test_triangulate() {
|
||||
echo("==== test_triangulate ====");
|
||||
|
Loading…
x
Reference in New Issue
Block a user