1
0
mirror of https://github.com/JustinSDK/dotSCAD.git synced 2025-08-10 08:44:20 +02:00

supported count_clockwise

This commit is contained in:
Justin Lin
2017-04-25 18:07:25 +08:00
parent e711d10c99
commit e2ce89b002
2 changed files with 89 additions and 12 deletions

68
docs/lib-golden_spiral.md Normal file
View File

@@ -0,0 +1,68 @@
# golden_spiral
Gets all points and angles on the path of a golden spiral. The distance between two points is almost constant.
It returns a vector of `[[x, y], angle]`.
## Parameters
- `from` : If any ray from the origin intersects two successive turnings of the spiral, we'll have two points. The `arm_distance` is the distance between these two points.
- `to` : In polar coordinates `(r, θ)` Archimedean spiral can be described by the equation `r = bθ ` where `θ` is measured in radians. For being consistent with OpenSCAD, the function here use degrees. The `init_angle` is which angle the first point want to start.
- `point_distance` : Distance between two points on the path.
- `rt_dir` : `"CT_CLK"` for counterclockwise. `"CLK"` for clockwise. The default value is `"CT_CLK"`.
## Examples
include <polyline2d.scad>;
include <archimedean_spiral.scad>;
points_angles = archimedean_spiral(
arm_distance = 10,
init_angle = 180,
point_distance = 5,
num_of_points = 100
);
points = [for(pa = points_angles) pa[0]];
polyline2d(points, width = 1);
![archimedean_spiral](images/lib-archimedean_spiral-1.JPG)
include <archimedean_spiral.scad>;
points_angles = archimedean_spiral(
arm_distance = 10,
init_angle = 180,
point_distance = 5,
num_of_points = 100
);
for(pa = points_angles) {
translate(pa[0])
circle(2);
}
![archimedean_spiral](images/lib-archimedean_spiral-2.JPG)
include <archimedean_spiral.scad>;
t = "3.141592653589793238462643383279502884197169399375105820974944592307816406286";
points = archimedean_spiral(
arm_distance = 15,
init_angle = 450,
point_distance = 12,
num_of_points = len(t)
);
for(i = [0: len(points) - 1]) {
translate(points[i][0])
rotate(points[i][1] + 90)
text(t[i], valign = "center", halign = "center");
}
![archimedean_spiral](images/lib-archimedean_spiral-3.JPG)

View File

@@ -33,34 +33,43 @@ function _remove_same_pts(pts1, pts2) =
concat(pts1, [for(i = [1:len(pts2) - 1]) pts2[i]]) :
concat(pts1, pts2);
function _golden_spiral_from_ls_or_eql_to(from, to, point_distance ) =
function _golden_spiral_from_ls_or_eql_to(from, to, point_distance, rt_dir) =
let(
f1 = _fast_fibonacci(from),
f2 = _fast_fibonacci(from + 1),
fn = floor(f1 * 6.28312 / point_distance),
$fn = fn + 4 - (fn % 4),
circle_pts = circle_path(radius = f1, n = $fn / 4 + 1),
a_step = 360 / $fn,
arc_points_angles = [
for(i = [0:len(circle_pts) - 1])
len_pts = len(circle_pts),
a_step = 360 / $fn * rt_dir,
arc_points_angles = (rt_dir == 1 ? [
for(i = [0:len_pts - 1])
// to 3D points because of rotate_p
[[circle_pts[i][0], circle_pts[i][1], 0], a_step * i]
],
] : [
for(i = [0:len_pts - 1]) let(idx = len_pts - i - 1)
// to 3D points because of rotate_p
[[circle_pts[idx][0], circle_pts[idx][1], 0], a_step * i]
]),
offset = f2 - f1
) _remove_same_pts(
arc_points_angles,
[
for(pt_a = _golden_spiral(from + 1, to, point_distance))
[rotate_p(pt_a[0], [0, 0, 90]) + [0, -offset, 0], pt_a[1] + 90]
]
for(pt_a = _golden_spiral(from + 1, to, point_distance, rt_dir))
[
rotate_p(pt_a[0], [0, 0, 90 * rt_dir]) +
(rt_dir == 1 ? [0, -offset, 0] : [-offset, 0, 0]),
pt_a[1] + 90 * rt_dir
]
]
);
function _golden_spiral(from, to, point_distance) =
function _golden_spiral(from, to, point_distance, rt_dir) =
from <= to ?
_golden_spiral_from_ls_or_eql_to(from, to, point_distance) : [];
_golden_spiral_from_ls_or_eql_to(from, to, point_distance, rt_dir) : [];
function golden_spiral(from, to, point_distance) =
function golden_spiral(from, to, point_distance, rt_dir = "CT_CLK") =
[
for(pt_a = _golden_spiral(from, to, point_distance))
for(pt_a = _golden_spiral(from, to, point_distance, (rt_dir == "CT_CLK" ? 1 : -1)))
[[pt_a[0][0], pt_a[0][1]], pt_a[1]] // to 2D points
];