mirror of
https://github.com/JustinSDK/dotSCAD.git
synced 2025-08-10 16:54:23 +02:00
added golden_spiral.scad
This commit is contained in:
98
src/golden_spiral.scad
Normal file
98
src/golden_spiral.scad
Normal file
@@ -0,0 +1,98 @@
|
||||
/**
|
||||
* archimedean_spiral.scad
|
||||
*
|
||||
* Gets all points and angles on the path of an archimedean_spiral. The distance between two points is almost constant.
|
||||
*
|
||||
* It returns a vector of [[x, y], angle].
|
||||
*
|
||||
* In polar coordinates (r, <20>c) Archimedean spiral can be described by the equation r = b<>c where
|
||||
* <20>c is measured in radians. For being consistent with OpenSCAD, the function here use degrees.
|
||||
*
|
||||
* An init_angle less than 180 degrees is not recommended because the function uses an approximate
|
||||
* approach. If you really want an init_angle less than 180 degrees, a larger arm_distance
|
||||
* is required. To avoid a small error value at the calculated distance between two points, you
|
||||
* may try a smaller point_distance.
|
||||
*
|
||||
* @copyright Justin Lin, 2017
|
||||
* @license https://opensource.org/licenses/lgpl-3.0.html
|
||||
*
|
||||
* @see https://openhome.cc/eGossip/OpenSCAD/lib-archimedean_spiral.html
|
||||
*
|
||||
**/
|
||||
|
||||
function _radian_step(b, theta, l) =
|
||||
let(r_square = pow(b * theta, 2))
|
||||
acos((2 * r_square - pow(l, 2)) / (2 * r_square)) / 180 * 3.14159;
|
||||
|
||||
function _find_radians(b, point_distance, radians, n, count = 1) =
|
||||
let(pre_radians = radians[count - 1])
|
||||
count == n ? radians : (
|
||||
_find_radians(
|
||||
b,
|
||||
point_distance,
|
||||
concat(
|
||||
radians,
|
||||
[pre_radians + _radian_step(b, pre_radians, point_distance)]
|
||||
),
|
||||
n,
|
||||
count + 1)
|
||||
);
|
||||
|
||||
/*
|
||||
In polar coordinates (r, <20>c) Archimedean spiral can be described by the equation r = b<>c where
|
||||
<20>c is measured in radians. For being consistent with OpenSCAD, the function here use degrees.
|
||||
An init_angle angle less than 180 degrees is not recommended because the function uses an
|
||||
approximate approach. If you really want an angle less than 180 degrees, a larger arm_distance
|
||||
is required. To avoid a small error value at the calculated distance between two points, you
|
||||
may try a smaller point_distance.
|
||||
*/
|
||||
|
||||
function _fast_fibonacci_sub(nth) =
|
||||
let(
|
||||
_f = _fast_fibonacci_2_elems(floor(nth / 2)),
|
||||
a = _f[0],
|
||||
b = _f[1],
|
||||
c = a * (b * 2 - a),
|
||||
d = a * a + b * b
|
||||
)
|
||||
nth % 2 == 0 ? [c, d] : [d, c + d];
|
||||
|
||||
function _fast_fibonacci_2_elems(nth) =
|
||||
nth == 0 ? [0, 1] : _fast_fibonacci_sub(nth);
|
||||
|
||||
function _fast_fibonacci(nth) =
|
||||
_fast_fibonacci_2_elems(nth)[0];
|
||||
|
||||
function _remove_same_pts(pts1, pts2) =
|
||||
pts1[len(pts1) - 1] == pts2[0] ?
|
||||
concat(pts1, [for(i = [1:len(pts2) - 1]) pts2[i]]) :
|
||||
concat(pts1, pts2);
|
||||
|
||||
function _golden_spiral_from_ls_or_eql_to(from, to, point_distance ) =
|
||||
let(
|
||||
f1 = _fast_fibonacci(from),
|
||||
f2 = _fast_fibonacci(from + 1),
|
||||
fn = floor(f1 * 6.28312 / point_distance),
|
||||
$fn = fn + 4 - (fn % 4),
|
||||
arc_points = [
|
||||
for(pt = circle_path(radius = f1, n = $fn / 4 + 1))
|
||||
[pt[0], pt[1], 0] // to 3D points because of rotate_p
|
||||
],
|
||||
offset = f2 - f1
|
||||
) _remove_same_pts(
|
||||
arc_points,
|
||||
[
|
||||
for(pt = _golden_spiral(from + 1, to, point_distance))
|
||||
rotate_p(pt, [0, 0, 90]) + [0, -offset, 0]
|
||||
]
|
||||
);
|
||||
|
||||
function _golden_spiral(from, to, point_distance) =
|
||||
from <= to ?
|
||||
_golden_spiral_from_ls_or_eql_to(from, to, point_distance) : [];
|
||||
|
||||
function golden_spiral(from, to, point_distance) =
|
||||
[
|
||||
for(pt = _golden_spiral(from, to, point_distance))
|
||||
[pt[0], pt[1]] // to 2D points
|
||||
];
|
Reference in New Issue
Block a user