mirror of
https://github.com/Irev-Dev/Round-Anything.git
synced 2025-01-16 18:48:14 +01:00
Merge pull request #5 from Irev-Dev/add-docs-for-polyRoundExtrude
Add docs and examples for ployRoundExtrude
This commit is contained in:
commit
3f9d124bb7
129
polyround.scad
129
polyround.scad
@ -12,7 +12,13 @@ function translate3Dcoords(points,tran=[0,0,0],mult=[1,1,1])=[for(i=[0:len(point
|
||||
(points[i].y*mult.y)+tran.y,
|
||||
(points[i].z*mult.z)+tran.z
|
||||
]];
|
||||
function offsetPoints(points, offset=0)=
|
||||
function offsetPolygonPoints(points, offset=0)=
|
||||
// Work sthe same as the offset does, except for the fact that instead of a 2d shape
|
||||
// It works directly on ploygon points
|
||||
// it returns the same number of points just offset into or, away from the original shape.
|
||||
// points= a series of x,y points[[x1,y1],[x2,y2],...]
|
||||
// offset= amount to offset by, negative numbers go inwards into the shape, positive numbers go out
|
||||
// return= a series of x,y points[[x1,y1],[x2,y2],...]
|
||||
let(
|
||||
isCWorCCW=sign(offset)*CWorCCW(points)*-1,
|
||||
lp=len(points)
|
||||
@ -23,18 +29,25 @@ let(
|
||||
points[listWrap(i+1,lp)],
|
||||
],thick=offset,mode=isCWorCCW)];
|
||||
|
||||
function curvePolygon(points,r,fn,minR=0.01)=
|
||||
function makeCurvedPartOfPolyHedron(radiiPoints,r,fn,minR=0.01)=
|
||||
// this is a private function that I'm not expecting library users to use directly
|
||||
// radiiPoints= serise of x, y, r points
|
||||
// r= radius of curve that will be put on the end of the extrusion
|
||||
// fn= amount of subdivisions
|
||||
// minR= if one of the points in radiiPoints is less than r, it's likely to converg and form a sharp edge,
|
||||
// the min radius on this these converge edges can be controled with minR, though because of legacy reasons it can't be 0, but can be a very small number.
|
||||
// return= array of [polyhedronPoints, Polyhedronfaces, theLength of a singe layer in the curve]
|
||||
let(
|
||||
lp=len(points),
|
||||
radii=[for(i=[0:lp-1])points[i].z],
|
||||
isCWorCCWOverall=CWorCCW(points),
|
||||
lp=len(radiiPoints),
|
||||
radii=[for(i=[0:lp-1])radiiPoints[i].z],
|
||||
isCWorCCWOverall=CWorCCW(radiiPoints),
|
||||
dir=sign(r),
|
||||
absR=abs(r),
|
||||
fractionOffLp=1-1/fn,
|
||||
allPoints=[for(fraction=[0:1/fn:1])
|
||||
let(
|
||||
iterationOffset=dir*sqrt(sq(absR)-sq(fraction*absR))-dir*absR,
|
||||
theOffsetPoints=offsetPoints(points,iterationOffset),
|
||||
theOffsetPoints=offsetPolygonPoints(radiiPoints,iterationOffset),
|
||||
polyRoundOffsetPoints=[for(i=[0:lp-1])
|
||||
let(
|
||||
pointsAboutCurrent=[
|
||||
@ -52,70 +65,104 @@ let(
|
||||
)
|
||||
[theOffsetPoints[i].x, theOffsetPoints[i].y, isInternalRadius? increasingRadius: decreasingRadius]
|
||||
],
|
||||
newPoints=polyRound(polyRoundOffsetPoints,fn)
|
||||
pointsForThisLayer=polyRound(polyRoundOffsetPoints,fn)
|
||||
)
|
||||
addZcoord(newPoints,fraction*absR)
|
||||
addZcoord(pointsForThisLayer,fraction*absR)
|
||||
],
|
||||
allPointsFlat=flatternArray(allPoints),
|
||||
polyhedronPoints=flatternArray(allPoints),
|
||||
allLp=len(allPoints),
|
||||
newLp=len(allPoints[0]),
|
||||
layerLength=len(allPoints[0]),
|
||||
loopToSecondLastLayer=allLp-2,
|
||||
sideFaces=[for(layerIndex=[0:loopToSecondLastLayer])let(
|
||||
currentLayeroffset=layerIndex*newLp,
|
||||
nextLayeroffset=(layerIndex+1)*newLp,
|
||||
layerFaces=[for(subLayerIndex=[0:newLp-1])
|
||||
currentLayeroffset=layerIndex*layerLength,
|
||||
nextLayeroffset=(layerIndex+1)*layerLength,
|
||||
layerFaces=[for(subLayerIndex=[0:layerLength-1])
|
||||
[
|
||||
currentLayeroffset+subLayerIndex, currentLayeroffset + listWrap(subLayerIndex+1,newLp), nextLayeroffset+listWrap(subLayerIndex+1,newLp), nextLayeroffset+subLayerIndex]
|
||||
currentLayeroffset+subLayerIndex, currentLayeroffset + listWrap(subLayerIndex+1,layerLength), nextLayeroffset+listWrap(subLayerIndex+1,layerLength), nextLayeroffset+subLayerIndex]
|
||||
]
|
||||
)layerFaces]
|
||||
)layerFaces],
|
||||
polyhedronFaces=flatternArray(sideFaces)
|
||||
)
|
||||
[allPointsFlat,flatternArray(sideFaces),newLp];
|
||||
[polyhedronPoints, polyhedronFaces, layerLength];
|
||||
|
||||
function flatternRecursion(array, init=[], currentIndex)=
|
||||
// this is a private function, init and currentIndex are for the function
|
||||
// only for when it's calling itself, which is why there is a simplified version flatternArray that just calls this one
|
||||
// array= array to flattern by one level of nesting
|
||||
// init= the array used to cancat with the next call, only for when the function calls itself
|
||||
// currentIndex= so the function can keep track of how far it's progressed through the array, only for when it's calling itself
|
||||
// returns= flatterned array, by one level of nesting
|
||||
let(
|
||||
shouldKickOffRecursion=currentIndex==undef?1:0,
|
||||
isLastIndex=currentIndex+1==len(array)?1:0,
|
||||
result=shouldKickOffRecursion?flatternRecursion(array,[],0):
|
||||
flatArray=shouldKickOffRecursion?flatternRecursion(array,[],0):
|
||||
isLastIndex?concat(init,array[currentIndex]):
|
||||
flatternRecursion(array,concat(init,array[currentIndex]),currentIndex+1)
|
||||
)
|
||||
result;
|
||||
function flatternArray(array)=flatternRecursion(array);
|
||||
flatArray;
|
||||
|
||||
function flatternArray(array)=
|
||||
// public version of flatternRecursion, has simplified params to avoid confusion
|
||||
// array= array to be flatterned
|
||||
// return= array that been flatterend by one level of nesting
|
||||
flatternRecursion(array);
|
||||
|
||||
function offsetAllFacesBy(array,offset)=[
|
||||
// polyhedron faces are simply a list of indeices to points, if your concat points together than you probably need to offset
|
||||
// your faces array to points to the right place in the new list
|
||||
// array= array of point indicies
|
||||
// offset= number to offset all indecies by
|
||||
// return= array of point indices (i.e. faces) with offset applied
|
||||
for(faceIndex=[0:len(array)-1])[
|
||||
for(pointIndex=[0:len(array[faceIndex])-1])array[faceIndex][pointIndex]+offset
|
||||
]
|
||||
];
|
||||
|
||||
function extrudePolygonWithRadius(points,h=5,r1=1,r2=1,steps=4)=
|
||||
function extrudePolygonWithRadius(radiiPoints,h=5,r1=1,r2=1,fn=4)=
|
||||
// this basically calls makeCurvedPartOfPolyHedron twice to get the curved section of the final polyhedron
|
||||
// and then goes about assmbling them, as the side faces and the top and bottom faces are missing
|
||||
// radiiPoints= series of [x,y,r] points,
|
||||
// h= height of the extrude (total including radius sections)
|
||||
// r1,r2= define the radius at the top and bottom of the extrud respectively, negative number flange out the extrude
|
||||
// fn= number of subdivisions
|
||||
// returns= [polyhedronPoints, polyhedronFaces]
|
||||
let(
|
||||
lp=len(points),
|
||||
top=curvePolygon(points,r1,steps),
|
||||
topPoints=translate3Dcoords(top[0],[0,0,h-r1]),
|
||||
roundedLp=top[2],
|
||||
topFaces=top[1],
|
||||
topPointsL=len(topPoints),
|
||||
bottom=curvePolygon(points,r2,steps),
|
||||
bottomPoints=translate3Dcoords(bottom[0],[0,0,abs(r2)],[1,1,-1]),
|
||||
bottomFaces=offsetAllFacesBy(bottom[1],topPointsL),
|
||||
sideFaces=[for(i=[0:roundedLp-1])[
|
||||
// top is the top curved part of the extrude
|
||||
top=makeCurvedPartOfPolyHedron(radiiPoints,r1,fn),
|
||||
topRadiusPoints=translate3Dcoords(top[0],[0,0,h-r1]),
|
||||
singeLayerLength=top[2],
|
||||
topRadiusFaces=top[1],
|
||||
radiusPointsLength=len(topRadiusPoints), // is the same length as bottomRadiusPoints
|
||||
// bottom is the bottom curved part of the extrude
|
||||
bottom=makeCurvedPartOfPolyHedron(radiiPoints,r2,fn),
|
||||
// Z axis needs to be multiplied by -1 to flip it so the radius is going in the right direction [1,1,-1]
|
||||
bottomRadiusPoints=translate3Dcoords(bottom[0],[0,0,abs(r2)],[1,1,-1]),
|
||||
// becaues the points will be all concatenated into the same array, and the bottom points come second, than
|
||||
// the original indices the faces are points towards are wrong and need to have an offset applied to them
|
||||
bottomRadiusFaces=offsetAllFacesBy(bottom[1],radiusPointsLength),
|
||||
// all of the side panel of the extrusion, connecting points from the inner layers of each
|
||||
// of the curved sections
|
||||
sideFaces=[for(i=[0:singeLayerLength-1])[
|
||||
i,
|
||||
listWrap(i+1,roundedLp),
|
||||
topPointsL + listWrap(i+1,roundedLp),
|
||||
topPointsL + i
|
||||
listWrap(i+1,singeLayerLength),
|
||||
radiusPointsLength + listWrap(i+1,singeLayerLength),
|
||||
radiusPointsLength + i
|
||||
]],
|
||||
topCapFace=[for(i=[0:roundedLp-1])topPointsL-roundedLp+i],
|
||||
bottomCapFace=[for(i=[0:roundedLp-1])topPointsL*2-roundedLp+i]
|
||||
// both of these caps are simple every point from the last layer of the radius points
|
||||
topCapFace=[for(i=[0:singeLayerLength-1])radiusPointsLength-singeLayerLength+i],
|
||||
bottomCapFace=[for(i=[0:singeLayerLength-1])radiusPointsLength*2-singeLayerLength+i],
|
||||
finalPolyhedronPoints=concat(topRadiusPoints,bottomRadiusPoints),
|
||||
finalPolyhedronFaces=concat(topRadiusFaces,bottomRadiusFaces, sideFaces, [topCapFace], [bottomCapFace])
|
||||
)
|
||||
[
|
||||
concat(topPoints,bottomPoints),
|
||||
concat(topFaces,bottomFaces, sideFaces, [topCapFace], [bottomCapFace])
|
||||
finalPolyhedronPoints,
|
||||
finalPolyhedronFaces
|
||||
];
|
||||
//example of polyRoundhedron thing, fix up soon with proper example.
|
||||
// radiiPointsbrah=[[10,0,10],[20,20,1.1],[8,7,10],[0,7,0.3],[5,3,0.1],[-4,0,1]];
|
||||
// wow2=extrudePolygonWithRadius(radiiPointsbrah,2,0.5,-0.8,steps=30);
|
||||
// polyhedron(points=wow2[0], faces=wow2[1], convexity=10);
|
||||
|
||||
module polyRoundExtrude(radiiPoints,h=5,r1=1,r2=1,fn=10,convexity=10) {
|
||||
polyhedronPointsNFaces=extrudePolygonWithRadius(radiiPoints,h,r1,r2,fn);
|
||||
polyhedron(points=polyhedronPointsNFaces[0], faces=polyhedronPointsNFaces[1], convexity=convexity);
|
||||
}
|
||||
|
||||
|
||||
// testingInternals();
|
||||
|
@ -9,6 +9,8 @@ basicPolyRoundExample();
|
||||
// beamChainExample();
|
||||
// mirrorPointsExample();
|
||||
// radiusExtrudeExample();
|
||||
// radiusExtrudePolygon();
|
||||
// polyRoundExtrudeExample();
|
||||
|
||||
module basicPolyRoundExample(){
|
||||
radiiPoints=[[-4,0,1],[5,3,1.5],[0,7,0.1],[8,7,10],[20,20,0.8],[10,0,10]];
|
||||
@ -200,6 +202,11 @@ module radiusExtrudeExample(){
|
||||
#translate([7,4,3])extrudeWithRadius(3,-0.5,0.95,50)circle(1,$fn=30);
|
||||
}
|
||||
|
||||
module polyRoundExtrudeExample(){
|
||||
radiiPointsbrah=[[10,0,10],[20,20,1.1],[8,7,10],[0,7,0.3],[5,3,0.1],[-4,0,1]];
|
||||
polyRoundExtrude(radiiPointsbrah,2,0.5,-0.8,fn=8);
|
||||
}
|
||||
|
||||
module gridpattern(memberW = 4, sqW = 12, iter = 5, r = 3){
|
||||
round2d(0, r)rotate([0, 0, 45])translate([-(iter * (sqW + memberW) + memberW) / 2, -(iter * (sqW + memberW) + memberW) / 2])difference(){
|
||||
square([(iter) * (sqW + memberW) + memberW, (iter) * (sqW + memberW) + memberW]);
|
||||
|
Loading…
x
Reference in New Issue
Block a user