1
0
mirror of https://github.com/Irev-Dev/Round-Anything.git synced 2025-01-17 02:58:14 +01:00

Merge pull request #5 from Irev-Dev/add-docs-for-polyRoundExtrude

Add docs and examples for ployRoundExtrude
This commit is contained in:
Kurt Hutten 2020-08-09 20:45:29 +10:00 committed by GitHub
commit 3f9d124bb7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 95 additions and 41 deletions

View File

@ -12,7 +12,13 @@ function translate3Dcoords(points,tran=[0,0,0],mult=[1,1,1])=[for(i=[0:len(point
(points[i].y*mult.y)+tran.y,
(points[i].z*mult.z)+tran.z
]];
function offsetPoints(points, offset=0)=
function offsetPolygonPoints(points, offset=0)=
// Work sthe same as the offset does, except for the fact that instead of a 2d shape
// It works directly on ploygon points
// it returns the same number of points just offset into or, away from the original shape.
// points= a series of x,y points[[x1,y1],[x2,y2],...]
// offset= amount to offset by, negative numbers go inwards into the shape, positive numbers go out
// return= a series of x,y points[[x1,y1],[x2,y2],...]
let(
isCWorCCW=sign(offset)*CWorCCW(points)*-1,
lp=len(points)
@ -23,18 +29,25 @@ let(
points[listWrap(i+1,lp)],
],thick=offset,mode=isCWorCCW)];
function curvePolygon(points,r,fn,minR=0.01)=
function makeCurvedPartOfPolyHedron(radiiPoints,r,fn,minR=0.01)=
// this is a private function that I'm not expecting library users to use directly
// radiiPoints= serise of x, y, r points
// r= radius of curve that will be put on the end of the extrusion
// fn= amount of subdivisions
// minR= if one of the points in radiiPoints is less than r, it's likely to converg and form a sharp edge,
// the min radius on this these converge edges can be controled with minR, though because of legacy reasons it can't be 0, but can be a very small number.
// return= array of [polyhedronPoints, Polyhedronfaces, theLength of a singe layer in the curve]
let(
lp=len(points),
radii=[for(i=[0:lp-1])points[i].z],
isCWorCCWOverall=CWorCCW(points),
lp=len(radiiPoints),
radii=[for(i=[0:lp-1])radiiPoints[i].z],
isCWorCCWOverall=CWorCCW(radiiPoints),
dir=sign(r),
absR=abs(r),
fractionOffLp=1-1/fn,
allPoints=[for(fraction=[0:1/fn:1])
let(
iterationOffset=dir*sqrt(sq(absR)-sq(fraction*absR))-dir*absR,
theOffsetPoints=offsetPoints(points,iterationOffset),
theOffsetPoints=offsetPolygonPoints(radiiPoints,iterationOffset),
polyRoundOffsetPoints=[for(i=[0:lp-1])
let(
pointsAboutCurrent=[
@ -52,70 +65,104 @@ let(
)
[theOffsetPoints[i].x, theOffsetPoints[i].y, isInternalRadius? increasingRadius: decreasingRadius]
],
newPoints=polyRound(polyRoundOffsetPoints,fn)
pointsForThisLayer=polyRound(polyRoundOffsetPoints,fn)
)
addZcoord(newPoints,fraction*absR)
addZcoord(pointsForThisLayer,fraction*absR)
],
allPointsFlat=flatternArray(allPoints),
polyhedronPoints=flatternArray(allPoints),
allLp=len(allPoints),
newLp=len(allPoints[0]),
layerLength=len(allPoints[0]),
loopToSecondLastLayer=allLp-2,
sideFaces=[for(layerIndex=[0:loopToSecondLastLayer])let(
currentLayeroffset=layerIndex*newLp,
nextLayeroffset=(layerIndex+1)*newLp,
layerFaces=[for(subLayerIndex=[0:newLp-1])
currentLayeroffset=layerIndex*layerLength,
nextLayeroffset=(layerIndex+1)*layerLength,
layerFaces=[for(subLayerIndex=[0:layerLength-1])
[
currentLayeroffset+subLayerIndex, currentLayeroffset + listWrap(subLayerIndex+1,newLp), nextLayeroffset+listWrap(subLayerIndex+1,newLp), nextLayeroffset+subLayerIndex]
currentLayeroffset+subLayerIndex, currentLayeroffset + listWrap(subLayerIndex+1,layerLength), nextLayeroffset+listWrap(subLayerIndex+1,layerLength), nextLayeroffset+subLayerIndex]
]
)layerFaces]
)layerFaces],
polyhedronFaces=flatternArray(sideFaces)
)
[allPointsFlat,flatternArray(sideFaces),newLp];
[polyhedronPoints, polyhedronFaces, layerLength];
function flatternRecursion(array, init=[], currentIndex)=
// this is a private function, init and currentIndex are for the function
// only for when it's calling itself, which is why there is a simplified version flatternArray that just calls this one
// array= array to flattern by one level of nesting
// init= the array used to cancat with the next call, only for when the function calls itself
// currentIndex= so the function can keep track of how far it's progressed through the array, only for when it's calling itself
// returns= flatterned array, by one level of nesting
let(
shouldKickOffRecursion=currentIndex==undef?1:0,
isLastIndex=currentIndex+1==len(array)?1:0,
result=shouldKickOffRecursion?flatternRecursion(array,[],0):
flatArray=shouldKickOffRecursion?flatternRecursion(array,[],0):
isLastIndex?concat(init,array[currentIndex]):
flatternRecursion(array,concat(init,array[currentIndex]),currentIndex+1)
)
result;
function flatternArray(array)=flatternRecursion(array);
flatArray;
function flatternArray(array)=
// public version of flatternRecursion, has simplified params to avoid confusion
// array= array to be flatterned
// return= array that been flatterend by one level of nesting
flatternRecursion(array);
function offsetAllFacesBy(array,offset)=[
// polyhedron faces are simply a list of indeices to points, if your concat points together than you probably need to offset
// your faces array to points to the right place in the new list
// array= array of point indicies
// offset= number to offset all indecies by
// return= array of point indices (i.e. faces) with offset applied
for(faceIndex=[0:len(array)-1])[
for(pointIndex=[0:len(array[faceIndex])-1])array[faceIndex][pointIndex]+offset
]
];
function extrudePolygonWithRadius(points,h=5,r1=1,r2=1,steps=4)=
function extrudePolygonWithRadius(radiiPoints,h=5,r1=1,r2=1,fn=4)=
// this basically calls makeCurvedPartOfPolyHedron twice to get the curved section of the final polyhedron
// and then goes about assmbling them, as the side faces and the top and bottom faces are missing
// radiiPoints= series of [x,y,r] points,
// h= height of the extrude (total including radius sections)
// r1,r2= define the radius at the top and bottom of the extrud respectively, negative number flange out the extrude
// fn= number of subdivisions
// returns= [polyhedronPoints, polyhedronFaces]
let(
lp=len(points),
top=curvePolygon(points,r1,steps),
topPoints=translate3Dcoords(top[0],[0,0,h-r1]),
roundedLp=top[2],
topFaces=top[1],
topPointsL=len(topPoints),
bottom=curvePolygon(points,r2,steps),
bottomPoints=translate3Dcoords(bottom[0],[0,0,abs(r2)],[1,1,-1]),
bottomFaces=offsetAllFacesBy(bottom[1],topPointsL),
sideFaces=[for(i=[0:roundedLp-1])[
// top is the top curved part of the extrude
top=makeCurvedPartOfPolyHedron(radiiPoints,r1,fn),
topRadiusPoints=translate3Dcoords(top[0],[0,0,h-r1]),
singeLayerLength=top[2],
topRadiusFaces=top[1],
radiusPointsLength=len(topRadiusPoints), // is the same length as bottomRadiusPoints
// bottom is the bottom curved part of the extrude
bottom=makeCurvedPartOfPolyHedron(radiiPoints,r2,fn),
// Z axis needs to be multiplied by -1 to flip it so the radius is going in the right direction [1,1,-1]
bottomRadiusPoints=translate3Dcoords(bottom[0],[0,0,abs(r2)],[1,1,-1]),
// becaues the points will be all concatenated into the same array, and the bottom points come second, than
// the original indices the faces are points towards are wrong and need to have an offset applied to them
bottomRadiusFaces=offsetAllFacesBy(bottom[1],radiusPointsLength),
// all of the side panel of the extrusion, connecting points from the inner layers of each
// of the curved sections
sideFaces=[for(i=[0:singeLayerLength-1])[
i,
listWrap(i+1,roundedLp),
topPointsL + listWrap(i+1,roundedLp),
topPointsL + i
listWrap(i+1,singeLayerLength),
radiusPointsLength + listWrap(i+1,singeLayerLength),
radiusPointsLength + i
]],
topCapFace=[for(i=[0:roundedLp-1])topPointsL-roundedLp+i],
bottomCapFace=[for(i=[0:roundedLp-1])topPointsL*2-roundedLp+i]
// both of these caps are simple every point from the last layer of the radius points
topCapFace=[for(i=[0:singeLayerLength-1])radiusPointsLength-singeLayerLength+i],
bottomCapFace=[for(i=[0:singeLayerLength-1])radiusPointsLength*2-singeLayerLength+i],
finalPolyhedronPoints=concat(topRadiusPoints,bottomRadiusPoints),
finalPolyhedronFaces=concat(topRadiusFaces,bottomRadiusFaces, sideFaces, [topCapFace], [bottomCapFace])
)
[
concat(topPoints,bottomPoints),
concat(topFaces,bottomFaces, sideFaces, [topCapFace], [bottomCapFace])
finalPolyhedronPoints,
finalPolyhedronFaces
];
//example of polyRoundhedron thing, fix up soon with proper example.
// radiiPointsbrah=[[10,0,10],[20,20,1.1],[8,7,10],[0,7,0.3],[5,3,0.1],[-4,0,1]];
// wow2=extrudePolygonWithRadius(radiiPointsbrah,2,0.5,-0.8,steps=30);
// polyhedron(points=wow2[0], faces=wow2[1], convexity=10);
module polyRoundExtrude(radiiPoints,h=5,r1=1,r2=1,fn=10,convexity=10) {
polyhedronPointsNFaces=extrudePolygonWithRadius(radiiPoints,h,r1,r2,fn);
polyhedron(points=polyhedronPointsNFaces[0], faces=polyhedronPointsNFaces[1], convexity=convexity);
}
// testingInternals();

View File

@ -9,6 +9,8 @@ basicPolyRoundExample();
// beamChainExample();
// mirrorPointsExample();
// radiusExtrudeExample();
// radiusExtrudePolygon();
// polyRoundExtrudeExample();
module basicPolyRoundExample(){
radiiPoints=[[-4,0,1],[5,3,1.5],[0,7,0.1],[8,7,10],[20,20,0.8],[10,0,10]];
@ -200,6 +202,11 @@ module radiusExtrudeExample(){
#translate([7,4,3])extrudeWithRadius(3,-0.5,0.95,50)circle(1,$fn=30);
}
module polyRoundExtrudeExample(){
radiiPointsbrah=[[10,0,10],[20,20,1.1],[8,7,10],[0,7,0.3],[5,3,0.1],[-4,0,1]];
polyRoundExtrude(radiiPointsbrah,2,0.5,-0.8,fn=8);
}
module gridpattern(memberW = 4, sqW = 12, iter = 5, r = 3){
round2d(0, r)rotate([0, 0, 45])translate([-(iter * (sqW + memberW) + memberW) / 2, -(iter * (sqW + memberW) + memberW) / 2])difference(){
square([(iter) * (sqW + memberW) + memberW, (iter) * (sqW + memberW) + memberW]);