1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-31 12:01:54 +02:00

Ru ru translation (#297)

* ru-RU introduction

Translation of introduction to Russian

* ru-RU whatis

Translation of chapter 2 to Russian

* (fixup) ru-RU intro

fixed missing translations

* ru-RU index.html

Translated header, meta, title and link names for existing chapter's traslations. (will be updated with every new commit)

* ru-RU locale strings

Locale string russian traslations

* locale fixup

* build chapters 1,2

* ru-RU explanation

translation of explanation to Russian.

* ru-RU control

translation of #control to Russian

* ru-RU weightcontrol

translation of #weightcontrol to Russian

* ru-RU derivatives

translation of #derivatives to Russian

* (fixup) ru-RU weightcontrol

* (fixup) ru-RU explanation

* ru-RU extended

* (fixup) ru-RU derivatives

add newline to the end of paragraph

* ru-RU decasteljau

Co-authored-by: Mammoth <echo@mammothnotes.com>
This commit is contained in:
ra30r
2021-01-11 12:59:52 -06:00
committed by GitHub
parent b3383f0283
commit 215e6d3b21
2 changed files with 55 additions and 1 deletions

View File

@@ -153,4 +153,4 @@
B'''(n,t), & n = 1, & w''' = \{A'''\} &= \{1 \cdot (B''-A'')\}
\end{array} \]
Можно продолжать производить этот фокус, до тех пор пока у нас имеется более одного веса. Когда же остается один вес, следующим шагом будет <i>k = 0</i>, и результат сложения "функции сумы Безье" будет равен 0, поскольку мы ничего ни с чем не слагаем. По этому у квадратной функций нету второй производной, у кубической — третей, и, обобщая, кривая Безье <i>n<sup>го</sup></i> порядка, имеет <i>n-1</i> (внятных) производных, с каждой следующей производной равной нулю.
Можно продолжать производить этот фокус, до тех пор пока у нас имеется более одного веса. Когда же остается один вес, следующим шагом будет <i>k = 0</i>, и результат сложения "функции сумы Безье" будет равен 0, поскольку мы ничего ни с чем не слагаем. По этому у квадратной функций нету второй производной, у кубической — третей, и, обобщая, кривая Безье <i>n<sup>го</sup></i> порядка, имеет <i>n-1</i> (внятных) производных, с каждой следующей производной равной нулю.