2017-08-29 17:00:16 -07:00
//////////////////////////////////////////////////////////////////////
2019-03-22 21:13:18 -07:00
// LibFile: math.scad
// Math helper functions.
// To use, add the following lines to the beginning of your file:
// ```
2019-04-19 00:25:10 -07:00
// use <BOSL2/std.scad>
2019-03-22 21:13:18 -07:00
// ```
2017-08-29 17:00:16 -07:00
//////////////////////////////////////////////////////////////////////
2019-03-28 02:26:16 -07:00
2019-04-12 00:08:56 -07:00
// Section: Math Constants
PHI = ( 1 + sqrt ( 5 ) ) / 2 ; // The golden ratio phi.
2019-04-16 15:34:54 -07:00
EPSILON = 1e-9 ; // A really small value useful in comparing FP numbers. ie: abs(a-b)<EPSILON
2020-02-06 22:51:16 -08:00
INF = 1 / 0 ; // The value `inf`, useful for comparisons.
NAN = acos ( 2 ) ; // The value `nan`, useful for comparisons.
2019-04-12 00:08:56 -07:00
2020-01-08 20:43:19 -08:00
// Section: Simple math
// Function: sqr()
// Usage:
// sqr(x);
// Description:
// Returns the square of the given number.
// Examples:
// sqr(3); // Returns: 9
// sqr(-4); // Returns: 16
function sqr ( x ) = x * x ;
// Function: log2()
// Usage:
// foo = log2(x);
// Description:
// Returns the logarithm base 2 of the value given.
// Examples:
// log2(0.125); // Returns: -3
// log2(16); // Returns: 4
// log2(256); // Returns: 8
function log2 ( x ) = ln ( x ) / ln ( 2 ) ;
// Function: hypot()
// Usage:
// l = hypot(x,y,[z]);
// Description:
// Calculate hypotenuse length of a 2D or 3D triangle.
// Arguments:
// x = Length on the X axis.
// y = Length on the Y axis.
// z = Length on the Z axis. Optional.
// Example:
// l = hypot(3,4); // Returns: 5
// l = hypot(3,4,5); // Returns: ~7.0710678119
function hypot ( x , y , z = 0 ) = norm ( [ x , y , z ] ) ;
// Function: factorial()
// Usage:
// x = factorial(n,[d]);
// Description:
// Returns the factorial of the given integer value.
// Arguments:
// n = The integer number to get the factorial of. (n!)
// d = If given, the returned value will be (n! / d!)
// Example:
// x = factorial(4); // Returns: 24
// y = factorial(6); // Returns: 720
// z = factorial(9); // Returns: 362880
function factorial ( n , d = 1 ) = product ( [ for ( i = [ n : - 1 : d ] ) i ] ) ;
// Function: lerp()
// Usage:
// x = lerp(a, b, u);
// l = lerp(a, b, LIST);
// Description:
// Interpolate between two values or vectors.
// If `u` is given as a number, returns the single interpolated value.
// If `u` is 0.0, then the value of `a` is returned.
// If `u` is 1.0, then the value of `b` is returned.
// If `u` is a range, or list of numbers, returns a list of interpolated values.
// It is valid to use a `u` value outside the range 0 to 1. The result will be a predicted
// value along the slope formed by `a` and `b`, but not between those two values.
// Arguments:
// a = First value or vector.
// b = Second value or vector.
// u = The proportion from `a` to `b` to calculate. Standard range is 0.0 to 1.0, inclusive. If given as a list or range of values, returns a list of results.
// Example:
// x = lerp(0,20,0.3); // Returns: 6
// x = lerp(0,20,0.8); // Returns: 16
// x = lerp(0,20,-0.1); // Returns: -2
// x = lerp(0,20,1.1); // Returns: 22
// p = lerp([0,0],[20,10],0.25); // Returns [5,2.5]
// l = lerp(0,20,[0.4,0.6]); // Returns: [8,12]
// l = lerp(0,20,[0.25:0.25:0.75]); // Returns: [5,10,15]
// Example(2D):
// p1 = [-50,-20]; p2 = [50,30];
// stroke([p1,p2]);
// pts = lerp(p1, p2, [0:1/8:1]);
// // Points colored in ROYGBIV order.
// rainbow(pts) translate($item) circle(d=3,$fn=8);
function lerp ( a , b , u ) =
is_num ( u ) ? ( 1 - u ) * a + u * b :
[ for ( v = u ) lerp ( a , b , v ) ] ;
// Section: Hyperbolic Trigonometry
// Function: sinh()
// Description: Takes a value `x`, and returns the hyperbolic sine of it.
function sinh ( x ) =
( exp ( x ) - exp ( - x ) ) / 2 ;
// Function: cosh()
// Description: Takes a value `x`, and returns the hyperbolic cosine of it.
function cosh ( x ) =
( exp ( x ) + exp ( - x ) ) / 2 ;
// Function: tanh()
// Description: Takes a value `x`, and returns the hyperbolic tangent of it.
function tanh ( x ) =
sinh ( x ) / cosh ( x ) ;
// Function: asinh()
// Description: Takes a value `x`, and returns the inverse hyperbolic sine of it.
function asinh ( x ) =
ln ( x + sqrt ( x * x + 1 ) ) ;
// Function: acosh()
// Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it.
function acosh ( x ) =
ln ( x + sqrt ( x * x - 1 ) ) ;
// Function: atanh()
// Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it.
function atanh ( x ) =
ln ( ( 1 + x ) / ( 1 - x ) ) / 2 ;
// Section: Quantization
2019-03-22 21:13:18 -07:00
// Function: quant()
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple.
2019-08-24 11:51:24 -07:00
// If `x` is a list, then every item in that list will be recursively quantized.
2019-03-22 21:13:18 -07:00
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
2019-10-22 17:09:08 -07:00
// Example:
// quant(12,4); // Returns: 12
// quant(13,4); // Returns: 12
// quant(13.1,4); // Returns: 12
// quant(14,4); // Returns: 16
// quant(14.1,4); // Returns: 16
// quant(15,4); // Returns: 16
// quant(16,4); // Returns: 16
// quant(9,3); // Returns: 9
// quant(10,3); // Returns: 9
// quant(10.4,3); // Returns: 9
// quant(10.5,3); // Returns: 12
// quant(11,3); // Returns: 12
// quant(12,3); // Returns: 12
// quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16]
// quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
// quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
2019-08-24 11:51:24 -07:00
function quant ( x , y ) =
is_list ( x ) ? [ for ( v = x ) quant ( v , y ) ] :
floor ( x / y + 0.5 ) * y ;
2017-08-29 17:00:16 -07:00
2019-03-22 21:13:18 -07:00
// Function: quantdn()
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple.
2019-08-24 11:51:24 -07:00
// If `x` is a list, then every item in that list will be recursively quantized down.
2019-03-22 21:13:18 -07:00
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
2019-10-22 17:09:08 -07:00
// Examples:
// quantdn(12,4); // Returns: 12
// quantdn(13,4); // Returns: 12
// quantdn(13.1,4); // Returns: 12
// quantdn(14,4); // Returns: 12
// quantdn(14.1,4); // Returns: 12
// quantdn(15,4); // Returns: 12
// quantdn(16,4); // Returns: 16
// quantdn(9,3); // Returns: 9
// quantdn(10,3); // Returns: 9
// quantdn(10.4,3); // Returns: 9
// quantdn(10.5,3); // Returns: 9
// quantdn(11,3); // Returns: 9
// quantdn(12,3); // Returns: 12
// quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16]
// quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
// quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
2019-08-24 11:51:24 -07:00
function quantdn ( x , y ) =
is_list ( x ) ? [ for ( v = x ) quantdn ( v , y ) ] :
floor ( x / y ) * y ;
2017-08-29 17:00:16 -07:00
2019-03-22 21:13:18 -07:00
// Function: quantup()
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple.
2019-08-24 11:51:24 -07:00
// If `x` is a list, then every item in that list will be recursively quantized up.
2019-03-22 21:13:18 -07:00
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
2019-10-22 17:09:08 -07:00
// Examples:
// quantup(12,4); // Returns: 12
// quantup(13,4); // Returns: 16
// quantup(13.1,4); // Returns: 16
// quantup(14,4); // Returns: 16
// quantup(14.1,4); // Returns: 16
// quantup(15,4); // Returns: 16
// quantup(16,4); // Returns: 16
// quantup(9,3); // Returns: 9
// quantup(10,3); // Returns: 12
// quantup(10.4,3); // Returns: 12
// quantup(10.5,3); // Returns: 12
// quantup(11,3); // Returns: 12
// quantup(12,3); // Returns: 12
// quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16]
// quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
// quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
2019-08-24 11:51:24 -07:00
function quantup ( x , y ) =
is_list ( x ) ? [ for ( v = x ) quantup ( v , y ) ] :
ceil ( x / y ) * y ;
2017-08-29 17:00:16 -07:00
2020-01-08 20:43:19 -08:00
// Section: Constraints and Modulos
2019-03-22 21:13:18 -07:00
// Function: constrain()
// Usage:
// constrain(v, minval, maxval);
// Description:
// Constrains value to a range of values between minval and maxval, inclusive.
// Arguments:
// v = value to constrain.
// minval = minimum value to return, if out of range.
// maxval = maximum value to return, if out of range.
2019-10-22 17:09:08 -07:00
// Example:
// constrain(-5, -1, 1); // Returns: -1
// constrain(5, -1, 1); // Returns: 1
// constrain(0.3, -1, 1); // Returns: 0.3
// constrain(9.1, 0, 9); // Returns: 9
// constrain(-0.1, 0, 9); // Returns: 0
2019-03-22 21:13:18 -07:00
function constrain ( v , minval , maxval ) = min ( maxval , max ( minval , v ) ) ;
2018-02-16 14:49:32 -08:00
2019-03-22 21:13:18 -07:00
// Function: posmod()
// Usage:
// posmod(x,m)
// Description:
// Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1.
// Arguments:
// x = The value to constrain.
// m = Modulo value.
2019-10-22 17:09:08 -07:00
// Example:
// posmod(-700,360); // Returns: 340
// posmod(-270,360); // Returns: 90
// posmod(-120,360); // Returns: 240
// posmod(120,360); // Returns: 120
// posmod(270,360); // Returns: 270
// posmod(700,360); // Returns: 340
// posmod(3,2.5); // Returns: 0.5
2019-04-04 00:37:21 -07:00
function posmod ( x , m ) = ( x % m + m ) % m ;
2019-03-22 21:13:18 -07:00
2019-09-23 16:38:07 -07:00
// Function: modang(x)
// Usage:
// ang = modang(x)
// Description:
// Takes an angle in degrees and normalizes it to an equivalent angle value between -180 and 180.
2019-10-22 17:09:08 -07:00
// Example:
// modang(-700,360); // Returns: 20
// modang(-270,360); // Returns: 90
// modang(-120,360); // Returns: -120
// modang(120,360); // Returns: 120
// modang(270,360); // Returns: -90
// modang(700,360); // Returns: -20
2019-09-23 16:38:07 -07:00
function modang ( x ) =
let ( xx = posmod ( x , 360 ) ) xx < 180 ? xx : xx - 360 ;
2019-03-22 21:13:18 -07:00
// Function: modrange()
// Usage:
// modrange(x, y, m, [step])
// Description:
// Returns a normalized list of values from `x` to `y`, by `step`, modulo `m`. Wraps if `x` > `y`.
// Arguments:
// x = The start value to constrain.
// y = The end value to constrain.
// m = Modulo value.
// step = Step by this amount.
// Examples:
2019-10-22 17:09:08 -07:00
// modrange(90,270,360, step=45); // Returns: [90,135,180,225,270]
// modrange(270,90,360, step=45); // Returns: [270,315,0,45,90]
// modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270]
// modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90]
2019-03-22 21:13:18 -07:00
function modrange ( x , y , m , step = 1 ) =
let (
a = posmod ( x , m ) ,
b = posmod ( y , m ) ,
c = step > 0 ? ( a > b ? b + m : b ) : ( a < b ? b - m : b )
2019-03-31 00:03:02 -07:00
) [ for ( i = [ a : step : c ] ) ( i % m + m ) % m ] ;
2017-08-29 17:00:16 -07:00
2019-08-06 17:12:28 -07:00
2020-01-08 20:43:19 -08:00
// Section: Random Number Generation
2019-08-06 17:12:28 -07:00
2019-07-18 21:58:41 -07:00
// Function: rand_int()
2019-05-29 17:42:09 -07:00
// Usage:
// rand_int(min,max,N,[seed]);
// Description:
// Return a list of random integers in the range of min to max, inclusive.
// Arguments:
// min = Minimum integer value to return.
// max = Maximum integer value to return.
// N = Number of random integers to return.
2019-11-06 22:19:19 -08:00
// seed = If given, sets the random number seed.
2019-10-22 17:09:08 -07:00
// Example:
// ints = rand_int(0,100,3);
// int = rand_int(-10,10,1)[0];
2019-11-06 22:19:19 -08:00
function rand_int ( min , max , N , seed = undef ) =
2019-05-29 17:42:09 -07:00
assert ( max >= min , "Max value cannot be smaller than min" )
let ( rvect = is_def ( seed ) ? rands ( min , max + 1 , N , seed ) : rands ( min , max + 1 , N ) )
[ for ( entry = rvect ) floor ( entry ) ] ;
2019-11-06 22:19:19 -08:00
// Function: gaussian_rands()
2019-04-10 15:53:40 -07:00
// Usage:
2019-11-06 22:19:19 -08:00
// gaussian_rands(mean, stddev, [N], [seed])
2019-04-10 15:53:40 -07:00
// Description:
// Returns a random number with a gaussian/normal distribution.
// Arguments:
// mean = The average random number returned.
// stddev = The standard deviation of the numbers to be returned.
2019-11-06 22:19:19 -08:00
// N = Number of random numbers to return. Default: 1
// seed = If given, sets the random number seed.
function gaussian_rands ( mean , stddev , N = 1 , seed = undef ) =
let ( nums = is_undef ( seed ) ? rands ( 0 , 1 , N * 2 ) : rands ( 0 , 1 , N * 2 , seed ) )
[ for ( i = list_range ( N ) ) mean + stddev * sqrt ( - 2 * ln ( nums [ i * 2 ] ) ) * cos ( 360 * nums [ i * 2 + 1 ] ) ] ;
2019-04-10 15:53:40 -07:00
2019-11-06 22:19:19 -08:00
// Function: log_rands()
2019-04-10 15:53:40 -07:00
// Usage:
2019-11-06 22:19:19 -08:00
// log_rands(minval, maxval, factor, [N], [seed]);
2019-04-10 15:53:40 -07:00
// Description:
// Returns a single random number, with a logarithmic distribution.
// Arguments:
// minval = Minimum value to return.
// maxval = Maximum value to return. `minval` <= X < `maxval`.
// factor = Log factor to use. Values of X are returned `factor` times more often than X+1.
2019-11-06 22:19:19 -08:00
// N = Number of random numbers to return. Default: 1
// seed = If given, sets the random number seed.
function log_rands ( minval , maxval , factor , N = 1 , seed = undef ) =
assert ( maxval >= minval , "maxval cannot be smaller than minval" )
let (
minv = 1 - 1 / pow ( factor , minval ) ,
maxv = 1 - 1 / pow ( factor , maxval ) ,
nums = is_undef ( seed ) ? rands ( minv , maxv , N ) : rands ( minv , maxv , N , seed )
) [ for ( num = nums ) - ln ( 1 - num ) / ln ( factor ) ] ;
2019-04-10 15:53:40 -07:00
2017-08-29 17:00:16 -07:00
2020-01-08 20:43:19 -08:00
// Section: GCD/GCF, LCM
2018-09-01 02:38:47 -07:00
2020-01-08 20:43:19 -08:00
// If argument is a list return it. Otherwise return a singleton list containing the argument.
function _force_list ( x ) = is_list ( x ) ? x : [ x ] ;
2018-09-01 02:38:47 -07:00
2020-01-08 20:43:19 -08:00
// Function: gcd()
// Usage:
// gcd(a,b)
// Description:
// Computes the Greatest Common Divisor/Factor of `a` and `b`.
function gcd ( a , b ) =
assert ( is_int ( a ) && is_int ( b ) , "Arguments to gcd must be integers" )
b = = 0 ? abs ( a ) : gcd ( b , a % b ) ;
2019-03-22 21:13:18 -07:00
2020-01-08 20:43:19 -08:00
// Computes lcm for two scalars
function _lcm ( a , b ) =
assert ( is_int ( a ) , "Invalid non-integer parameters to lcm" )
assert ( is_int ( b ) , "Invalid non-integer parameters to lcm" )
assert ( a ! = 0 && b ! = 0 , "Arguments to lcm must be nonzero" )
abs ( a * b ) / gcd ( a , b ) ;
2017-08-29 17:00:16 -07:00
2020-01-08 20:43:19 -08:00
// Computes lcm for a list of values
function _lcmlist ( a ) =
len ( a ) = = 1 ? a [ 0 ] :
_lcmlist ( concat ( slice ( a , 0 , len ( a ) - 2 ) , [ lcm ( a [ len ( a ) - 2 ] , a [ len ( a ) - 1 ] ) ] ) ) ;
2019-03-22 21:13:18 -07:00
2020-01-08 20:43:19 -08:00
// Function: lcm()
// Usage:
// lcm(a,b)
// lcm(list)
// Description:
// Computes the Least Common Multiple of the two arguments or a list of arguments. Inputs should
// be non-zero integers. The output is always a positive integer. It is an error to pass zero
// as an argument.
function lcm ( a , b = [ ] ) =
! is_list ( a ) && ! is_list ( b ) ? _lcm ( a , b ) :
let (
arglist = concat ( _force_list ( a ) , _force_list ( b ) )
)
assert ( len ( arglist ) > 0 , "invalid call to lcm with empty list(s)" )
_lcmlist ( arglist ) ;
2019-03-22 21:13:18 -07:00
2020-01-08 20:43:19 -08:00
// Section: Sums, Products, Aggregate Functions.
2019-03-22 21:13:18 -07:00
// Function: sum()
// Description:
2019-05-10 03:00:41 -07:00
// Returns the sum of all entries in the given list.
2019-03-22 21:13:18 -07:00
// If passed an array of vectors, returns a vector of sums of each part.
2020-02-08 21:54:39 -08:00
// If passed an empty list, the value of `dflt` will be returned.
2019-03-22 21:13:18 -07:00
// Arguments:
2019-05-10 03:00:41 -07:00
// v = The list to get the sum of.
2020-02-08 21:54:39 -08:00
// dflt = The default value to return if `v` is an empty list. Default: 0
2019-03-22 21:13:18 -07:00
// Example:
// sum([1,2,3]); // returns 6.
// sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15]
2020-02-08 21:54:39 -08:00
function sum ( v , dflt = 0 , _i = 0 , _acc ) =
_i >= len ( v ) ? ( len ( v ) ? _acc : dflt ) :
sum ( v , dflt = dflt , _i = _i + 1 , _acc = is_undef ( _acc ) ? v [ _i ] : _acc + v [ _i ] ) ;
2019-08-06 17:12:28 -07:00
// Function: cumsum()
// Description:
// Returns a list where each item is the cumulative sum of all items up to and including the corresponding entry in the input list.
// If passed an array of vectors, returns a list of cumulative vectors sums.
// Arguments:
// v = The list to get the sum of.
// Example:
// cumsum([1,1,1]); // returns [1,2,3]
// cumsum([2,2,2]); // returns [2,4,6]
// cumsum([1,2,3]); // returns [1,3,6]
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
function cumsum ( v , _i = 0 , _acc = [ ] ) =
_i = = len ( v ) ? _acc :
cumsum (
v , _i + 1 ,
concat (
_acc ,
[ _i = = 0 ? v [ _i ] : select ( _acc , - 1 ) + v [ _i ] ]
)
) ;
2019-03-22 21:13:18 -07:00
// Function: sum_of_squares()
// Description:
// Returns the sum of the square of each element of a vector.
// Arguments:
// v = The vector to get the sum of.
// Example:
2019-10-22 17:09:08 -07:00
// sum_of_squares([1,2,3]); // Returns: 14.
// sum_of_squares([1,2,4]); // Returns: 21
// sum_of_squares([-3,-2,-1]); // Returns: 14
2019-03-22 21:13:18 -07:00
function sum_of_squares ( v , i = 0 , tot = 0 ) = sum ( vmul ( v , v ) ) ;
// Function: sum_of_sines()
// Usage:
// sum_of_sines(a,sines)
// Description:
// Gives the sum of a series of sines, at a given angle.
// Arguments:
// a = Angle to get the value for.
// sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle.
2019-10-22 17:09:08 -07:00
// Examples:
// v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]);
2019-03-22 21:13:18 -07:00
function sum_of_sines ( a , sines ) =
sum ( [
for ( s = sines ) let (
ss = point3d ( s ) ,
v = ss . x * sin ( a * ss . y + ss . z )
) v
] ) ;
2019-05-10 03:00:41 -07:00
// Function: deltas()
// Description:
// Returns a list with the deltas of adjacent entries in the given list.
// Given [a,b,c,d], returns [b-a,c-b,d-c].
// Arguments:
// v = The list to get the deltas of.
// Example:
// deltas([2,5,9,17]); // returns [3,4,8].
// deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]]
2019-05-26 23:30:44 -07:00
function deltas ( v ) = [ for ( p = pair ( v ) ) p . y - p . x ] ;
2019-05-10 03:00:41 -07:00
2019-05-12 13:32:34 -07:00
// Function: product()
// Description:
// Returns the product of all entries in the given list.
// If passed an array of vectors, returns a vector of products of each part.
2019-05-12 13:41:26 -07:00
// If passed an array of matrices, returns a the resulting product matrix.
2019-05-12 13:32:34 -07:00
// Arguments:
// v = The list to get the product of.
// Example:
// product([2,3,4]); // returns 24.
// product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105]
2019-05-12 13:41:26 -07:00
function product ( v , i = 0 , tot = undef ) = i >= len ( v ) ? tot : product ( v , i + 1 , ( ( tot = = undef ) ? v [ i ] : is_vector ( v [ i ] ) ? vmul ( tot , v [ i ] ) : tot * v [ i ] ) ) ;
2019-05-12 13:32:34 -07:00
2019-03-22 21:13:18 -07:00
// Function: mean()
// Description:
// Returns the mean of all entries in the given array.
// If passed an array of vectors, returns a vector of mean of each part.
// Arguments:
// v = The list of values to get the mean of.
// Example:
2019-04-04 00:37:21 -07:00
// mean([2,3,4]); // returns 3.
// mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [3, 4, 5]
2019-03-22 21:13:18 -07:00
function mean ( v ) = sum ( v ) / len ( v ) ;
2020-02-28 17:40:52 -05:00
// Section: Matrix math
2020-02-29 22:59:39 -05:00
// Function: linear_solve()
// Usage: linear_solve(A,b)
// Description:
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
// If A is rank deficient or singular then linear_solve returns `undef`.
function linear_solve ( A , b ) =
let (
dim = array_dim ( A ) ,
m = dim [ 0 ] , n = dim [ 1 ]
)
assert ( len ( b ) = = m , str ( "Incompatible matrix and vector" , dim , len ( b ) ) )
let (
qr = m < n ? qr_factor ( transpose ( A ) ) : qr_factor ( A ) ,
maxdim = max ( n , m ) ,
mindim = min ( n , m ) ,
Q = submatrix ( qr [ 0 ] , [ 0 : maxdim - 1 ] , [ 0 : mindim - 1 ] ) ,
R = submatrix ( qr [ 1 ] , [ 0 : mindim - 1 ] , [ 0 : mindim - 1 ] ) ,
zeros = [ for ( i = [ 0 : mindim - 1 ] ) if ( approx ( R [ i ] [ i ] , 0 ) ) i ]
)
zeros ! = [ ] ? undef :
m < n ? Q * back_substitute ( R , b , transpose = true ) :
back_substitute ( R , transpose ( Q ) * b ) ;
// Function: submatrix()
// Usage: submatrix(M, ind1, ind2)
// Description:
// Returns a submatrix with the specified index ranges or index sets.
function submatrix ( M , ind1 , ind2 ) =
[ for ( i = ind1 )
[ for ( j = ind2 )
M [ i ] [ j ]
]
] ;
2020-02-28 17:40:52 -05:00
// Function: qr_factor()
// Usage: qr = qr_factor(A)
// Description:
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R]. This factorization can be
// used to solve linear systems of equations.
function qr_factor ( A ) =
let (
dim = array_dim ( A ) ,
m = dim [ 0 ] ,
n = dim [ 1 ]
)
assert ( len ( dim ) = = 2 )
let (
qr = _qr_factor ( A , column = 0 , m = m , n = m , Q = ident ( m ) ) ,
Rzero = [ for ( i = [ 0 : m - 1 ] ) [ for ( j = [ 0 : n - 1 ] ) i > j ? 0 : qr [ 1 ] [ i ] [ j ] ] ]
)
[ qr [ 0 ] , Rzero ] ;
function _qr_factor ( A , Q , column , m , n ) =
column >= min ( m - 1 , n ) ? [ Q , A ] :
let (
x = [ for ( i = [ column : 1 : m - 1 ] ) A [ i ] [ column ] ] ,
alpha = ( x [ 0 ] < = 0 ? 1 : - 1 ) * norm ( x ) ,
u = x - concat ( [ alpha ] , replist ( 0 , m - 1 ) ) ,
v = u / norm ( u ) ,
Qc = ident ( len ( x ) ) - 2 * transpose ( [ v ] ) * [ v ] ,
Qf = [ for ( i = [ 0 : m - 1 ] ) [ for ( j = [ 0 : m - 1 ] ) i < column || j < column ? ( i = = j ? 1 : 0 ) : Qc [ i - column ] [ j - column ] ] ]
)
_qr_factor ( Qf * A , Q * Qf , column + 1 , m , n ) ;
// Function: back_substitute()
// Usage: back_substitute(R, b, [transpose])
// Description:
// Solves the problem Rx=b where R is an upper triangular square matrix. No check is made that the lower triangular entries
// are actually zero. If transpose==true then instead solve transpose(R)*x=b.
function back_substitute ( R , b , x = [ ] , transpose = false ) =
let ( n = len ( b ) )
transpose ?
reverse ( back_substitute (
[ for ( i = [ 0 : n - 1 ] ) [ for ( j = [ 0 : n - 1 ] ) R [ n - 1 - j ] [ n - 1 - i ] ] ] ,
reverse ( b ) , x , false ) ) :
len ( x ) = = n ? x :
let (
ind = n - len ( x ) - 1 ,
newvalue = len ( x ) = = 0 ? b [ ind ] / R [ ind ] [ ind ] :
( b [ ind ] - select ( R [ ind ] , ind + 1 , - 1 ) * x ) / R [ ind ] [ ind ]
)
back_substitute ( R , b , concat ( [ newvalue ] , x ) ) ;
2020-01-08 20:43:19 -08:00
2019-05-27 17:50:04 -07:00
// Function: det2()
// Description:
// Optimized function that returns the determinant for the given 2x2 square matrix.
// Arguments:
// M = The 2x2 square matrix to get the determinant of.
// Example:
// M = [ [6,-2], [1,8] ];
2019-09-19 02:42:42 -07:00
// det = det2(M); // Returns: 50
2019-05-27 17:50:04 -07:00
function det2 ( M ) = M [ 0 ] [ 0 ] * M [ 1 ] [ 1 ] - M [ 0 ] [ 1 ] * M [ 1 ] [ 0 ] ;
// Function: det3()
// Description:
// Optimized function that returns the determinant for the given 3x3 square matrix.
// Arguments:
// M = The 3x3 square matrix to get the determinant of.
// Example:
// M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
// det = det3(M); // Returns: -334
function det3 ( M ) =
M [ 0 ] [ 0 ] * ( M [ 1 ] [ 1 ] * M [ 2 ] [ 2 ] - M [ 2 ] [ 1 ] * M [ 1 ] [ 2 ] ) -
M [ 1 ] [ 0 ] * ( M [ 0 ] [ 1 ] * M [ 2 ] [ 2 ] - M [ 2 ] [ 1 ] * M [ 0 ] [ 2 ] ) +
M [ 2 ] [ 0 ] * ( M [ 0 ] [ 1 ] * M [ 1 ] [ 2 ] - M [ 1 ] [ 1 ] * M [ 0 ] [ 2 ] ) ;
// Function: determinant()
// Description:
// Returns the determinant for the given square matrix.
// Arguments:
// M = The NxN square matrix to get the determinant of.
// Example:
// M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ];
// det = determinant(M); // Returns: 2267
function determinant ( M ) =
assert ( len ( M ) = = len ( M [ 0 ] ) )
len ( M ) = = 1 ? M [ 0 ] [ 0 ] :
len ( M ) = = 2 ? det2 ( M ) :
len ( M ) = = 3 ? det3 ( M ) :
sum (
[ for ( col = [ 0 : 1 : len ( M ) - 1 ] )
( ( col % 2 = = 0 ) ? 1 : - 1 ) *
M [ col ] [ 0 ] *
determinant (
[ for ( r = [ 1 : 1 : len ( M ) - 1 ] )
[ for ( c = [ 0 : 1 : len ( M ) - 1 ] )
if ( c ! = col ) M [ c ] [ r ]
]
]
)
]
) ;
2020-01-08 20:43:19 -08:00
2019-04-01 23:44:12 -07:00
// Section: Comparisons and Logic
2020-01-08 20:43:19 -08:00
// Function: approx()
// Usage:
// approx(a,b,[eps])
// Description:
// Compares two numbers or vectors, and returns true if they are closer than `eps` to each other.
// Arguments:
// a = First value.
// b = Second value.
// eps = The maximum allowed difference between `a` and `b` that will return true.
// Example:
// approx(-0.3333333333,-1/3); // Returns: true
// approx(0.3333333333,1/3); // Returns: true
// approx(0.3333,1/3); // Returns: false
// approx(0.3333,1/3,eps=1e-3); // Returns: true
// approx(PI,3.1415926536); // Returns: true
function approx ( a , b , eps = EPSILON ) = let ( c = a - b ) ( is_num ( c ) ? abs ( c ) : norm ( c ) ) < = eps ;
2019-04-01 23:44:12 -07:00
2019-06-24 15:31:59 -07:00
function _type_num ( x ) =
is_undef ( x ) ? 0 :
is_bool ( x ) ? 1 :
is_num ( x ) ? 2 :
is_string ( x ) ? 3 :
is_list ( x ) ? 4 : 5 ;
2019-03-28 17:46:35 -07:00
// Function: compare_vals()
// Usage:
// compare_vals(a, b);
// Description:
2019-04-01 23:40:15 -07:00
// Compares two values. Lists are compared recursively.
2019-06-24 15:31:59 -07:00
// If types are not the same, then undef < bool < num < str < list < range.
2019-03-22 21:13:18 -07:00
// Arguments:
2019-03-28 17:46:35 -07:00
// a = First value to compare.
// b = Second value to compare.
2019-04-03 13:54:48 -07:00
function compare_vals ( a , b ) =
2019-04-01 23:40:15 -07:00
( a = = b ) ? 0 :
2019-06-24 15:31:59 -07:00
let ( t1 = _type_num ( a ) , t2 = _type_num ( b ) ) ( t1 ! = t2 ) ? ( t1 - t2 ) :
is_list ( a ) ? compare_lists ( a , b ) :
( a < b ) ? - 1 : ( a > b ) ? 1 : 0 ;
2019-03-28 17:46:35 -07:00
// Function: compare_lists()
// Usage:
// compare_lists(a, b)
// Description:
2019-06-24 15:31:59 -07:00
// Compare contents of two lists using `compare_vals()`.
2019-03-28 17:46:35 -07:00
// Returns <0 if `a`<`b`.
// Returns 0 if `a`==`b`.
2019-04-03 13:54:48 -07:00
// Returns >0 if `a`>`b`.
2019-03-28 17:46:35 -07:00
// Arguments:
// a = First list to compare.
// b = Second list to compare.
2019-06-24 15:31:59 -07:00
function compare_lists ( a , b ) =
a = = b ? 0 : let (
cmps = [
for ( i = [ 0 : 1 : min ( len ( a ) , len ( b ) ) - 1 ] ) let (
cmp = compare_vals ( a [ i ] , b [ i ] )
) if ( cmp ! = 0 ) cmp
]
) cmps = = [ ] ? ( len ( a ) - len ( b ) ) : cmps [ 0 ] ;
2019-03-22 21:13:18 -07:00
// Function: any()
2019-03-25 02:53:49 -07:00
// Description:
// Returns true if any item in list `l` evaluates as true.
// If `l` is a lists of lists, `any()` is applied recursively to each sublist.
2019-03-22 21:13:18 -07:00
// Arguments:
// l = The list to test for true items.
// Example:
// any([0,false,undef]); // Returns false.
// any([1,false,undef]); // Returns true.
// any([1,5,true]); // Returns true.
2019-03-25 02:53:49 -07:00
// any([[0,0], [0,0]]); // Returns false.
// any([[0,0], [1,0]]); // Returns true.
2019-03-28 17:46:35 -07:00
function any ( l , i = 0 , succ = false ) =
( i >= len ( l ) || succ ) ? succ :
any (
l , i = i + 1 , succ = (
2019-04-19 17:02:17 -07:00
is_list ( l [ i ] ) ? any ( l [ i ] ) :
2019-03-28 17:46:35 -07:00
! ( ! l [ i ] )
)
2019-03-25 02:53:49 -07:00
) ;
2019-03-22 21:13:18 -07:00
// Function: all()
2019-03-25 02:53:49 -07:00
// Description:
// Returns true if all items in list `l` evaluate as true.
// If `l` is a lists of lists, `all()` is applied recursively to each sublist.
2019-03-22 21:13:18 -07:00
// Arguments:
// l = The list to test for true items.
// Example:
// all([0,false,undef]); // Returns false.
// all([1,false,undef]); // Returns false.
// all([1,5,true]); // Returns true.
2019-03-25 02:53:49 -07:00
// all([[0,0], [0,0]]); // Returns false.
// all([[0,0], [1,0]]); // Returns false.
// all([[1,1], [1,1]]); // Returns true.
2019-03-28 17:46:35 -07:00
function all ( l , i = 0 , fail = false ) =
( i >= len ( l ) || fail ) ? ( ! fail ) :
all (
l , i = i + 1 , fail = (
2019-04-19 17:02:17 -07:00
is_list ( l [ i ] ) ? ! all ( l [ i ] ) :
2019-03-28 17:46:35 -07:00
! l [ i ]
)
) ;
// Function: count_true()
// Usage:
// count_true(l)
// Description:
// Returns the number of items in `l` that evaluate as true.
// If `l` is a lists of lists, this is applied recursively to each
// sublist. Returns the total count of items that evaluate as true
// in all recursive sublists.
// Arguments:
// l = The list to test for true items.
// nmax = If given, stop counting if `nmax` items evaluate as true.
// Example:
// count_true([0,false,undef]); // Returns 0.
// count_true([1,false,undef]); // Returns 1.
// count_true([1,5,false]); // Returns 2.
// count_true([1,5,true]); // Returns 3.
// count_true([[0,0], [0,0]]); // Returns 0.
// count_true([[0,0], [1,0]]); // Returns 1.
// count_true([[1,1], [1,1]]); // Returns 4.
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
function count_true ( l , nmax = undef , i = 0 , cnt = 0 ) =
( i >= len ( l ) || ( nmax ! = undef && cnt >= nmax ) ) ? cnt :
count_true (
l = l , nmax = nmax , i = i + 1 , cnt = cnt + (
2019-04-19 17:02:17 -07:00
is_list ( l [ i ] ) ? count_true ( l [ i ] , nmax = nmax - cnt ) :
2019-03-28 17:46:35 -07:00
( l [ i ] ? 1 : 0 )
)
2019-03-25 02:53:49 -07:00
) ;
2020-02-27 17:32:03 -05:00
// Section: Calculus
2020-02-29 22:56:24 -05:00
// Function: deriv()
2020-02-27 17:32:03 -05:00
// Usage: deriv(data, [h], [closed])
// Description:
// Computes a numerical derivative estimate of the data, which may be scalar or vector valued.
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
// data[len(data)-1]. This function uses a symetric derivative approximation
// for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm
// uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h.
function deriv ( data , h = 1 , closed = false ) =
let ( L = len ( data ) )
closed ?
[ for ( i = [ 0 : 1 : L - 1 ] ) ( data [ ( i + 1 ) % L ] - data [ ( L + i - 1 ) % L ] ) / 2 / h ] :
let ( first = L < 3 ?
data [ 1 ] - data [ 0 ] :
3 * ( data [ 1 ] - data [ 0 ] ) - ( data [ 2 ] - data [ 1 ] ) ,
last = L < 3 ?
data [ L - 1 ] - data [ L - 2 ] :
( data [ L - 3 ] - data [ L - 2 ] ) - 3 * ( data [ L - 2 ] - data [ L - 1 ] )
)
[ first / 2 / h ,
for ( i = [ 1 : 1 : L - 2 ] ) ( data [ i + 1 ] - data [ i - 1 ] ) / 2 / h ,
last / 2 / h ] ;
2020-02-29 22:56:24 -05:00
// Function: deriv2()
2020-02-27 17:32:03 -05:00
// Usage: deriv2(data, [h], [closed])
// Description:
// Computes a numerical esimate of the second derivative of the data, which may be scalar or vector valued.
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
// data[len(data)-1]. For internal points this function uses the approximation
// f''(t) = (f(t-h)-2*f(t)+f(t+h))/h^2. For the endpoints (when closed=false) the algorithm
// when sufficient points are available the method is either the four point expression
// f''(t) = (2*f(t) - 5*f(t+h) + 4*f(t+2*h) - f(t+3*h))/h^2 or if five points are available
// f''(t) = (35*f(t) - 104*f(t+h) + 114*f(t+2*h) - 56*f(t+3*h) + 11*f(t+4*h)) / 12h^2
function deriv2 ( data , h = 1 , closed = false ) =
let ( L = len ( data ) )
closed ?
[ for ( i = [ 0 : 1 : L - 1 ] ) ( data [ ( i + 1 ) % L ] - 2 * data [ i ] + data [ ( L + i - 1 ) % L ] ) / h / h ] :
let ( first = L < 3 ? undef :
L = = 3 ? data [ 0 ] - 2 * data [ 1 ] + data [ 2 ] :
L = = 4 ? 2 * data [ 0 ] - 5 * data [ 1 ] + 4 * data [ 2 ] - data [ 3 ] :
( 35 * data [ 0 ] - 104 * data [ 1 ] + 114 * data [ 2 ] - 56 * data [ 3 ] + 11 * data [ 4 ] ) / 12 ,
last = L < 3 ? undef :
L = = 3 ? data [ L - 1 ] - 2 * data [ L - 2 ] + data [ L - 3 ] :
L = = 4 ? - 2 * data [ L - 1 ] + 5 * data [ L - 2 ] - 4 * data [ L - 3 ] + data [ L - 4 ] :
( 35 * data [ L - 1 ] - 104 * data [ L - 2 ] + 114 * data [ L - 3 ] - 56 * data [ L - 4 ] + 11 * data [ L - 5 ] ) / 12
)
[ first / h / h ,
for ( i = [ 1 : 1 : L - 2 ] ) ( data [ i + 1 ] - 2 * data [ i ] + data [ i - 1 ] ) / h / h ,
last / h / h ] ;
2020-02-29 22:56:24 -05:00
// Function: deriv3()
2020-02-27 17:32:03 -05:00
// Usage: deriv3(data, [h], [closed])
// Description:
// Computes a numerical third derivative estimate of the data, which may be scalar or vector valued.
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
// data[len(data)-1]. This function uses a five point derivative estimate, so the input must include five points:
// f'''(t) = (-f(t-2*h)+2*f(t-h)-2*f(t+h)+f(t+2*h)) / 2h^3. At the first and second points from the end
// the estimates are f'''(t) = (-5*f(t)+18*f(t+h)-24*f(t+2*h)+14*f(t+3*h)-3*f(t+4*h)) / 2h^3 and
// f'''(t) = (-3*f(t-h)+10*f(t)-12*f(t+h)+6*f(t+2*h)-f(t+3*h)) / 2h^3.
function deriv3 ( data , h = 1 , closed = false ) =
let ( L = len ( data ) ,
h3 = h * h * h
)
assert ( L >= 5 , "Need five points for 3rd derivative estimate" )
closed ?
[ for ( i = [ 0 : 1 : L - 1 ] ) ( - data [ ( L + i - 2 ) % L ] + 2 * data [ ( L + i - 1 ) % L ] - 2 * data [ ( i + 1 ) % L ] + data [ ( i + 2 ) % L ] ) / 2 / h3 ] :
let (
first = ( - 5 * data [ 0 ] + 18 * data [ 1 ] - 24 * data [ 2 ] + 14 * data [ 3 ] - 3 * data [ 4 ] ) / 2 ,
second = ( - 3 * data [ 0 ] + 10 * data [ 1 ] - 12 * data [ 2 ] + 6 * data [ 3 ] - data [ 4 ] ) / 2 ,
last = ( 5 * data [ L - 1 ] - 18 * data [ L - 2 ] + 24 * data [ L - 3 ] - 14 * data [ L - 4 ] + 3 * data [ L - 5 ] ) / 2 ,
prelast = ( 3 * data [ L - 1 ] - 10 * data [ L - 2 ] + 12 * data [ L - 3 ] - 6 * data [ L - 4 ] + data [ L - 5 ] ) / 2
)
[
first / h3 ,
second / h3 ,
for ( i = [ 2 : 1 : L - 3 ] ) ( - data [ i - 2 ] + 2 * data [ i - 1 ] - 2 * data [ i + 1 ] + data [ i + 2 ] ) / 2 / h3 ,
prelast / h3 ,
last / h3
] ;
2019-03-22 21:13:18 -07:00
2017-08-29 17:00:16 -07:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap