Merge pull request #1073 from revarbat/revarbat_dev

Various docs typo fixed.
This commit is contained in:
Revar Desmera 2023-03-08 22:31:39 -08:00 committed by GitHub
commit 82f7b3b03a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 10 additions and 10 deletions

View File

@ -548,7 +548,7 @@ function f_3arg(target_func) =
// a = The argument that will be passed through.
// b = The argumen that will be discarded.
// Example:
// x = while(0, ival(f_lt(5)), xval(fngen_add(1)));
// x = while(0, ival(f_lt(5)), xval(f_add(1)));
function ival(target_func) = function(a,b) target_func(a);
@ -564,7 +564,7 @@ function ival(target_func) = function(a,b) target_func(a);
// a = The argument that will be passed through.
// b = The argumen that will be discarded.
// Example:
// x = while(0, ival(f_lt(5)), xval(fngen_add(1)));
// x = while(0, ival(f_lt(5)), xval(f_add(1)));
function xval(target_func) = function(a,b) target_func(b);

View File

@ -331,7 +331,7 @@ function outer_product(u,v) =
// Description:
// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but
// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds
// of M then the extra entries are ignored. You can pass in A=[[]], a null matrix, and M will be
// of M then the extra entries are ignored. You can pass in `A=[[]]`, a null matrix, and M will be
// returned unchanged. This function works on arbitrary lists of lists and the input M need not be rectangular in shape.
// Arguments:
// M = Original matrix.

View File

@ -970,9 +970,9 @@ function permutations(l,n=2) =
// dflt = The default value to fill in with if the list is not a multiple of `cnt` items long. Default: undef
// Example:
// v = [1,2,3,4,5,6];
// a = list_to_matrix(v,2) returns [[1,2], [3,4], [5,6]]
// b = list_to_matrix(v,3) returns [[1,2,3], [4,5,6]]
// c = list_to_matrix(v,4,0) returns [[1,2,3,4], [5,6,0,0]]
// a = list_to_matrix(v,2) // returns [[1,2], [3,4], [5,6]]
// b = list_to_matrix(v,3) // returns [[1,2,3], [4,5,6]]
// c = list_to_matrix(v,4,0) // returns [[1,2,3,4], [5,6,0,0]]
function list_to_matrix(v, cnt, dflt=undef) =
[for (i = [0:cnt:len(v)-1]) [for (j = [0:1:cnt-1]) default(v[i+j], dflt)]];

View File

@ -345,7 +345,7 @@
// push = -5; // Push (translates the base away from the top)
// flare = 1; // Flare (the two pieces will be different unless this is 1)
// midpoint = .5; // Height of the extra vertex (as a fraction of total height); the two pieces will be different unless this is .5)
// pushvec = rot(angle/2,p=push*RIGHT); // Push direction is the the average of the top and bottom mating edges
// pushvec = rot(angle/2,p=push*RIGHT); // Push direction is the average of the top and bottom mating edges
// pent = path3d(apply(move(pushvec)*rot(angle),pentagon(side=sidelen,align_side=RIGHT,anchor="side0")));
// hex = path3d(hexagon(side=flare*sidelen, align_side=RIGHT, anchor="side0"),height);
// pentmate = path3d(pentagon(side=flare*sidelen,align_side=LEFT,anchor="side0"),height);
@ -1303,7 +1303,7 @@ module spiral_sweep(poly, h, r, turns=1, taper, center, r1, r2, d, d1, d2, taper
// During the sweep operation the shape's normal vector aligns with the tangent vector of the path. Note that
// this leaves an ambiguity about how the shape is rotated as it sweeps along the path.
// For 2D paths, this ambiguity is resolved by aligning the Y axis of the shape to the Z axis of the swept polyhedron.
// You can can force the shape to twist as it sweeps along the path using the `twist` parameter, which specifies the total
// You can force the shape to twist as it sweeps along the path using the `twist` parameter, which specifies the total
// number of degrees to twist along the whole swept polyhedron. This produces a result like the one shown below.
// Figure(3D,Big,VPR=[66,0,14],VPD=20,VPT=[3.4,4.5,-0.8]): The shape twists as we sweep. Note that it still aligns the origin in the shape with the path, and still aligns the normal vector with the path tangent vector.
// tri= [[0, 0], [0, 1], [.25,1],[1, 0]];
@ -2624,7 +2624,7 @@ function associate_vertices(polygons, split, curpoly=0) =
// Values in the height field should range from 0 to 1. A zero height
// in the height field corresponds to the height of the surface and 1
// the heighest point in the texture.
// Figure(2D,Big,NoScales): Here is a 2d texture described by a "grid" that just contains a single row. Such a texture can be used to create ribbing. The texture is [[0, 1, 1, 0]], and the fixture shows three repetitions of the basic texture unit.
// Figure(2D,Big,NoScales): Here is a 2d texture described by a "grid" that just contains a single row. Such a texture can be used to create ribbing. The texture is `[[0, 1, 1, 0]]`, and the fixture shows three repetitions of the basic texture unit.
// ftex1 = [0,1,1,0,0];
// stroke( transpose([count(5),ftex1]), dots=true, dots_width=3,width=.05);
// right(4)stroke( transpose([count(5),ftex1]), dots=true, width=.05,dots_color="red",color="blue",dots_width=3);
@ -2784,7 +2784,7 @@ function associate_vertices(polygons, split, curpoly=0) =
// rect(30), texture=tex, h=20*sqrt(3), tex_scale=3,
// tex_size=[10,10*sqrt(3)]
// );
// Example(3D): **"diamonds"** (Heightfield) = Four-sided pyramid with the corners of the base aligned aligned with the axes. Compare to "pyramids". Useful for knurling. Giving `n=` sets the number of heightfield samples to `n x n`. Default: 2. Use `style="concave"` for pointed bumps, or `style="default"` or `style="alt"` for a diagonal ribs.
// Example(3D): **"diamonds"** (Heightfield) = Four-sided pyramid with the corners of the base aligned with the axes. Compare to "pyramids". Useful for knurling. Giving `n=` sets the number of heightfield samples to `n x n`. Default: 2. Use `style="concave"` for pointed bumps, or `style="default"` or `style="alt"` for a diagonal ribs.
// tex = texture("diamonds");
// linear_sweep(
// rect(30), texture=tex, h=30,