mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
Enable using apply() on VNF and bezier patches.
This commit is contained in:
parent
291353d928
commit
8d753b471b
44
affine.scad
44
affine.scad
@ -274,7 +274,7 @@ function affine3d_rot_from_to(from, to) =
|
||||
// Returns a transformation that maps one coordinate frame to another. You must specify two or three of `x`, `y`, and `z`. The specified
|
||||
// axes are mapped to the vectors you supplied. If you give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand coordinate system.
|
||||
// If the vectors you give are orthogonal the result will be a rotation and the `reverse` parameter will supply the inverse map, which enables you
|
||||
// to map two arbitrary coordinate systems to each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option
|
||||
// to map two arbitrary coordinate systems to each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option
|
||||
// with non-orthogonal inputs.
|
||||
// Arguments:
|
||||
// x = Destination vector for x axis
|
||||
@ -423,24 +423,28 @@ function affine3d_chain(affines, _m=undef, _i=0) =
|
||||
// pts = apply(transform, points);
|
||||
// Description:
|
||||
// Applies the specified transformation matrix to a point list (or single point). Both inputs can be 2d or 3d, and it is also allowed
|
||||
// to supply 3d transformations with 2d data as long as the the only action on the z coordinate is a simple scaling.
|
||||
// to supply 3d transformations with 2d data as long as the the only action on the z coordinate is a simple scaling.
|
||||
// Examples:
|
||||
// transformed = apply(xrot(45), path3d(circle(r=3))); // Rotates 3d circle data around x axis
|
||||
// transformed = apply(rot(45), circle(r=3)); // Rotates 2d circle data by 45 deg
|
||||
// transformed = apply(rot(45)*right(4)*scale(3), circle(r=3)); // Scales, translates and rotates 2d circle data
|
||||
function apply(transform,points) =
|
||||
points==[] ? [] :
|
||||
is_vector(points) ? apply(transform, [points])[0] :
|
||||
let(
|
||||
tdim = len(transform[0])-1,
|
||||
datadim = len(points[0])
|
||||
)
|
||||
tdim == 3 && datadim == 3 ? [for(p=points) point3d(transform*concat(p,[1]))] :
|
||||
tdim == 2 && datadim == 2 ? [for(p=points) point2d(transform*concat(p,[1]))] :
|
||||
tdim == 3 && datadim == 2 ?
|
||||
assert(is_2d_transform(transform),str("Transforms is 3d but points are 2d"))
|
||||
[for(p=points) point2d(transform*concat(p,[0,1]))] :
|
||||
assert(false,str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim));
|
||||
points==[] ? [] :
|
||||
is_vector(points) ? apply(transform, [points])[0] :
|
||||
is_list(points) && len(points)==2 && is_path(points[0],3) && is_list(points[1]) && is_vector(points[1][0])
|
||||
? [apply(transform, points[0]), points[1]] :
|
||||
is_list(points) && is_list(points[0]) && is_vector(points[0][0])
|
||||
? [for (x=points) apply(transform,x)] :
|
||||
let(
|
||||
tdim = len(transform[0])-1,
|
||||
datadim = len(points[0])
|
||||
)
|
||||
tdim == 3 && datadim == 3 ? [for(p=points) point3d(transform*concat(p,[1]))] :
|
||||
tdim == 2 && datadim == 2 ? [for(p=points) point2d(transform*concat(p,[1]))] :
|
||||
tdim == 3 && datadim == 2 ?
|
||||
assert(is_2d_transform(transform), str("Transforms is 3d but points are 2d"))
|
||||
[for(p=points) point2d(transform*concat(p,[0,1]))] :
|
||||
assert(false, str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim));
|
||||
|
||||
|
||||
// Function: apply_list()
|
||||
@ -451,7 +455,7 @@ function apply(transform,points) =
|
||||
// the list are applied in the order they appear in the list (as in right multiplication of matrices). Both inputs can be
|
||||
// 2d or 3d, and it is also allowed to supply 3d transformations with 2d data as long as the the only action on the z coordinate
|
||||
// is a simple scaling. All transformations on `transform_list` must have the same dimension: you cannot mix 2d and 3d transformations
|
||||
// even when acting on 2d data.
|
||||
// even when acting on 2d data.
|
||||
// Examples:
|
||||
// transformed = apply_list(path3d(circle(r=3)),[xrot(45)]); // Rotates 3d circle data around x axis
|
||||
// transformed = apply_list(circle(r=3), [scale(3), right(4), rot(45)]); // Scales, then translates, and then rotates 2d circle data
|
||||
@ -466,21 +470,21 @@ function apply_list(points,transform_list) =
|
||||
let( tdim = tdims[1]-1 )
|
||||
tdim==2 && datadim == 2 ? apply(affine2d_chain(transform_list), points) :
|
||||
tdim==3 && datadim == 3 ? apply(affine3d_chain(transform_list), points) :
|
||||
tdim==3 && datadim == 2 ?
|
||||
tdim==3 && datadim == 2 ?
|
||||
let(
|
||||
badlist = [for(i=idx(transform_list)) if (!is_2d_transform(transform_list[i])) i]
|
||||
)
|
||||
assert(badlist==[],str("Transforms with indices ",badlist," are 3d but points are 2d"))
|
||||
apply(affine3d_chain(transform_list), points) :
|
||||
assert(false,str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim));
|
||||
|
||||
assert(false,str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim));
|
||||
|
||||
|
||||
// Function: is_2d_transform()
|
||||
// Usage:
|
||||
// x = is_2d_transform(t);
|
||||
// Description:
|
||||
// Checks if the input is a 3d transform that does not act on the z coordinate, except
|
||||
// possibly for a simple scaling of z. Note that an input which is only a zscale returns false.
|
||||
// possibly for a simple scaling of z. Note that an input which is only a zscale returns false.
|
||||
function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works
|
||||
t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 &&
|
||||
(t[2][2]==1 || !(t[0][0]==1 && t[0][1]==0 && t[1][0]==0 && t[1][1]==1)); // But rule out zscale()
|
||||
@ -499,7 +503,7 @@ function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][
|
||||
// This decomposition makes it possible to perform interpolation. If you construct a transformation using `rot`
|
||||
// the decoding may flip the axis (if you gave an angle outside of [0,180]). The returned axis will be a unit vector,
|
||||
// and the centerpoint lies on the plane through the origin that is perpendicular to the axis. It may be different
|
||||
// than the centerpoint you used to construct the transformation.
|
||||
// than the centerpoint you used to construct the transformation.
|
||||
// Example:
|
||||
// rot_decode(rot(45)); // Returns [45,[0,0,1], [0,0,0], [0,0,0]]
|
||||
// rot_decode(rot(a=37, v=[1,2,3], cp=[4,3,-7]))); // Returns [37, [0.26, 0.53, 0.80], [4.8, 4.6, -4.6], [0,0,0]]
|
||||
|
@ -6,7 +6,7 @@
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
BOSL_VERSION = [2,0,528];
|
||||
BOSL_VERSION = [2,0,529];
|
||||
|
||||
|
||||
// Section: BOSL Library Version Functions
|
||||
|
Loading…
x
Reference in New Issue
Block a user