1
0
mirror of https://github.com/Irev-Dev/Round-Anything.git synced 2025-09-14 00:42:34 +02:00

28 Commits

Author SHA1 Message Date
Kurt Hutten
a6999a7202 Issue-16 Fix 90 degree bug in find findPoint
Actually very similar to issue-11, but I just didn't solve it 100%
2020-11-02 18:12:17 +11:00
Kurt Hutten
a85e6ffd48 Merge pull request #15 from Irev-Dev/irevdev/add-test-geometries
Add test geometries
2020-10-06 06:23:22 +11:00
Kurt Hutten
5a7b6db0ec Add test geometries
After pr #10, it makes sense to have some test shapes beyond the
examples to make sure there aren't regressions in the library,
Hopefully we'll add to this with time.
2020-10-06 06:21:28 +11:00
Kurt Hutten
6b16407430 Merge pull request #14 from Irev-Dev/irevdev/keep-polyround-extrude-height-consistent
Keep polyRound extrude height consistent
2020-10-06 05:41:33 +11:00
Kurt Hutten
9613a81f15 Keep polyRound extrude height consistent
when r1 changed between a positive and negative radius the height
of the extrude would change
2020-10-06 05:39:58 +11:00
Kurt Hutten
e6d67b6304 Merge pull request #10 from nickcoutsos/master
Invert flipped faces for polyRoundExtrude
2020-10-06 05:33:31 +11:00
Nick Coutsos
8d5b6a180b Normalize order of radiiPoints in polyRoundExtrude call 2020-10-05 12:48:31 -04:00
Kurt Hutten
0697444270 Merge pull request #13 from Irev-Dev/irevdev-fix-find-point-to-deal-with-90-deg-angles
Fix findPoint to deal with 90 degree angles
2020-10-05 20:45:11 +11:00
Kurt Hutten
764b3b7a73 Fix findPoint to deal with 90 degree angles
because tan(90) results in inf, some conditions were needed for these
cases
2020-10-05 20:41:30 +11:00
Nick Coutsos
a3934972b5 Invert flipped faces 2020-10-03 22:52:43 -04:00
Kurt Hutten
cb9e7f7b30 Merge pull request #9 from Irev-Dev/update-readme-to-include-video
update readme to include video
2020-08-24 17:55:21 +10:00
Kurt Hutten
1f15acb04b update readme to include video 2020-08-24 17:54:47 +10:00
Kurt Hutten
ddbb97b5ee Merge pull request #8 from Irev-Dev/remove-warnings-and-tweak-examples
Resolve warning messages and tweak examples
2020-08-17 05:46:42 +10:00
Kurt Hutten
40a14892f2 Resolve warning messages and tweak examples 2020-08-17 05:45:47 +10:00
Kurt Hutten
bf97548f88 Merge pull request #7 from Irev-Dev/update-polyRoundExtrude-api-a-little
Change polyRoundExtrude h to length in the api for consistency
2020-08-16 08:36:09 +10:00
Kurt Hutten
9b235f236b Change polyRoundExtrude h to length in the api for consistency 2020-08-16 08:35:03 +10:00
Kurt Hutten
ad61abc74a Fix readme typos 2020-08-10 13:19:41 +10:00
Kurt Hutten
aacf657b62 Read me tweak 2020-08-09 21:02:08 +10:00
Kurt Hutten
1d124289d4 Merge pull request #6 from Irev-Dev/update-readme
Update readme
2020-08-09 21:00:34 +10:00
Kurt Hutten
52afd869d0 Update readme 2020-08-09 20:59:32 +10:00
Kurt Hutten
3f9d124bb7 Merge pull request #5 from Irev-Dev/add-docs-for-polyRoundExtrude
Add docs and examples for ployRoundExtrude
2020-08-09 20:45:29 +10:00
Kurt Hutten
2c71de2b5e Add docs and examples for ployRoundExtrude 2020-08-09 20:44:44 +10:00
Kurt Hutten
e364960bea Merge pull request #4 from Irev-Dev/attempts-to-integrate-poly-round-into-curev-polyhedron
Add basis of extrude polygon with rounded ends
2020-08-09 14:44:41 +10:00
Kurt Hutten
6ee436a6b2 Add basis of extrude polygon with rounded ends
needs clean up work though
2020-08-09 14:43:52 +10:00
Kurt Hutten
16e5c4833d Merge pull request #3 from Irev-Dev/organise-examples-and-improve-naming
Organise examples and improve naming
2020-08-06 07:44:03 +10:00
Kurt Hutten
f4a75dd38a Mostly renaming for readability 2020-08-06 07:41:49 +10:00
Kurt Hutten
e2cdd6c1bc Improve examples and naming 2020-07-26 18:18:28 +10:00
Kurt Hutten
7e74a98b6a Small improvement in naming 2020-07-22 19:56:49 +10:00
4 changed files with 597 additions and 281 deletions

View File

@@ -32,10 +32,11 @@ Both this modules do the same thing as minkowskiRound() but focus on either insi
// }
//}
//minkowskiRound(0.5,2,1,[50,50,50])union(){//--example in the thiniverse thumbnail/main image
// $fn=20;
// minkowskiRound(0.7,1.5,1,[50,50,50])union(){//--example in the thiniverse thumbnail/main image
// cube([6,6,22]);
// rotate([30,45,10])cylinder(h=22,d=10);
//}//--I rendered this out with a $fn=25 and it took more than 12 hours on my computer
// rotate([30,45,10])cylinder(h=22,d=10);
// }//--I rendered this out with a $fn=25 and it took more than 12 hours on my computer
module round2d(OR=3,IR=1){
@@ -48,16 +49,16 @@ module round2d(OR=3,IR=1){
}
}
module minkowskiRound(OR=1,IR=1,enable=1,cubeSize=[500,500,500]){
module minkowskiRound(OR=1,IR=1,enable=1,boundingEnvelope=[500,500,500]){
if(enable==0){//do nothing if not enabled
children();
} else {
minkowski(){//expand the now positive shape back out
difference(){//make the negative shape positive again
cube(cubeSize-[0.1,0.1,0.1],center=true);
cube(boundingEnvelope-[0.1,0.1,0.1],center=true);
minkowski(){//expand the negative shape inwards
difference(){//create a negative of the children
cube(cubeSize,center=true);
cube(boundingEnvelope,center=true);
minkowski(){//expand the children
children();
sphere(IR);
@@ -71,16 +72,16 @@ module minkowskiRound(OR=1,IR=1,enable=1,cubeSize=[500,500,500]){
}
}
module minkowskiOutsideRound(r=1,enable=1,cubeSize=[500,500,500]){
module minkowskiOutsideRound(r=1,enable=1,boundingEnvelope=[500,500,500]){
if(enable==0){//do nothing if not enabled
children();
} else {
minkowski(){//expand the now positive shape
difference(){//make the negative positive
cube(cubeSize-[0.1,0.1,0.1],center=true);
cube(boundingEnvelope-[0.1,0.1,0.1],center=true);
minkowski(){//expand the negative inwards
difference(){//create a negative of the children
cube(cubeSize,center=true);
cube(boundingEnvelope,center=true);
children();
}
sphere(r);
@@ -91,15 +92,15 @@ module minkowskiOutsideRound(r=1,enable=1,cubeSize=[500,500,500]){
}
}
module minkowskiInsideRound(r=1,enable=1,cubeSize=[500,500,500]){
module minkowskiInsideRound(r=1,enable=1,boundingEnvelope=[500,500,500]){
if(enable==0){//do nothing if not enabled
children();
} else {
difference(){//make the negative positive again
cube(cubeSize-[0.1,0.1,0.1],center=true);
cube(boundingEnvelope-[0.1,0.1,0.1],center=true);
minkowski(){//expand the negative shape inwards
difference(){//make the expanded children a negative shape
cube(cubeSize,center=true);
cube(boundingEnvelope,center=true);
minkowski(){//expand the children
children();
sphere(r);

View File

@@ -1,34 +1,29 @@
# Round-Anything
### minkowskiRound();
Is an incredibly powerful module that will allow you to fillet any of your OpenSCAD modules retrospectively while keeping the original dimensions. You don't need design your part again, or start using rounded cube modules etc, just throw minkowskiRound() out the front of it and your good to go. Also I hope the example in the first picture demonstrates that besides convenience of not having to add each fillet yourself, it will also fillet some areas (internal corners in particular) that are near impossible to fillet with other methods in SCAD.
Round-Anything is primarily a set of OpenSCAD utilities that help with rounding parts, but it also embodies a robust approach to developing OpenSCAD parts. The heart of the library a list of polygon points, with a 3rd radius parameter at each point. That is a series of [x, y, radius] points.
Biggest downside is that it is very computationally intensive, you will have to keep the $fn low (I would recommend 10-15 as a starting point) unless you are willing to wait a long time (12 hours plus). The modules have been made with an enable variable so that you can disable the module and keep designing and only add the fillets when you are ready to output your final model.
There is also a minkowskiInsideRound() and minkowskiOutsideRound() which takes less time to render if you only need inside or outside radii
<img src="https://cdn.sanity.io/images/2hqqc7om/production/5d73db6dfd44ab2606d5e3ff5d993361eba61c5e-1371x1567.png?w=500&h=571&fit=crop" width="100%" align="left">
### round2d();
Allows you to round any 2d object in openscad
## The Why
### polyRound();
is used the same way that polygon(); is used, however along with a list of coordinates, a list of radiuses should also be supplied and the corners will be rounded with these radiuses.
This is can be incredible useful if you try and design parts using extruded 2d polygons instead of with primatives since radiuses are generally hard to implement in OpenSCAD (internal radiuses in particular). see examples below.
The truth is radii, internal radii in particular can be a real pain to add in openscad. and the more you move away from shapes with 90 degree angles the more difficult it becomes, effectively puting a complexity ceiling on parts you can produce in OpenScad. Because of how important radii in both making a apealing and strong part, reducing stress concentration etc, A library that focuses on radii as a core principle makes for a solid foundation for your parts. Furthermore the heart of the library revolves around the polygon, this is because we're leveraging the battle tested paradigm of extruding from 2d sketches of most CAD packages. I can't imagine making an OpenScad part without Round-Anything.
I would love if people sent me examples that I can upload along with the ones I have here.
## Documentation
[thingiverse page here](https://www.thingiverse.com/thing:2419664)
See an overview of the library in [video form](https://www.youtube.com/watch?v=laxv2wFKq8Q)
<a href="https://www.youtube.com/watch?v=laxv2wFKq8Q"><img src="https://i.ytimg.com/vi/laxv2wFKq8Q/sddefault.jpg" width="100%" align="left"></a>
### Examples
##### minkowsikRound();
<img src="https://github.com/Irev-Dev/Round-Anything/blob/master/images/mainminkowski.png" width="100%" align="left">
##### minkowsikInsideRound(); & minkowsikOutsideRound();
<img src="https://github.com/Irev-Dev/Round-Anything/blob/master/images/InOutminkowski.png" width="100%" align="left">
[Written overview](https://kurthutten.com/blog/round-anything-a-pragmatic-approach-to-openscad-design/).
##### round2d();
<img src="https://github.com/Irev-Dev/Round-Anything/blob/master/images/round2d.png" width="100%" align="left">
[Full documentation of the API is here](https://kurthutten.com/blog/round-anything-api/).
##### polyRound();
<img src="https://github.com/Irev-Dev/Round-Anything/blob/master/images/example1.png" width="100%" align="left">
<img src="https://github.com/Irev-Dev/Round-Anything/blob/master/images/PolyRoundexample3fn.png" width="100%" align="left">
<img src="https://github.com/Irev-Dev/Round-Anything/blob/master/images/example2.png" width="100%" align="left">
## Extra
I [live streamed](https://www.youtube.com/watch?v=1Tegarwy69I&t=2s) the making of [this part](https://github.com/Irev-Dev/monitor-stand-turn-camera) using this library. I was able to make the bulk of this part quickly even with some complex radii involved thanks to the library.
<img src="https://cdn.thingiverse.com/assets/ea/fb/83/89/57/featured_preview_camera_mount.png" width="100%" align="left">
Below are some of the example parts that can be found in [roundAnythingExamples.scad](https://github.com/Irev-Dev/Round-Anything/blob/master/roundAnythingExamples.scad).
<img src="https://cdn.sanity.io/images/2hqqc7om/production/2dba6301d1f25b1c45a634058b280b52fa713b60-1920x1080.png?w=1920&h=1000&fit=crop" width="100%" align="left">

View File

@@ -6,94 +6,176 @@
// License: MIT
//examples();
module examples(){
//Example of how a parametric part might be designed with this tool
width=20; height=25;
slotW=8; slotH=15;
slotPosition=8;
minR=1.5; farcornerR=6;
internalR=3;
points=[
[0, 0, farcornerR],
[0, height, minR],
[slotPosition, height, minR],
[slotPosition, height-slotH, internalR],
[slotPosition+slotW, height-slotH, internalR],
[slotPosition+slotW, height, minR],
[width, height, minR],
[width, 0, minR]
];
points2=[
[0, 0, farcornerR],
["l", height, minR],
[slotPosition, "l", minR],
["l", height-slotH, internalR],
[slotPosition+slotW, "l", internalR],
["l", height, minR],
[width, "l", minR],
["l", height*0.2, minR],
[45, 0, minR+5, "ayra"]
];//,["l",0,minR]];
echo(processRadiiPoints(points2));
translate([-25,0,0]){
polygon(polyRound(points,5));
}
%translate([-25,0,0.2]){
polygon(getpoints(points));//transparent copy of the polgon without rounding
}
translate([-50,0,0]){
polygon(polyRound(points2,5));
}
%translate([-50,0,0.2]){
polygon(getpoints(processRadiiPoints(points2)));//transparent copy of the polgon without rounding
}
//Example of features 2
// 1 2 3 4 5 6
b=[[-4,0,1],[5,3,1.5],[0,7,0.1],[8,7,10],[20,20,0.8],[10,0,10]]; //points
polygon(polyRound(b,30));/*polycarious() will make the same shape but doesn't have radii conflict handling*/ //polygon(polycarious(b,30));
%translate([0,0,0.3])polygon(getpoints(b));//transparent copy of the polgon without rounding
//Example of features 3
// 1 2 3 4 5 6
p=[[0,0,1.2],[0,20,1],[15,15,1],[3,10,3],[15,0,1],[6,2,10]];//points
a=polyRound(p,5);
translate([25,0,0]){
polygon(a);
}
%translate([25,0,0.2]){
polygon(getpoints(p));//transparent copy of the polgon without rounding
}
//example of radii conflict handling and debuging feature
r1a=10; r1b=10;
r2a=30; r2b=30;
r3a=10; r3b=40;
r4a=15; r4b=20;
c1=[[0,0,0],[0,20,r1a],[20,20,r1b],[20,0,0]];//both radii fit and don't need to be changed
translate([-25,-30,0]){
polygon(polyRound(c1,8));
}
echo(str("c1 debug= ",polyRound(c1,8,mode=1)," all zeros indicates none of the radii were reduced"));
c2=[[0,0,0],[0,20,r2a],[20,20,r2b],[20,0,0]];//radii are too large and are reduced to fit
translate([0,-30,0]){
polygon(polyRound(c2,8));
}
echo(str("c2 debug= ",polyRound(c2,8,mode=1)," 2nd and 3rd radii reduced by 20mm i.e. from 30 to 10mm radius"));
c3=[[0,0,0],[0,20,r3a],[20,20,r3b],[20,0,0]];//radii are too large again and are reduced to fit, but keep their ratios
translate([25,-30,0]){
polygon(polyRound(c3,8));
}
echo(str("c3 debug= ",polyRound(c3,8,mode=1)," 2nd and 3rd radii reduced by 6 and 24mm respectively"));
//resulting in radii of 4 and 16mm,
//notice the ratio from the orginal radii stays the same r3a/r3b = 10/40 = 4/16
c4=[[0,0,0],[0,20,r4a],[20,20,r4b],[20,0,0]];//radii are too large again but not corrected this time
translate([50,-30,0]){
polygon(polyRound(c4,8,mode=2));//mode 2 = no radii limiting
}
function addZcoord(points,displacement)=[for(i=[0:len(points)-1])[points[i].x,points[i].y, displacement]];
function translate3Dcoords(points,tran=[0,0,0],mult=[1,1,1])=[for(i=[0:len(points)-1])[
(points[i].x*mult.x)+tran.x,
(points[i].y*mult.y)+tran.y,
(points[i].z*mult.z)+tran.z
]];
function offsetPolygonPoints(points, offset=0)=
// Work sthe same as the offset does, except for the fact that instead of a 2d shape
// It works directly on polygon points
// It returns the same number of points just offset into or, away from the original shape.
// points= a series of x,y points[[x1,y1],[x2,y2],...]
// offset= amount to offset by, negative numbers go inwards into the shape, positive numbers go out
// return= a series of x,y points[[x1,y1],[x2,y2],...]
let(
isCWorCCW=sign(offset)*CWorCCW(points)*-1,
lp=len(points)
)
[for(i=[0:lp-1]) parallelFollow([
points[listWrap(i-1,lp)],
points[i],
points[listWrap(i+1,lp)],
],thick=offset,mode=isCWorCCW)];
function reverseList(list) = [ for(i=[len(list) - 1:-1:0]) list[i] ];
// Apply `reverseList` to the array of vertex indices for an array of faces
function invertFaces(faces) = [ for(f=faces) reverseList(f) ];
function makeCurvedPartOfPolyHedron(radiiPoints,r,fn,minR=0.01)=
// this is a private function that I'm not expecting library users to use directly
// radiiPoints= serise of x, y, r points
// r= radius of curve that will be put on the end of the extrusion
// fn= amount of subdivisions
// minR= if one of the points in radiiPoints is less than r, it's likely to converge and form a sharp edge,
// the min radius on these converged edges can be controled with minR, though because of legacy reasons it can't be 0, but can be a very small number.
// return= array of [polyhedronPoints, Polyhedronfaces, theLength of a singe layer in the curve]
let(
lp=len(radiiPoints),
radii=[for(i=[0:lp-1])radiiPoints[i].z],
isCWorCCWOverall=CWorCCW(radiiPoints),
dir=sign(r),
absR=abs(r),
fractionOffLp=1-1/fn,
allPoints=[for(fraction=[0:1/fn:1])
let(
iterationOffset=dir*sqrt(sq(absR)-sq(fraction*absR))-dir*absR,
theOffsetPoints=offsetPolygonPoints(radiiPoints,iterationOffset),
polyRoundOffsetPoints=[for(i=[0:lp-1])
let(
pointsAboutCurrent=[
theOffsetPoints[listWrap(i-1,lp)],
theOffsetPoints[i],
theOffsetPoints[listWrap(i+1,lp)]
],
isCWorCCWLocal=CWorCCW(pointsAboutCurrent),
isInternalRadius=(isCWorCCWLocal*isCWorCCWOverall)==-1,
// the radius names are only true for positive r,
// when are r is negative increasingRadius is actually decreasing and vice-vs
// increasingRadiusWithPositiveR is just to verbose of a variable name for my liking
increasingRadius=max(radii[i]-iterationOffset, minR),
decreasingRadius=max(radii[i]+iterationOffset, minR)
)
[theOffsetPoints[i].x, theOffsetPoints[i].y, isInternalRadius? increasingRadius: decreasingRadius]
],
pointsForThisLayer=polyRound(polyRoundOffsetPoints,fn)
)
addZcoord(pointsForThisLayer,fraction*absR)
],
polyhedronPoints=flatternArray(allPoints),
allLp=len(allPoints),
layerLength=len(allPoints[0]),
loopToSecondLastLayer=allLp-2,
sideFaces=[for(layerIndex=[0:loopToSecondLastLayer])let(
currentLayeroffset=layerIndex*layerLength,
nextLayeroffset=(layerIndex+1)*layerLength,
layerFaces=[for(subLayerIndex=[0:layerLength-1])
[
currentLayeroffset+subLayerIndex, currentLayeroffset + listWrap(subLayerIndex+1,layerLength), nextLayeroffset+listWrap(subLayerIndex+1,layerLength), nextLayeroffset+subLayerIndex]
]
)layerFaces],
polyhedronFaces=flatternArray(sideFaces)
)
[polyhedronPoints, polyhedronFaces, layerLength];
function flatternRecursion(array, init=[], currentIndex)=
// this is a private function, init and currentIndex are for the function's use
// only for when it's calling itself, which is why there is a simplified version flatternArray that just calls this one
// array= array to flattern by one level of nesting
// init= the array used to cancat with the next call, only for when the function calls itself
// currentIndex= so the function can keep track of how far it's progressed through the array, only for when it's calling itself
// returns= flatterned array, by one level of nesting
let(
shouldKickOffRecursion=currentIndex==undef?1:0,
isLastIndex=currentIndex+1==len(array)?1:0,
flatArray=shouldKickOffRecursion?flatternRecursion(array,[],0):
isLastIndex?concat(init,array[currentIndex]):
flatternRecursion(array,concat(init,array[currentIndex]),currentIndex+1)
)
flatArray;
function flatternArray(array)=
// public version of flatternRecursion, has simplified params to avoid confusion
// array= array to be flatterned
// return= array that been flatterend by one level of nesting
flatternRecursion(array);
function offsetAllFacesBy(array,offset)=[
// polyhedron faces are simply a list of indices to points, if your concat points together than you probably need to offset
// your faces array to points to the right place in the new list
// array= array of point indicies
// offset= number to offset all indecies by
// return= array of point indices (i.e. faces) with offset applied
for(faceIndex=[0:len(array)-1])[
for(pointIndex=[0:len(array[faceIndex])-1])array[faceIndex][pointIndex]+offset
]
];
function extrudePolygonWithRadius(radiiPoints,h=5,r1=1,r2=1,fn=4)=
// this basically calls makeCurvedPartOfPolyHedron twice to get the curved section of the final polyhedron
// and then goes about assmbling them, as the side faces and the top and bottom face caps are missing
// radiiPoints= series of [x,y,r] points,
// h= height of the extrude (total including radius sections)
// r1,r2= define the radius at the top and bottom of the extrud respectively, negative number flange out the extrude
// fn= number of subdivisions
// returns= [polyhedronPoints, polyhedronFaces]
let(
// top is the top curved part of the extrude
top=makeCurvedPartOfPolyHedron(radiiPoints,r1,fn),
topRadiusPoints=translate3Dcoords(top[0],[0,0,h-abs(r1)]),
singeLayerLength=top[2],
topRadiusFaces=top[1],
radiusPointsLength=len(topRadiusPoints), // is the same length as bottomRadiusPoints
// bottom is the bottom curved part of the extrude
bottom=makeCurvedPartOfPolyHedron(radiiPoints,r2,fn),
// Z axis needs to be multiplied by -1 to flip it so the radius is going in the right direction [1,1,-1]
bottomRadiusPoints=translate3Dcoords(bottom[0],[0,0,abs(r2)],[1,1,-1]),
// becaues the points will be all concatenated into the same array, and the bottom points come second, than
// the original indices the faces are points towards are wrong and need to have an offset applied to them
bottomRadiusFaces=offsetAllFacesBy(bottom[1],radiusPointsLength),
// all of the side panel of the extrusion, connecting points from the inner layers of each
// of the curved sections
sideFaces=[for(i=[0:singeLayerLength-1])[
i,
listWrap(i+1,singeLayerLength),
radiusPointsLength + listWrap(i+1,singeLayerLength),
radiusPointsLength + i
]],
// both of these caps are simple every point from the last layer of the radius points
topCapFace=[for(i=[0:singeLayerLength-1])radiusPointsLength-singeLayerLength+i],
bottomCapFace=[for(i=[0:singeLayerLength-1])radiusPointsLength*2-singeLayerLength+i],
finalPolyhedronPoints=concat(topRadiusPoints,bottomRadiusPoints),
finalPolyhedronFaces=concat(topRadiusFaces,invertFaces(bottomRadiusFaces),invertFaces(sideFaces),[topCapFace],invertFaces([bottomCapFace]))
)
[
finalPolyhedronPoints,
finalPolyhedronFaces
];
module polyRoundExtrude(radiiPoints,length=5,r1=1,r2=1,fn=10,convexity=10) {
orderedRadiiPoints = CWorCCW(radiiPoints) == 1
? reverseList(radiiPoints)
: radiiPoints;
polyhedronPointsNFaces=extrudePolygonWithRadius(orderedRadiiPoints,length,r1,r2,fn);
polyhedron(points=polyhedronPointsNFaces[0], faces=polyhedronPointsNFaces[1], convexity=convexity);
}
// testingInternals();
module testingInternals(){
//example of rounding random points, this has no current use but is a good demonstration
random=[for(i=[0:20])[rnd(0,50),rnd(0,50),/*rnd(0,30)*/1000]];
R =polyRound(random,7);
@@ -123,7 +205,7 @@ module examples(){
radius=6;
radiipoints=[[0,0,0],[10,20,radius],[20,0,0]];
tangentsNcen=round3points(radiipoints);
translate([100,0,0]){
translate([10,0,0]){
for(i=[0:2]){
color("red")translate(getpoints(radiipoints)[i])circle(1);//plots the 3 input points
color("cyan")translate(tangentsNcen[i])circle(1);//plots the two tangent poins and the circle centre
@@ -131,67 +213,6 @@ module examples(){
translate([tangentsNcen[2][0],tangentsNcen[2][1],-0.2])circle(r=radius,$fn=25);//draws the cirle
%polygon(getpoints(radiipoints));//draws a polygon
}
//for(i=[0:len(b2)-1]) translate([b2[i].x,b2[i].y,2])#circle(0.2);
ex=[[0,0,-1],[2,8,0],[5,4,3],[15,10,0.5],[10,2,1]];
translate([15,-50,0]){
ang=55;
minR=0.2;
rotate([0,0,ang+270])translate([0,-5,0])square([10,10],true);
clipP=[[9,1,0],[9,0,0],[9.5,0,0],[9.5,1,0.2],[10.5,1,0.2],[10.5,0,0],[11,0,0],[11,1,0]];
a=RailCustomiser(ex,o1=0.5,minR=minR,a1=ang-90,a2=0,mode=2);
b=revList(RailCustomiser(ex,o1=-0.5,minR=minR,a1=ang-90,a2=0,mode=2));
points=concat(a,clipP,b);
points2=concat(ex,clipP,b);
polygon(polyRound(points,20));
//%polygon(polyRound(points2,20));
}
//the following exapmle shows how the offsets in RailCustomiser could be used to makes shells
translate([-20,-60,0]){
for(i=[-9:0.5:1])polygon(polyRound(RailCustomiser(ex,o1=i-0.4,o2=i,minR=0.1),20));
}
// This example shows how a list of points can be used multiple times in the same
nutW=5.5; nutH=3; boltR=1.6;
minT=2; minR=0.8;
nutCapture=[
[-boltR, 0, 0],
[-boltR, minT, 0],
[-nutW/2, minT, minR],
[-nutW/2, minT+nutH, minR],
[nutW/2, minT+nutH, minR],
[nutW/2, minT, minR],
[boltR, minT, 0],
[boltR, 0, 0],
];
aSquare=concat(
[[0,0,0]],
moveRadiiPoints(nutCapture,tran=[5,0],rot=0),
[[20,0,0]],
moveRadiiPoints(nutCapture,tran=[20,5],rot=90),
[[20,10,0]],
[[0,10,0]]
);
echo(aSquare);
translate([40,-60,0]){
polygon(polyRound(aSquare,20));
translate([10,12,0])polygon(polyRound(nutCapture,20));
}
translate([70,-52,0]){
a=mirrorPoints(ex,0,[1,0]);
polygon(polyRound(a,20));
}
translate([0,-90,0]){
r_extrude(3,0.5*$t,0.5*$t,100)polygon(polyRound(b,30));
#translate([7,4,3])r_extrude(3,-0.5,0.95,100)circle(1,$fn=30);
}
translate([-30,-90,0])
shell2d(-0.5,0,0)polygon(polyRound(b,30));
}
function polyRound(radiipoints,fn=5,mode=0)=
@@ -201,18 +222,26 @@ function polyRound(radiipoints,fn=5,mode=0)=
mode=1 - Debug, output radius reduction for automatic radius limiting
mode=2 - No radius limiting*/
let(
getpoints=mode==2?1:2,
p=getpoints(radiipoints), //make list of coordinates without radii
Lp=len(p),
//remove the middle point of any three colinear points
newrp=[
for(i=[0:len(p)-1]) if(isColinear(p[wrap(i-1,Lp)],p[wrap(i+0,Lp)],p[wrap(i+1,Lp)])==0||p[wrap(i+0,Lp)].z!=0)radiipoints[wrap(i+0,Lp)]
//remove the middle point of any three colinear points, otherwise adding a radius to the middle of a straigh line causes problems
radiiPointsWithoutTrippleColinear=[
for(i=[0:len(p)-1]) if(
// keep point if it isn't colinear or if the radius is 0
!isColinear(
p[listWrap(i-1,Lp)],
p[listWrap(i+0,Lp)],
p[listWrap(i+1,Lp)]
)||
p[listWrap(i+0,Lp)].z!=0
) radiipoints[listWrap(i+0,Lp)]
],
newrp2=processRadiiPoints(newrp),
newrp2=processRadiiPoints(radiiPointsWithoutTrippleColinear),
plusMinusPointRange=mode==2?1:2,
temp=[
for(i=[0:len(newrp2)-1]) //for each point in the radii array
let(
thepoints=[for(j=[-getpoints:getpoints])newrp2[wrap(i+j,len(newrp2))]],//collect 5 radii points
thepoints=[for(j=[-plusMinusPointRange:plusMinusPointRange])newrp2[listWrap(i+j,len(newrp2))]],//collect 5 radii points
temp2=mode==2?round3points(thepoints,fn):round5points(thepoints,fn,mode)
)
mode==1?temp2:newrp2[i][2]==0?
@@ -270,11 +299,11 @@ function round3points(rp,fn)=
tangD=r/tan(ang/2),//distance to the tangent point from p2
circD=r/sin(ang/2),//distance to the circle centre from p2
//find the angles from the p2 with respect to the postitive x axis
a12=getAngle(p[0],p[1]),//angle from point 2 to 1
a23=getAngle(p[2],p[1]),//angle from point 2 to 3
angleFromPoint1ToPoint2=getAngle(p[0],p[1]),
angleFromPoint2ToPoint3=getAngle(p[2],p[1]),
//find tangent points
t12=[p[1][0]-cos(a12)*tangD,p[1][1]-sin(a12)*tangD],//tangent point between points 1&2
t23=[p[1][0]-cos(a23)*tangD,p[1][1]-sin(a23)*tangD],//tangent point between points 2&3
t12=[p[1][0]-cos(angleFromPoint1ToPoint2)*tangD,p[1][1]-sin(angleFromPoint1ToPoint2)*tangD],//tangent point between points 1&2
t23=[p[1][0]-cos(angleFromPoint2ToPoint3)*tangD,p[1][1]-sin(angleFromPoint2ToPoint3)*tangD],//tangent point between points 2&3
//find circle centre
tmid=getMidpoint(t12,t23),//midpoint between the two tangent points
angCen=getAngle(tmid,p[1]),//angle from point 2 to circle centre
@@ -294,11 +323,11 @@ function parallelFollow(rp,thick=4,minR=1,mode=1)=
sgn=CWorCCW(rp),//rotation of the three points cw or ccw?let(sgn=mode==0?1:-1)
circD=mode*sgn*r/sin(ang/2),//distance to the circle centre from p2
//find the angles from the p2 with respect to the postitive x axis
a12=getAngle(p[0],p[1]),//angle from point 2 to 1
a23=getAngle(p[2],p[1]),//angle from point 2 to 3
angleFromPoint1ToPoint2=getAngle(p[0],p[1]),
angleFromPoint2ToPoint3=getAngle(p[2],p[1]),
//find tangent points
t12=[p[1][0]-cos(a12)*tangD,p[1][1]-sin(a12)*tangD],//tangent point between points 1&2
t23=[p[1][0]-cos(a23)*tangD,p[1][1]-sin(a23)*tangD],//tangent point between points 2&3
t12=[p[1][0]-cos(angleFromPoint1ToPoint2)*tangD,p[1][1]-sin(angleFromPoint1ToPoint2)*tangD],//tangent point between points 1&2
t23=[p[1][0]-cos(angleFromPoint2ToPoint3)*tangD,p[1][1]-sin(angleFromPoint2ToPoint3)*tangD],//tangent point between points 2&3
//find circle centre
tmid=getMidpoint(t12,t23),//midpoint between the two tangent points
angCen=getAngle(tmid,p[1]),//angle from point 2 to circle centre
@@ -307,85 +336,106 @@ function parallelFollow(rp,thick=4,minR=1,mode=1)=
)
concat(cen,outR);
function is90or270(ang)=ang==90?1:ang==270?1:0;
function findPoint(ang1,refpoint1,ang2,refpoint2,r=0)=
// finds the intersection of two lines given two angles and points on those lines
let(
overrideX=is90or270(ang1)?
refpoint1.x:
is90or270(ang2)?
refpoint2.x:
0,
m1=tan(ang1),
c1=refpoint1.y-m1*refpoint1.x,
m2=tan(ang2),
c2=refpoint2.y-m2*refpoint2.x,
outputX=(c2-c1)/(m1-m2),
outputY=m1*outputX+c1
outputX=overrideX?overrideX:(c2-c1)/(m1-m2),
outputY=is90or270(ang1)?m2*outputX+c2:m1*outputX+c1
)
[outputX,outputY,r];
function RailCustomiser(rp,o1=0,o2,mode=0,minR=0,a1,a2)=
/*This function takes a series of radii points and plots points to run along side at a constanit distance, think of it as offset but for line instead of a polygon
rp=radii points, o1&o2=offset 1&2,minR=min radius, a1&2=angle 1&2
mode=1 - include endpoints a1&2 are relative to the angle of the last two points and equal 90deg if not defined
mode=2 - endpoints not included
mode=3 - include endpoints a1&2 are absolute from the x axis and are 0 if not defined
function beamChain(radiiPoints,offset1=0,offset2,mode=0,minR=0,startAngle,endAngle)=
/*This function takes a series of radii points and plots points to run along side at a consistant distance, think of it as offset but for line instead of a polygon
radiiPoints=radii points,
offset1 & offset2= The two offsets that give the beam it's thickness. When using with mode=2 only offset1 is needed as there is no return path for the polygon
minR=min radius, if all of your radii are set properly within the radii points this value can be ignored
startAngle & endAngle= Angle at each end of the beam, different mode determine if this angle is relative to the ending legs of the beam or absolute.
mode=1 - include endpoints startAngle&2 are relative to the angle of the last two points and equal 90deg if not defined
mode=2 - Only the forward path is defined, useful for combining the beam with other radii points, see examples for a use-case.
mode=3 - include endpoints startAngle&2 are absolute from the x axis and are 0 if not defined
negative radiuses only allowed for the first and last radii points
As it stands this function could probably be tidied a lot, but it works, I'll tidy later*/
let(
o2undef=o2==undef?1:0,
o2=o2undef==1?0:o2,
CWorCCW1=sign(o1)*CWorCCW(rp),
CWorCCW2=sign(o2)*CWorCCW(rp),
o1=abs(o1),
o2b=abs(o2),
Lrp3=len(rp)-3,
Lrp=len(rp),
a1=mode==0&&a1==undef?
getAngle(rp[0],rp[1])+90:
mode==2&&a1==undef?
offset2undef=offset2==undef?1:0,
offset2=offset2undef==1?0:offset2,
CWorCCW1=sign(offset1)*CWorCCW(radiiPoints),
CWorCCW2=sign(offset2)*CWorCCW(radiiPoints),
offset1=abs(offset1),
offset2b=abs(offset2),
Lrp3=len(radiiPoints)-3,
Lrp=len(radiiPoints),
startAngle=mode==0&&startAngle==undef?
getAngle(radiiPoints[0],radiiPoints[1])+90:
mode==2&&startAngle==undef?
0:
mode==0?
getAngle(rp[0],rp[1])+a1:
a1,
a2=mode==0&&a2==undef?
getAngle(rp[Lrp-1],rp[Lrp-2])+90:
mode==2&&a2==undef?
getAngle(radiiPoints[0],radiiPoints[1])+startAngle:
startAngle,
endAngle=mode==0&&endAngle==undef?
getAngle(radiiPoints[Lrp-1],radiiPoints[Lrp-2])+90:
mode==2&&endAngle==undef?
0:
mode==0?
getAngle(rp[Lrp-1],rp[Lrp-2])+a2:
a2,
OffLn1=[for(i=[0:Lrp3]) o1==0?rp[i+1]:parallelFollow([rp[i],rp[i+1],rp[i+2]],o1,minR,mode=CWorCCW1)],
OffLn2=[for(i=[0:Lrp3]) o2==0?rp[i+1]:parallelFollow([rp[i],rp[i+1],rp[i+2]],o2b,minR,mode=CWorCCW2)],
Rp1=abs(rp[0].z),
Rp2=abs(rp[Lrp-1].z),
endP1a=findPoint(getAngle(rp[0],rp[1]), OffLn1[0], a1,rp[0], Rp1),
endP1b=findPoint(getAngle(rp[Lrp-1],rp[Lrp-2]), OffLn1[len(OffLn1)-1], a2,rp[Lrp-1], Rp2),
endP2a=findPoint(getAngle(rp[0],rp[1]), OffLn2[0], a1,rp[0], Rp1),
endP2b=findPoint(getAngle(rp[Lrp-1],rp[Lrp-2]), OffLn2[len(OffLn1)-1], a2,rp[Lrp-1], Rp2),
getAngle(radiiPoints[Lrp-1],radiiPoints[Lrp-2])+endAngle:
endAngle,
OffLn1=[for(i=[0:Lrp3]) offset1==0?radiiPoints[i+1]:parallelFollow([radiiPoints[i],radiiPoints[i+1],radiiPoints[i+2]],offset1,minR,mode=CWorCCW1)],
OffLn2=[for(i=[0:Lrp3]) offset2==0?radiiPoints[i+1]:parallelFollow([radiiPoints[i],radiiPoints[i+1],radiiPoints[i+2]],offset2b,minR,mode=CWorCCW2)],
Rp1=abs(radiiPoints[0].z),
Rp2=abs(radiiPoints[Lrp-1].z),
endP1aAngle = getAngle(radiiPoints[0],radiiPoints[1]),
endP1a=findPoint(endP1aAngle, OffLn1[0], startAngle,radiiPoints[0], Rp1),
endP1bAngle = getAngle(radiiPoints[Lrp-1],radiiPoints[Lrp-2]),
endP1b=findPoint(endP1bAngle, OffLn1[len(OffLn1)-1], endAngle,radiiPoints[Lrp-1], Rp2),
endP2aAngle = getAngle(radiiPoints[0],radiiPoints[1]),
endP2a=findPoint(endP2aAngle, OffLn2[0], startAngle,radiiPoints[0], Rp1),
endP2bAngle = getAngle(radiiPoints[Lrp-1],radiiPoints[Lrp-2]),
endP2b=findPoint(endP2bAngle, OffLn2[len(OffLn1)-1], endAngle,radiiPoints[Lrp-1], Rp2),
absEnda=getAngle(endP1a,endP2a),
absEndb=getAngle(endP1b,endP2b),
negRP1a=[cos(absEnda)*rp[0].z*10+endP1a.x, sin(absEnda)*rp[0].z*10+endP1a.y, 0.0],
negRP2a=[cos(absEnda)*-rp[0].z*10+endP2a.x, sin(absEnda)*-rp[0].z*10+endP2a.y, 0.0],
negRP1b=[cos(absEndb)*rp[Lrp-1].z*10+endP1b.x, sin(absEndb)*rp[Lrp-1].z*10+endP1b.y, 0.0],
negRP2b=[cos(absEndb)*-rp[Lrp-1].z*10+endP2b.x, sin(absEndb)*-rp[Lrp-1].z*10+endP2b.y, 0.0],
OffLn1b=(mode==0||mode==2)&&rp[0].z<0&&rp[Lrp-1].z<0?
negRP1a=[cos(absEnda)*radiiPoints[0].z*10+endP1a.x, sin(absEnda)*radiiPoints[0].z*10+endP1a.y, 0.0],
negRP2a=[cos(absEnda)*-radiiPoints[0].z*10+endP2a.x, sin(absEnda)*-radiiPoints[0].z*10+endP2a.y, 0.0],
negRP1b=[cos(absEndb)*radiiPoints[Lrp-1].z*10+endP1b.x, sin(absEndb)*radiiPoints[Lrp-1].z*10+endP1b.y, 0.0],
negRP2b=[cos(absEndb)*-radiiPoints[Lrp-1].z*10+endP2b.x, sin(absEndb)*-radiiPoints[Lrp-1].z*10+endP2b.y, 0.0],
OffLn1b=(mode==0||mode==2)&&radiiPoints[0].z<0&&radiiPoints[Lrp-1].z<0?
concat([negRP1a],[endP1a],OffLn1,[endP1b],[negRP1b])
:(mode==0||mode==2)&&rp[0].z<0?
:(mode==0||mode==2)&&radiiPoints[0].z<0?
concat([negRP1a],[endP1a],OffLn1,[endP1b])
:(mode==0||mode==2)&&rp[Lrp-1].z<0?
:(mode==0||mode==2)&&radiiPoints[Lrp-1].z<0?
concat([endP1a],OffLn1,[endP1b],[negRP1b])
:mode==0||mode==2?
concat([endP1a],OffLn1,[endP1b])
:
OffLn1,
OffLn2b=(mode==0||mode==2)&&rp[0].z<0&&rp[Lrp-1].z<0?
OffLn2b=(mode==0||mode==2)&&radiiPoints[0].z<0&&radiiPoints[Lrp-1].z<0?
concat([negRP2a],[endP2a],OffLn2,[endP2b],[negRP2b])
:(mode==0||mode==2)&&rp[0].z<0?
:(mode==0||mode==2)&&radiiPoints[0].z<0?
concat([negRP2a],[endP2a],OffLn2,[endP2b])
:(mode==0||mode==2)&&rp[Lrp-1].z<0?
:(mode==0||mode==2)&&radiiPoints[Lrp-1].z<0?
concat([endP2a],OffLn2,[endP2b],[negRP2b])
:mode==0||mode==2?
concat([endP2a],OffLn2,[endP2b])
:
OffLn2
)//end of let()
o2undef==1?OffLn1b:concat(OffLn2b,revList(OffLn1b));
offset2undef==1?OffLn1b:concat(OffLn2b,revList(OffLn1b));
function revList(list)=//reverse list
let(Llist=len(list)-1)
@@ -395,7 +445,7 @@ function CWorCCW(p)=
let(
Lp=len(p),
e=[for(i=[0:Lp-1])
(p[wrap(i+0,Lp)].x-p[wrap(i+1,Lp)].x)*(p[wrap(i+0,Lp)].y+p[wrap(i+1,Lp)].y)
(p[listWrap(i+0,Lp)].x-p[listWrap(i+1,Lp)].x)*(p[listWrap(i+0,Lp)].y+p[listWrap(i+1,Lp)].y)
]
)
sign(sum(e));
@@ -409,25 +459,26 @@ function CentreN2PointsArc(p1,p2,cen,mode=0,fn)=
mode==3, plotted counter clockwise
*/
let(
CWorCCW=CWorCCW([cen,p1,p2]),//determine the direction of rotation
isCWorCCW=CWorCCW([cen,p1,p2]),//determine the direction of rotation
//determine the arc angle depending on the mode
p1p2Angle=cosineRuleAngle(p2,cen,p1),
arcAngle=
mode==0?p1p2Angle:
mode==1?p1p2Angle-360:
mode==2&&CWorCCW==-1?p1p2Angle:
mode==2&&CWorCCW== 1?p1p2Angle-360:
mode==3&&CWorCCW== 1?p1p2Angle:
mode==3&&CWorCCW==-1?p1p2Angle-360:
cosineRuleAngle(p2,cen,p1)
,
mode==2&&isCWorCCW==-1?p1p2Angle:
mode==2&&isCWorCCW== 1?p1p2Angle-360:
mode==3&&isCWorCCW== 1?p1p2Angle:
mode==3&&isCWorCCW==-1?p1p2Angle-360:
cosineRuleAngle(p2,cen,p1),
r=pointDist(p1,cen),//determine the radius
p1Angle=getAngle(cen,p1) //angle of line 1
)
[for(i=[0:fn]) [cos(p1Angle+(arcAngle/fn)*i*CWorCCW)*r+cen[0],sin(p1Angle+(arcAngle/fn)*i*CWorCCW)*r+cen[1]]];
[for(i=[0:fn])
let(angleIncrement=(arcAngle/fn)*i*isCWorCCW)
[cos(p1Angle+angleIncrement)*r+cen.x,sin(p1Angle+angleIncrement)*r+cen.y]];
function moveRadiiPoints(rp,tran=[0,0],rot=0)=
[for(i=rp)
function translateRadiiPoints(radiiPoints,tran=[0,0],rot=0)=
[for(i=radiiPoints)
let(
a=getAngle([0,0],[i.x,i.y]),//get the angle of the this point
h=pointDist([0,0],[i.x,i.y]) //get the hypotenuse/radius
@@ -436,25 +487,25 @@ function moveRadiiPoints(rp,tran=[0,0],rot=0)=
];
module round2d(OR=3,IR=1){
offset(OR){
offset(-IR-OR){
offset(IR){
offset(OR,$fn=100){
offset(-IR-OR,$fn=100){
offset(IR,$fn=100){
children();
}
}
}
}
module shell2d(o1,OR=0,IR=0,o2=0){
module shell2d(offset1,offset2=0,minOR=0,minIR=0){
difference(){
round2d(OR,IR){
offset(max(o1,o2)){
round2d(minOR,minIR){
offset(max(offset1,offset2)){
children(0);//original 1st child forms the outside of the shell
}
}
round2d(IR,OR){
round2d(minIR,minOR){
difference(){//round the inside cutout
offset(min(o1,o2)){
offset(min(offset1,offset2)){
children(0);//shrink the 1st child to form the inside of the shell
}
if($children>1){
@@ -478,25 +529,25 @@ module internalSq(size,r,center=0){
}
}
module r_extrude(ln,r1=0,r2=0,fn=30){
module extrudeWithRadius(length,r1=0,r2=0,fn=30){
n1=sign(r1);n2=sign(r2);
r1=abs(r1);r2=abs(r2);
translate([0,0,r1]){
linear_extrude(ln-r1-r2){
linear_extrude(length-r1-r2){
children();
}
}
for(i=[0:1/fn:1]){
translate([0,0,i*r1]){
linear_extrude(r1/fn){
offset(n1*sqrt(sq(r1)-sq(r1-i*r1))-n1*r1){
for(i=[0:fn-1]){
translate([0,0,i/fn*r1]){
linear_extrude(r1/fn+0.01){
offset(n1*sqrt(sq(r1)-sq(r1-i/fn*r1))-n1*r1){
children();
}
}
}
translate([0,0,ln-r2+i*r2]){
linear_extrude(r2/fn){
offset(n2*sqrt(sq(r2)-sq(i*r2))-n2*r2){
translate([0,0,length-r2+i/fn*r2]){
linear_extrude(r2/fn+0.01){
offset(n2*sqrt(sq(r2)-sq(i/fn*r2))-n2*r2){
children();
}
}
@@ -504,19 +555,19 @@ module r_extrude(ln,r1=0,r2=0,fn=30){
}
}
function mirrorPoints(b,rot=0,atten=[0,0])= //mirrors a list of points about Y, ignoring the first and last points and returning them in reverse order for use with polygon or polyRound
function mirrorPoints(radiiPoints,rot=0,endAttenuation=[0,0])= //mirrors a list of points about Y, ignoring the first and last points and returning them in reverse order for use with polygon or polyRound
let(
a=moveRadiiPoints(b,[0,0],-rot),
temp3=[for(i=[0+atten[0]:len(a)-1-atten[1]])
a=translateRadiiPoints(radiiPoints,[0,0],-rot),
temp3=[for(i=[0+endAttenuation[0]:len(a)-1-endAttenuation[1]])
[a[i][0],-a[i][1],a[i][2]]
],
temp=moveRadiiPoints(temp3,[0,0],rot),
temp=translateRadiiPoints(temp3,[0,0],rot),
temp2=revList(temp3)
)
concat(b,temp2);
concat(radiiPoints,temp2);
function processRadiiPoints(rp)=
[for(i=[0:len(rp)-1])
[for(i=[0:len(rp)-1])
processRadiiPoints2(rp,i)
];
@@ -640,9 +691,9 @@ function getAngle(p1,p2)=p1==p2?0:invtan(p2[0]-p1[0],p2[1]-p1[1]);
function getMidpoint(p1,p2)=[(p1[0]+p2[0])/2,(p1[1]+p2[1])/2]; //returns the midpoint of two points
function pointDist(p1,p2)=sqrt(abs(sq(p1[0]-p2[0])+sq(p1[1]-p2[1]))); //returns the distance between two points
function isColinear(p1,p2,p3)=getGradient(p1,p2)==getGradient(p2,p3)?1:0;//return 1 if 3 points are colinear
module polyline(p) {
module polyline(p, width=0.3) {
for(i=[0:max(0,len(p)-1)]){
line(p[i],p[wrap(i+1,len(p) )]);
color([i*1/len(p),1-i*1/len(p),0,0.5])line(p[i],p[listWrap(i+1,len(p) )],width);
}
} // polyline plotter
module line(p1, p2 ,width=0.3) { // single line plotter
@@ -657,7 +708,7 @@ module line(p1, p2 ,width=0.3) { // single line plotter
}
function getpoints(p)=[for(i=[0:len(p)-1])[p[i].x,p[i].y]];// gets [x,y]list of[x,y,r]list
function wrap(x,x_max=1,x_min=0) = (((x - x_min) % (x_max - x_min)) + (x_max - x_min)) % (x_max - x_min) + x_min; // wraps numbers inside boundaries
function listWrap(x,x_max=1,x_min=0) = (((x - x_min) % (x_max - x_min)) + (x_max - x_min)) % (x_max - x_min) + x_min; // wraps numbers inside boundaries
function rnd(a = 1, b = 0, s = []) =
s == [] ?
(rands(min(a, b), max( a, b), 1)[0]):(rands(min(a, b), max(a, b), 1, s)[0]); // nice rands wrapper
(rands(min(a, b), max( a, b), 1)[0]):(rands(min(a, b), max(a, b), 1, s)[0]); // nice rands wrapper

269
roundAnythingExamples.scad Normal file
View File

@@ -0,0 +1,269 @@
include <polyround.scad>
basicPolyRoundExample();
// polyLineExample();
// parametricPolyRoundExample();
// experimentalParametricPolyRoundExample();
// conflicResolutionExample();
// translateRadiiPointsExample();
// 2dShellExample();
// beamChainExample();
// mirrorPointsExample();
// radiusExtrudeExample();
// polyRoundExtrudeExample();
// testing
// testGeometries();
module basicPolyRoundExample(){
// polyLine is a dev helper. Aim is to show the points of the polygon and their order before
// you're ready to move on to polyRound and a polygon
radiiPoints=[[-4,0,1],[5,3,1.5],[0,7,0.1],[8,7,10],[20,20,0.8],[10,0,10]];
polygon(polyRound(radiiPoints,30));
%translate([0,0,0.3])polygon(getpoints(radiiPoints));//transparent copy of the polgon without rounding
}
module polyLineExample() {
radiiPoints=[[-4,0,1],[5,3,1.5],[0,7,0.1],[8,7,10],[20,20,0.8],[10,0,10]];
polyline(polyRound(radiiPoints,3), 0.05);
translate([0,10,0])
polyline(radiiPoints, 0.05);
}
module parametricPolyRoundExample() {
//Example of how a parametric part might be designed with this tool
width=20; height=25;
slotW=8; slotH=15;
slotPosition=8;
minR=1.5; farcornerR=6;
internalR=3;
// radii points defined in terms of shape dimensions
points=[
[0, 0, farcornerR],
[0, height, minR],
[slotPosition, height, minR],
[slotPosition, height-slotH, internalR],
[slotPosition+slotW, height-slotH, internalR],
[slotPosition+slotW, height, minR],
[width, height, minR],
[width, 0, minR]
];
translate([-25,0,0]){
polygon(polyRound(points,5));
}
%translate([-25,0,0.2])polygon(getpoints(points));//transparent copy of the polgon without rounding
}
module experimentalParametricPolyRoundExample() {
//very similar to parametric example, but with some experimental syntax
width=20; height=25;
slotW=8; slotH=15;
slotPosition=8;
minR=1.5; farcornerR=6;
internalR=3;
// radii points defined in terms of shape dimensions
points2=[
[0, 0, farcornerR],
["l", height, minR],
[slotPosition, "l", minR],
["l", height-slotH, internalR],
[slotPosition+slotW, "l", internalR],
["l", height, minR],
[width, "l", minR],
["l", height*0.2, minR],
[45, 0, minR+5, "ayra"]
];
translate([-50,0,0])polygon(polyRound(points2,5));
%translate([-50,0,0.2])polygon(getpoints(processRadiiPoints(points2)));//transparent copy of the polgon without rounding
}
module conflicResolutionExample(){
//example of radii conflict handling and debuging feature
function makeRadiiPoints(r1, r2)=[[0,0,0],[0,20,r1],[20,20,r2],[20,0,0]];
// the squre shape being 20 wide, two radii of 10 both fit into the shape (just)
translate([-25,0,0])polygon(polyRound(makeRadiiPoints(10,10),50));
//radii are too large and are reduced to fit and will be reduce to 10 and 10
translate([0,0,0])polygon(polyRound(makeRadiiPoints(30,30),50));
//radii are too large again and are reduced to fit, but keep their ratios r1 will go from 10 to 4 and r2 will go from 40 to 16
translate([25,0,0])polygon(polyRound(makeRadiiPoints(10,40),50));
//mode 2 = no radii limiting
translate([50,0,0])polygon(polyRound(makeRadiiPoints(12,20),50,mode=2));
}
module translateRadiiPointsExample() {
// This example shows how a list of points can be used multiple times in the same
nutW=5.5; nutH=3; boltR=1.6;
minT=2; minR=0.8;
function nutCapture(startAndEndRadius=0)=[
[-boltR, 0, startAndEndRadius],
[-boltR, minT, 0],
[-nutW/2, minT, minR],
[-nutW/2, minT+nutH, minR],
[nutW/2, minT+nutH, minR],
[nutW/2, minT, minR],
[boltR, minT, 0],
[boltR, 0, startAndEndRadius],
];
negativeNutCapture=translateRadiiPoints(nutCapture(),tran=[5,0]);
rotatedNegativeNutCapture=translateRadiiPoints(nutCapture(1),tran=[20,5],rot=90);
aSquare=concat(
[[0,0,0]],
negativeNutCapture,
[[20,0,0]],
rotatedNegativeNutCapture,
[[20,10,0]],
[[0,10,0]]
);
polygon(polyRound(aSquare,20));
translate([-5,0,0])polygon(polyRound(nutCapture(),20));
}
module 2dShellExample(){
radiiPoints=[[-4,0,1],[5,3,1.5],[0,7,0.1],[8,7,10],[20,20,0.8],[10,0,10]];
linear_extrude(1)shell2d(-0.5)polygon(polyRound(radiiPoints,30));
translate([0,-10,0])linear_extrude(1)shell2d(-0.5){
polygon(polyRound(radiiPoints,30));
translate([8,8])gridpattern(memberW = 0.3, sqW = 1, iter = 17, r = 0.2);
}
}
module beamChainExample(){
function beamPoints(r1,r2,rStart=0,rEnd=0)=[[0,0,rStart],[2,8,0],[5,4,r1],[15,10,r2],[17,2,rEnd]];
// chained lines by themselves
translate([0,0,0]){
radiiPoints=beamPoints(0,0);
for(i=[0: len(radiiPoints)-1]){color("red")translate([radiiPoints[i].x,radiiPoints[i].y,0])cylinder(d=0.2, h=1);}
linear_extrude(1)polygon(polyRound(beamChain(radiiPoints,offset1=0.02, offset2=-0.02),20));
}
// Add some radii to the line transitions
translate([0,-7,0]){
radiiPoints=beamPoints(2,1);
for(i=[0: len(radiiPoints)-1]){color("red")translate([radiiPoints[i].x,radiiPoints[i].y,0])cylinder(d=0.2, h=1);}
linear_extrude(1)polygon(polyRound(beamChain(radiiPoints,offset1=0.02, offset2=-0.02),20));
}
// Give make the lines beams with some thickness
translate([0,-7*2,0]){
radiiPoints=beamPoints(2,1);
linear_extrude(1)polygon(polyRound(beamChain(radiiPoints,offset1=0.5, offset2=-0.5),20));
}
// Add an angle to the start of the beam
translate([0,-7*3,0]){
radiiPoints=beamPoints(2,1);
linear_extrude(1)polygon(polyRound(beamChain(radiiPoints,offset1=0.5, offset2=-0.5, startAngle=45),20));
}
// Put a negative radius at the start for transationing to a flat surface
translate([0,-7*4,0]){
radiiPoints=beamPoints(2,1,rStart=-0.7);
linear_extrude(1)polygon(polyRound(beamChain(radiiPoints,offset1=0.5, offset2=-0.5, startAngle=45),20));
}
// Define more points for a polygon to be atteched to the end of the beam chain
clipP=[[16,1.2,0],[16,0,0],[16.5,0,0],[16.5,1,0.2],[17.5,1,0.2],[17.5,0,0],[18,0,0],[18,1.2,0]];
translate([-15,-7*5+3,0]){
for(i=[0:len(clipP)-1]){color("red")translate([clipP[i].x,clipP[i].y,0])cylinder(d=0.2, h=1);}
linear_extrude(1)polygon(polyRound(clipP,20));
}
// Attached to the end of the beam chain by dividing the beam paths in forward and return and
// concat other polygon inbetween
translate([0,-7*6,0]){
radiiPoints=beamPoints(2,1);
forwardPath=beamChain(radiiPoints,offset1=0.5,startAngle=-15,mode=2);
returnPath=revList(beamChain(radiiPoints,offset1=-0.5,startAngle=-15,mode=2));
entirePath=concat(forwardPath,clipP,returnPath);
linear_extrude(1)polygon(polyRound(entirePath,20));
}
// Add transitioning radii into the end polygong
translate([0,-7*7-2,0]){
radiiPoints=beamPoints(2,1,rEnd=3);
forwardPath=beamChain(radiiPoints,offset1=0.5,startAngle=-15,mode=2);
returnPath=revList(beamChain(radiiPoints,offset1=-0.5,startAngle=-15,mode=2));
entirePath=concat(forwardPath,clipP,returnPath);
linear_extrude(1)polygon(polyRound(entirePath,20));
}
// Define multiple shells from the the one set of points
translate([0,-7*9,0]){
radiiPoints=beamPoints(2,1,rEnd=3);
for(i=[0:2]){linear_extrude(1)polygon(polyRound(beamChain(radiiPoints,offset1=-1+i*0.4, offset2=-1+i*0.4+0.25),20));}
}
}
module mirrorPointsExample(){
function points(endR=0)=[[0,0,0],[2,8,0],[5,4,3],[15,10,0.5],[10,2,endR]];
mirroredPoints=mirrorPoints(points(0),0,[1,0]);
polygon(polyRound(mirroredPoints,20));
mirroredPoints2=mirrorPoints(points(7),0,[1,0]);
translate([0,-20,0])polygon(polyRound(mirroredPoints2,20));
}
module radiusExtrudeExample(){
radiiPoints=[[-4,0,1],[5,3,1.5],[0,7,0.1],[8,7,10],[20,20,0.8],[10,0,10]];
extrudeWithRadius(3,0.5,0.5,50)polygon(polyRound(radiiPoints,30));
#translate([7,4,3])extrudeWithRadius(3,-0.5,0.95,50)circle(1,$fn=30);
}
module polyRoundExtrudeExample(){
radiiPoints=[[10,0,10],[20,20,1.1],[8,7,10],[0,7,0.3],[5,3,0.1],[-4,0,1]];
polyRoundExtrude(radiiPoints,2,0.5,-0.8,fn=8);
}
module gridpattern(memberW = 4, sqW = 12, iter = 5, r = 3){
round2d(0, r)rotate([0, 0, 45])translate([-(iter * (sqW + memberW) + memberW) / 2, -(iter * (sqW + memberW) + memberW) / 2])difference(){
square([(iter) * (sqW + memberW) + memberW, (iter) * (sqW + memberW) + memberW]);
for (i = [0:iter - 1], j = [0:iter - 1]){
translate([i * (sqW + memberW) + memberW, j * (sqW + memberW) + memberW])square([sqW, sqW]);
}
}
}
module testGeometries() {
// Check these shapes preview (plus "thrown together") and render correctly with each PR
points = [
[0, 10, 5],
[10, 0, 5],
[0, -10, 5],
[-10, 0, 5],
];
reversedPoints = [
[-10, 0, 5],
[0, -10, 5],
[10, 0, 5],
[0, 10, 5],
];
polyRoundExtrudeTestShape(points);
translate([0,20,0])polyRoundExtrudeTestShape(reversedPoints);
// Bug report submitted by @lopisan in issue #16, similar to #11, geometry breaks with 90 degree angles
didBreakWhen0=0;
issue16pointsa=[[0, 0, 0], [0+didBreakWhen0, 10, 0], [10, 10+didBreakWhen0, 0]];
translate([20,0,0])linear_extrude(1)polygon(polyRound( beamChain(issue16pointsa, offset1=1, offset2=-1), 30));
didBreakWhen0b=1e-6;
issue16pointsb=[[0, 0, 0], [0+didBreakWhen0b, 10, 0], [10, 10+didBreakWhen0b, 0]];
translate([20,15,0])linear_extrude(1)polygon(polyRound( beamChain(issue16pointsb, offset1=1, offset2=-1), 30));
}
module polyRoundExtrudeTestShape(points) {
// make sure no faces are inverted
difference() {
translate([0, 0, -2.5]) polyRoundExtrude(points,r1=-1,r2=1);
sphere(d=9);
translate([0,0,7])sphere(d=9);
}
}