byuu says (in the public announcement):
This release adds very preliminary emulation of the Sega Master System
(Mark III), Sega Game Gear, Sega Mega Drive (Genesis), and NEC PC Engine
(Turbografx-16). These cores do not yet offer sound emulation, save
states or cheat codes.
I'm always very hesitant to release a new emulation core in its alpha
stages, as in the past this has resulted in lasting bad impressions
of cores that have since improved greatly. For instance, the Game Boy
Advance emulation offered today is easily the second most accurate around,
yet it is still widely judged by its much older alpha implementation.
However, it's always been tradition with higan to not hold onto code
in secret. Rather than delay future releases for another year or two,
I'll put my faith in you all to understand that the emulation of these
systems will improve over time.
I hope that by releasing things as they are now, I might be able to
receive some much needed assistance in improving these cores, as the
documentation for these new systems is very much less than ideal.
byuu says (in the WIP forum):
Changelog:
- PCE: latch background scroll registers (fixes Neutopia scrolling)
- PCE: clip background attribute table scrolling (fixes Blazing Lazers
scrolling)
- PCE: support background/sprite enable/disable bits
- PCE: fix large sprite indexing (fixes Blazing Lazers title screen
sprites)
- HuC6280: wrap zeropage accesses to never go beyond $20xx
- HuC6280: fix alternating addresses for block move instructions
(fixes Neutopia II)
- HuC6280: block move instructions save and restore A,X,Y registers
- HuC6280: emulate BCD mode (may not be 100% correct, based on SNES
BCD) (fixes Blazing Lazers scoring)
byuu says:
Changelog:
- PCE: added 384KB HuCard ROM mirroring mode
- PCE: corrected D-pad polling order
- PCE: corrected palette color ordering (GRB, not RGB -- yes,
seriously)
- PCE: corrected SATB DMA -- should write to SATB, not to VRAM
- PCE: broke out Background, Sprite VDC settings to separate
subclasses
- PCE: emulated VDC backgrounds
- PCE: emulated VDC sprites
- PCE: emulated VDC sprite overflow, collision interrupts
- HuC6280: fixed disassembler output for STi instructions
- HuC6280: added missing LastCycle check to interrupt()
- HuC6280: fixed BIT, CMP, CPX, CPY, TRB, TSB, TST flag testing and
result
- HuC6280: added extra cycle delays to the block move instructions
- HuC6280: fixed ordering for flag set/clear instructions (happens
after LastCycle check)
- HuC6280: removed extra cycle from immediate instructions
- HuC6280: fixed indirectLoad, indirectYStore absolute addressing
- HuC6280: fixed BBR, BBS zeropage value testing
- HuC6280: fixed stack push/pull direction
Neutopia looks okay until the main title screen, then there's some
gibberish on the bottom. The game also locks up with some gibberish once
you actually start a new game. So, still not playable just yet =(
byuu says:
Changelog:
- PCE: emulated gamepad polling
- PCE: emulated CPU interrupt sources
- PCE: emulated timer
- PCE: smarter emulation of ST0,ST1,ST2 instructions
- PCE: better structuring of CPU, VDP IO registers
- PCE: connected palette generation to the interface
- PCE: emulated basic VDC timing
- PCE: emulated VDC Vblank, Coincidence, and DMA completion IRQs
- PCE: emulated VRAM, SATB DMA transfers
- PCE: emulated VDC I/O registers
Everything I've implemented today likely has lots of bugs, and is
untested for obvious reasons.
So basically, after I fix many horrendous bugs, it should now be
possible to implement the VDC and start getting graphical output.
byuu says:
Changelog:
- PCE: HuC6280 core completed
There's bound to be a countless stream of bugs, and the cycle counts are
almost certainly not exact yet, but ... all instructions are implemented.
So at this point, I can start comparing trace logs against Mednafen's
debugger output.
Of course, we're very likely to immediately slam into a wall of needing
I/O registers implemented for the VDC in order to proceed further.
byuu says:
Changelog:
- SMS: fixed controller connection bug
- SMS: fixed Z80 reset bug
- PCE: emulated HuC6280 MMU
- PCE: emulated HuC6280 RAM
- PCE: emulated HuCard ROM reading
- PCE: implemented 178 instructions
- tomoko: removed "soft reset" functionality
- tomoko: moved "power cycle" to just above "unload" option
I'm not sure of the exact number of HuC6280 instructions, but it's less
than 260.
Many of the ones I skipped are HuC6280-originals that I don't know how
to emulate just yet.
I'm also really unsure about the zero page stuff. I believe we should be
adding 0x2000 to the addresses to hit page 1, which is supposed to be
mapped to the zero page (RAM). But when I look at turboEMU's source, I
have no clue how the hell it could possibly be doing that. It looks to
be reading from page 0, which is almost always ROM, which would be ...
really weird.
I also don't know if I've emulated the T mode opcodes correctly or not.
The documentation on them is really confusing.
byuu says:
Changelog:
- converted Emulator::Interface::Bind to Emulator::Platform
- temporarily disabled SGB hooks
- SMS: emulated Game Gear palette (latching word-write behavior not
implemented yet)
- SMS: emulated Master System 'Reset' button, Game Gear 'Start' button
- SMS: removed reset() functionality, driven by the mappable input now
instead
- SMS: split interface class in two: one for Master System, one for
Game Gear
- SMS: emulated Game Gear video cropping to 160x144
- PCE: started on HuC6280 CPU core—so far only registers, NOP
instruction has been implemented
Errata:
- Super Game Boy support is broken and thus disabled
- if you switch between Master System and Game Gear without
restarting, bad things happen:
- SMS→GG, no video output on the GG
- GG→SMS, no input on the SMS
I'm not sure what's causing the SMS\<-\>GG switch bug, having a hard
time debugging it. Help would be very much appreciated, if anyone's up
for it. Otherwise I'll keep trying to track it down on my end.
byuu says:
Changelog:
- SMS: added cartridge ROM/RAM mirroring (fixes Alex Kidd)
- SMS: fixed 8x16 sprite mode (fixes Wonder Boy, Ys graphics)
- Z80: emulated "ex (sp),hl" instruction
- Z80: fixed INx NF (should be set instead of cleared)
- Z80: fixed loop condition check for CPxR, INxR, LDxR, OTxR (fixes
walking in Wonder Boy)
- SFC: removed Debugger and sfc/debugger.hpp
- icarus: connected MS, GG, MD importing to the scan dialog
- PCE: added emulation skeleton to higan and icarus
At this point, Master System games are fairly highly compatible, sans
audio. Game Gear games are running, but I need to crop the resolution
and support the higher color palette that they can utilize. It's really
something else the way they handled the resolution shrink on that thing.
The last change is obviously going to be the biggest news.
I'm very well aware it's not an ideal time to start on a new emulation
core, with the MS and MD cores only just now coming to life with no
audio support.
But, for whatever reason, my heart's really set on working on the PC
Engine. I wanted to write the final higan skeleton core, and get things
ready so that whenever I'm in the mood to work on the PCE, I can do so.
The skeleton is far and away the most tedious and obnoxious part of the
emulator development, because it's basically all just lots of
boilerplate templated code, lots of new files to create, etc.
I really don't know how things are going to proceed ... but I can say
with 99.9% certainty that this will be the final brand new core ever
added to higan -- at least one written by me, that is. This was
basically the last system from my childhood that I ever cared about.
It's the last 2D system with games that I really enjoy playing. No other
system is worth dividing my efforts and reducing the quality and amount
of time to work on the systems I have.
In the future, there will be potential for FDS, Mega CD and PCE-CD
support. But those will all be add-ons, and they'll all be really
difficult and challenge the entire design of higan's UI (it's entirely
cartridge-driven at this time.) None of them will be entirely new cores
like this one.
byuu says:
Changelog:
- SMS: background VDP clips partial tiles on the left (math may not be
right ... it's hard to reason about)
- SMS: fix background VDP scroll locks
- SMS: fix VDP sprite coordinates
- SMS: paint black after the end of the visible display
- todo: shouldn't be a brute force at the end of the main VDP
loop, should happen in each rendering unit
- higan: removed emulator/debugger.hpp
- higan: removed privileged: access specifier
- SFC: removed debugger hooks
- todo: remove sfc/debugger.hpp
- Z80: fixed disassembly of (fd,dd) cb (displacement) (opcode)
instructions
- Z80: fix to prevent interrupts from firing between ix/iy prefixes
and opcodes
- todo: this is a rather hacky fix that could, if exploited, crash
the stack frame
- Z80: fix BIT flags
- Z80: fix ADD hl,reg flags
- Z80: fix CPD, CPI flags
- Z80: fix IND, INI flags
- Z80: fix INDR, INIT loop flag check
- Z80: fix OUTD, OUTI flags
- Z80: fix OTDR, OTIR loop flag check
byuu says:
Changelog:
- SMS: emulated the remaining 240 instructions in the (0xfd, 0xdd)
0xcb (displacement) (opcode) set
- 1/8th of these were "legal" instructions, and apparently games
use them a lot
- SMS: emulated the standard gamepad controllers
- reset button not emulated yet
The reset button is tricky. In every other case, reset is a hardware
thing that instantly reboots the entire machine.
But on the SMS, it's more like a gamepad button that's attached to the
front of the device. When you press it, it fires off a reset vector
interrupt and the gamepad polling routine lets you query the status of
the button.
Just having a reset option in the "Master System" hardware menu is not
sufficient to fully emulate the behavior. Even more annoying is that the
Game Gear doesn't have such a button, yet the core information structs
aren't flexible enough for the Master System to have it, and the Game
Gear to not have it, in the main menu. But that doesn't matter anyway,
since it won't work having it in the menu for the Master System.
So as a result, I'm going to have to have a new "input device" called
"Hardware" that has the "Reset" button listed under there. And for the
sake of consistency, I'm not sure if we should treat the other systems
the same way or not :/
byuu says:
Changelog:
- SMS: emulated the generic Sega memory mapper (none of the more
limited forms of it yet)
- (missing ROM shift, ROM write enable emulation -- no commercial
games use either, though)
- SMS: bus I/O returns 0xff instead of 0x00 so games don't think every
key is being pressed at once
- (this is a hack until I implement proper controller pad reading)
- SMS: very limited protection against reading/writing past the end of
ROM/RAM (todo: should mirror)
- SMS: VDP background HSCROLL subtracts, rather than adds, to the
offset (unlike VSCROLL)
- SMS: VDP VSCROLL is 9-bit, modulates voffset+vscroll to 224 in
192-line mode (32x28 tilemap)
- SMS: VDP tiledata for backgrounds and sprites use `7-(x&7)` rather
than `(x&7)`
- SMS: fix output color to be 6-bit rather than 5-bit
- SMS: left clip uses register `#7`, not palette color `#7`
- (todo: do we want `color[reg7]` or `color[16 + reg7]`?)
- SMS: refined handling of 0xcb, 0xed prefixes in the Z80 core and its
disassembler
- SMS: emulated (0xfd, 0xdd) 0xcb opcodes 0x00-0x0f (still missing
0x10-0xff)
- SMS: fixed 0xcb 0b-----110 opcodes to use direct HL and never allow
(IX,IY)+d
- SMS: fixed major logic bug in (IX,IY)+d displacement
- (was using `read(x)` instead of `operand()` for the displacement
byte fetch before)
- icarus: fake there always being 32KiB of RAM in all SMS cartridges
for the time being
- (not sure how to detect this stuff yet; although I've read it's
not even really possible `>_>`)
TODO: remove processor/z80/dissassembler.cpp code block at line 396 (as it's unnecessary.)
Lots of commercial games are starting to show trashed graphical output now.
byuu says:
Changelog:
- Makefile: added $(windres), -lpthread to Windows port
- GBA: WAITCNT.prefetch is not writable (should fix Donkey Kong: King
of Swing) \[endrift\]
- SMS: fixed hcounter shift value \[hex\_usr\]
- SMS: emulated interrupts (reset button isn't hooked up anywhere, not
sure where to put it yet)
This WIP actually took a really long time because the documentation on
SMS interrupts was all over the place. I'm hoping I've emulated them
correctly, but I honestly have no idea. It's based off my best
understanding from four or five different sources. So it's probably
quite buggy.
However, a few interrupts fire in Sonic the Hedgehog, so that's
something to start with. Now I just have to hope I've gotten some games
far enough in that I can start seeing some data in the VDP VRAM. I need
that before I can start emulating graphics mode 4 to get some actual
screen output.
Or I can just say to hell with it and use a "Hello World" test ROM.
That'd probably be smarter.
byuu says:
Changelog:
- SMS: extended bus mapping of in/out ports: now decoding them fully
inside ms/bus
- SMS: moved Z80 disassembly code from processor/z80 to ms/cpu
(cosmetic)
- SMS: hooked up non-functional silent PSG sample generation, so I can
cap the framerate at 60fps
- SMS: hooked up the VDP main loop: 684 clocks/scanline, 262
scanlines/frame (no PAL support yet)
- SMS: emulated the VDP Vcounter and Hcounter polling ... hopefully
it's right, as it's very bizarre
- SMS: emulated VDP in/out ports (data read, data write, status read,
control write, register write)
- SMS: decoding and caching all VDP register flags (variable names
will probably change)
- nall: \#undef IN on Windows port (prevent compilation warning on
processor/z80)
Watching Sonic the Hedgehog, I can definitely see some VDP register
writes going through, which is a good sign.
Probably the big thing that's needed before I can get enough into the
VDP to start showing graphics is interrupt support. And interrupts are
never fun to figure out :/
What really sucks on this front is I'm flying blind on the Z80 CPU core.
Without a working VDP, I can't run any Z80 test ROMs to look for CPU
bugs. And the CPU is certainly too buggy still to run said test ROM
anyway. I can't find any SMS emulators with trace logging from reset.
Such logs vastly accelerate tracking down CPU logic bugs, so without
them, it's going to take a lot longer.
byuu says:
This is a really tiny WIP. Just wanted to add the known fixes before I start debugging it against Mednafen in a fork.
Changelog:
- Z80: fixed flag calculations on 8-bit ADC, ADD, SBC, SUB
- Z80: fixed flag calculations on 16-bit ADD
- Z80: simplified DAA logic \[AWJ\]
- Z80: RETI sets IFF1=IFF2 (same as RETN)
byuu says:
Changelog:
- Z80: emulated 83 new instructions
- Z80: timing improvements
DAA is a skeleton implementation to complete the normal opcode set. Also
worth noting that I don't know exactly what the hell RETI is doing,
so for now it acts like RET. RETN probably needs some special handling
besides just setting IFF1=IFF2 as well.
I'm now missing 24 ED-prefix instructions, plus DAA, for a total of 25
opcodes remaining. And then, of course, several weeks worth of debugging
all of the inevitable bugs in the core.
byuu says:
Changelog:
- added \~130 new PAL games to icarus (courtesy of Smarthuman
and aquaman)
- added all three Korean-localized games to icarus
- sfc: removed SuperDisc emulation (it was going nowhere)
- sfc: fixed MSU1 regression where the play/repeat flags were not
being cleared on track select
- nall: cryptography support added; will be used to sign future
databases (validation will always be optional)
- minor shims to fix compilation issues due to nall changes
The real magic is that we now have 25-30% of the PAL SNES library in
icarus!
Signing will be tricky. Obviously if I put the public key inside the
higan archive, then all anyone has to do is change that public key for
their own releases. And if you download from my site (which is now over
HTTPS), then you don't need the signing to verify integrity. I may just
put the public key on my site on my site and leave it at that, we'll
see.
byuu says:
Changelog:
- added 30 new PAL games to icarus (courtesy of Mikerochip)
- new version of libco no longer requires mprotect nor W|X permissions
- nall: default C compiler to -std=c11 instead of -std=c99
- nall: use `-fno-strict-aliasing` during compilation
- updated nall/certificates (hopefully for the last time)
- updated nall/http to newer coding conventions
- nall: improve handling of range() function
I didn't really work on higan at all, this is mostly just a release
because lots of other things have changed.
The most interesting is `-fno-strict-aliasing` ... basically, it joins
`-fwrapv` as being "stop the GCC developers from doing *really* evil
shit that could lead to security vulnerabilities or instabilities."
For the most part, it's a ~2% speed penalty for higan. Except for the
Sega Genesis, where it's a ~10% speedup. I have no idea how that's
possible, but clearly something's going very wrong with strict aliasing
on the Genesis core.
So ... it is what it is. If you need the performance for the non-Genesis
cores, you can turn it off in your builds. But I'm getting quite sick of
C++'s "surprises" and clever compiler developers, so I'm keeping it on
in all of my software going forward.
byuu says:
Changelog:
- Z80: added most opcodes between 0x00 and 0x3f (two or three hard
ones missing still)
- Z80: redid register declaration *again* to handle AF', BC', DE',
HL' (ugggggh, the fuck? Alternate registers??)
- basically, using `#define <register name>` values to get around
horrendously awful naming syntax
- Z80: improved handling of displace() so that it won't ever trigger
on (BC) or (DE)
byuu says:
Changelog:
- Z80: implemented 113 new instructions (all the easy
LD/ADC/ADD/AND/OR/SBC/SUB/XOR ones)
- Z80: used alternative to castable<To, With> type (manual cast inside
instruction() register macros)
- Z80: debugger: used register macros to reduce typing and increase
readability
- Z80: debugger: smarter way of handling multiple DD/FD prefixes
(using gotos, yay!)
- ruby: fixed crash with Windows input driver on exit (from SuperMikeMan)
I have no idea how the P/V flag is supposed to work on AND/OR/XOR, so
that's probably wrong for now. HALT is also mostly a dummy function for
now. But I typically implement those inside instruction(), so it
probably won't need to be changed? We'll see.
byuu says:
Changelog:
- added (poorly-named) castable<To, With> template
- Z80 debugger rewritten to make declaring instructions much simpler
- Z80 has more instructions implemented; supports displacement on
(IX), (IY) now
- added `Processor::M68K::Bus` to mirror `Processor::Z80::Bus`
- it does add a pointer indirection; so I'm not sure if I want to
do this for all of my emulator cores ...
byuu says:
Changelog:
- rewrote the Z80 core to properly handle 0xDD (IX0 and 0xFD (IY)
prefixes
- added Processor::Z80::Bus as a new type of abstraction
- all of the instructions implemented have their proper T-cycle counts
now
- added nall/certificates for my public keys
The goal of `Processor::Z80::Bus` is to simulate the opcode fetches being
2-read + 2-wait states; operand+regular reads/writes being 3-read. For
now, this puts the cycle counts inside the CPU core. At the moment, I
can't think of any CPU core where this wouldn't be appropriate. But it's
certainly possible that such a case exists. So this may not be the
perfect solution.
The reason for having it be a subclass of Processor::Z80 instead of
virtual functions for the MasterSystem::CPU core to define is due to
naming conflicts. I wanted the core to say `in(addr)` and have it take
the four clocks. But I also wanted a version of the function that didn't
consume time when called. One way to do that would be for the core to
call `Z80::in(addr)`, which then calls the regular `in(addr)` that goes to
`MasterSystem::CPU::in(addr)`. But I don't want to put the `Z80::`
prefix on all of the opcodes. Very easy to forget it, and then end up not
consuming any time. Another is to use uglier names in the
`MasterSystem::CPU` core, like `read_`, `write_`, `in_`, `out_`, etc. But,
yuck.
So ... yeah, this is an experiment. We'll see how it goes.
byuu says:
Changelog:
- MS: added ms/bus
- Z80: implemented JP/JR/CP/DI/IM/IN instructions
- MD/VDP: added window layer emulation
- MD/controller/gamepad: fixed d2,d3 bits (Altered Beast requires
this)
The Z80 is definitely a lot nastier than the LR35902. There's a lot of
table duplication with HL→IX→IY; and two of them nest two levels deep
(eg FD CB xx xx), so the design may change as I implement more.
byuu says:
Changelog:
- new md/bus/ module for bus reads/writes
- abstracts byte/word accesses wherever possible (everything but
RAM; forces all but I/O to word, I/O to byte)
- holds the system RAM since that's technically not part of the
CPU anyway
- added md/controller and md/system/peripherals
- added emulation of gamepads
- added stub PSG audio output (silent) to cap the framerate at 60fps
with audio sync enabled
- fixed VSRAM reads for plane vertical scrolling (two bugs here: add
instead of sub; interlave plane A/B)
- mask nametable read offsets (can't exceed 8192-byte nametables
apparently)
- emulated VRAM/VSRAM/CRAM reads from VDP data port
- fixed sprite width/height size calculations
- added partial emulation of 40-tile per scanline limitation (enough
to fix Sonic's title screen)
- fixed off-by-one sprite range testing
- fixed sprite tile indexing
- Vblank happens at Y=224 with overscan disabled
- unsure what happens when you toggle it between Y=224 and Y=240
... probably bad things
- fixed reading of address register for ADDA, CMPA, SUBA
- fixed sign extension for MOVEA effect address reads
- updated MOVEM to increment the read addresses (but not writeback)
for (aN) mode
With all of that out of the way, we finally have Sonic the Hedgehog
(fully?) playable. I played to stage 1-2 and through the special stage,
at least. EDIT: yeah, we probably need HIRQs for Labyrinth Zone.
Not much else works, of course. Most games hang waiting on the Z80, and
those that don't (like Altered Beast) are still royally screwed. Tons of
features still missing; including all of the Z80/PSG/YM2612.
A note on the perihperals this time around: the Mega Drive EXT port is
basically identical to the regular controller ports. So unlike with the
Famicom and Super Famicom, I'm inheriting the exension port from the
controller class.
byuu says:
Changelog:
- 68K: fixed NEG/NEGX operand order
- 68K: fixed bug in disassembler that was breaking trace logging
- VDP: improved sprite rendering (still 100% broken)
- VDP: added horizontal/vertical scrolling (90% broken)
Forgot:
- 68K: fix extension word sign bit on indexed modes for disassembler
as well
- 68K: emulate STOP properly (use r.stop flag; clear on IRQs firing)
I'm really wearing out fast here. The Genesis documentation is somehow
even worse than Game Boy documentation, but this is a far more complex
system.
It's a massive time sink to sit here banging away at every possible
combination of how things could work, only to see no positive
improvements. Nothing I do seems to get sprites to do a goddamn thing.
squee says the sprite Y field is 10-bits, X field is 9-bits. genvdp says
they're both 10-bits. BlastEm treats them like they're both 10-bits,
then masks off the upper bit so it's effectively 9-bits anyway.
Nothing ever bothers to tell you whether the horizontal scroll values
are supposed to add or subtract from the current X position. Probably
the most basic detail you could imagine for explaining horizontal
scrolling and yet ... nope. Nothing.
I can't even begin to understand how the VDP FIFO functionality works,
or what the fuck is meant by "slots".
I'm completely at a loss as how how in the holy hell the 68K works with
8-bit accesses. I don't know whether I need byte/word handlers for every
device, or if I can just hook it right into the 68K core itself. This
one's probably the most major design detail. I need to know this before
I go and implement the PSG/YM2612/IO ports-\>gamepads/Z80/etc.
Trying to debug the 68K is murder because basically every game likes to
start with a 20,000,000-instruction reset phase of checksumming entire
games, and clearing out the memory as agonizingly slowly as humanly
possible. And like the ARM, there's too many registers so I'd need three
widescreen monitors to comfortably view the entire debugger output lines
onscreen.
I can't get any test ROMs to debug functionality outside of full games
because every **goddamned** test ROM coder thinks it's acceptable to tell
people to go fetch some toolchain from a link that died in the late '90s
and only works on MS-DOS 6.22 to build their fucking shit, because god
forbid you include a 32KiB assembled ROM image in your fucking archives.
... I may have to take a break for a while. We'll see.
byuu says:
Changelog:
- 68K: MOVEQ is 8-bit signed
- 68K: disassembler was print EOR for OR instructions
- 68K: address/program-counter indexed mode had the signed-word/long
bit backward
- 68K: ADDQ/SUBQ #n,aN always works in long mode; regardless of size
- 68K→VDP DMA needs to use `mode.bit(0)<<22|dmaSource`; increment by
one instead of two
- Z80: added registers and initial two instructions
- MS: hooked up enough to load and start running games
- Sonic the Hedgehog can execute exactly one instruction... whoo.
byuu says:
Sorry, two WIPs in one day. Got excited and couldn't wait.
Changelog:
- ADDQ, SUBQ shouldn't update flags when targeting an address register
- ADDA should sign extend effective address reads
- JSR was pushing the PC too early
- some improvements to 8-bit register reads on the VDP (still needs
work)
- added H/V counter reads to the VDP IO port region
- icarus: added support for importing Master System and Game Gear ROMs
- tomoko: added library sub-menus for each manufacturer
- still need to sort Game Gear after Mega Drive somehow ...
The sub-menu system actually isn't all that bad. It is indeed a bit more
annoying, but not as annoying as I thought it was going to be. However,
it looks a hell of a lot nicer now.
byuu says:
Added VDP sprite rendering. Can't get any games far enough in to see if
it actually works. So in other words, it doesn't work at all and is 100%
completely broken.
Also added 68K exceptions and interrupts. So far only the VDP interrupt
is present. It definitely seems to be firing in commercial games, so
that's promising. But the implementation is almost certainly completely
wrong. There is fuck all of nothing for documentation on how interrupts
actually work. I had to find out the interrupt vector numbers from
reading the comments from the Sonic the Hedgehog disassembly. I have
literally no fucking clue what I0-I2 (3-bit integer priority value in
the status register) is supposed to do. I know that Vblank=6, Hblank=4,
Ext(gamepad)=2. I know that at reset, SR.I=7. I don't know if I'm
supposed to block interrupts when I is >, >=, <, <= to the interrupt
level. I don't know what level CPU exceptions are supposed to be.
Also implemented VDP regular DMA. No idea if it works correctly since
none of the commercial games run far enough to use it. So again, it's
horribly broken for usre.
Also improved VDP fill mode. But I don't understand how it takes
byte-lengths when the bus is 16-bit. The transfer times indicate it's
actually transferring at the same speed as the 68K->VDP copy, strongly
suggesting it's actually doing 16-bit transfers at a time. In which case,
what happens when you set an odd transfer length?
Also, both DMA modes can now target VRAM, VSRAM, CRAM. Supposedly there's
all kinds of weird shit going on when you target VSRAM, CRAM with VDP
fill/copy modes, but whatever. Get to that later.
Also implemented a very lazy preliminary wait mechanism to to stall out
a processor while another processor exerts control over the bus. This
one's going to be a major work in progress. For one, it totally breaks
the model I use to do save states with libco. For another, I don't
know if a 68K->VDP DMA instantly locks the CPU, or if it the CPU could
actually keep running if it was executing out of RAM when it started
the DMA transfer from ROM (eg it's a bus busy stall, not a hard chip
stall.) That'll greatly change how I handle the waiting.
Also, the OSS driver now supports Audio::Latency. Sound should be
even lower latency now. On FreeBSD when set to 0ms, it's absolutely
incredible. Cannot detect latency whatsoever. The Mario jump sound seems
to happen at the very instant I hear my cherry blue keyswitch activate.
byuu says:
I reworked the video sizing code. Ended up wasting five fucking hours
fighting GTK. When you call `gtk_widget_set_size_request`, it doesn't
actually happen then. This is kind of a big deal because when I then go
to draw onto the viewport, the actual viewport child window is still the
old size, so the image gets distorted. It recovers in a frame or so with
emulation, but if we were to put a still image on there, it would stay
distorted.
The first thought is, `while(gtk_events_pending())
gtk_main_iteration_do(false);` right after the `set_size_request`. But
nope, it tells you there's no events pending. So then you think, go
deeper, use `XPending()` instead. Same thing, GTK hasn't actually issued
the command to Xlib yet. So then you think, if the widget is realized,
just call a blocking `gtk_main_iteration`. One call does nothing, two
calls results in a deadlock on the second one ... do it before program
startup, and the main window will never appear. Great.
Oh, and it's not just the viewport. It's also the widget container area
of the windows, as well as the window itself, as well as the fullscreen
mode toggle effect. They all do this.
For the latter three, I couldn't find anything that worked, so I just
added 20ms loops of constantly calling `gtk_main_iteration_do(false)`
after each one of those things. The downside here is toggling the status
bar takes 40ms, so you'll see it and it'll feel a tiny bit sluggish.
But I can't have a 20ms wait on each widget resize, that would be
catastrophic to performance on windows with lots of widgets.
I tried hooking configure-event and size-allocate, but they were very
unreliable. So instead I ended up with a loop that waits up to a maximm
of 20ms that inspects the `widget->allocation.(width,height)` values
directly and waits for them to be what we asked for with
`set_size_request`.
There was some extreme ugliness in GTK with calling
`gtk_main_iteration_do` recursively (`hiro::Widget::setGeometry` is
called recursively), so I had to lock it to only happen on the top level
widgets (the child ones should get resized while waiting on the
top-level ones, so it should be fine in practice), and also only run it
on realized widgets.
Even still, I'm getting ~3 timeouts when opening the settings dialog in
higan, but no other windows. But, this is the best I can do for now.
And the reason for all of this pain? Yeah, updated the video code.
So the Emulator::Interface now has this:
struct VideoSize { uint width, height; }; //or requiem for a tuple
auto videoSize() -> VideoSize;
auto videoSize(uint width, uint height, bool arc) -> VideoSize;
The first function, for now, is just returning the literal surface size.
I may remove this ... one thing I want to allow for is cores that send
different texture sizes based on interlace/hires/overscan/etc settings.
The second function is more interesting. Instead of having the UI trying
to figure out sizing, I figure the emulation cores can do a better job
and we can customize it per-core now. So it gets the window's width and
height, and whether the user asked for aspect correction, and then
computes the best width/height ratio possible. For now they're all just
doing multiples of a 1x scale to the UI 2x,3x,4x modes.
We still need a third function, which will probably be what I repurpose
videoSize() for: to return the 'effective' size for pixel shaders, to
then feed into ruby, to then feed into quark, to then feed into our
shaders. Since shaders use normalized coordinates for pixel fetching,
this should work out just fine. The real texture size will be exposed to
quark shaders as well, of course.
Now for the main window ... it's just hard-coded to be 640x480, 960x720,
1280x960 for now. It works nicely for some cores on some modes, not so
much for others. Work in progress I guess.
I also took the opportunity to draw the about dialog box logo on the
main window. Got a bit fancy and used the old spherical gradient and
impose functionality of nall/image on it. Very minor highlight, nothing
garish. Just something nicer than a solid black window.
If you guys want to mess around with sizes, placements, and gradient
styles/colors/shapes ... feel free. If you come up with something nicer,
do share.
That's what led to all the GTK hell ... the logo wasn't drawing right as
you resized the window. But now it is, though I am not at all happy with
the hacking I had to do.
I also had to improve the video update code as a result of this:
- when you unload a game, it blacks out the screen
- if you are not quitting the emulator, it'll draw the logo; if
you are, it won't
- when you load a game, it black out the logo
These options prevent any unsightliness from resizing the viewport with
image data on it already
I need to redraw the logo when toggling fullscreen with no game loaded
as well for Windows, it seems.
byuu says:
Changelog:
- 68K: fixed bug that affected BSR return address
- VDP: added very preliminary emulation of planes A, B, W (W is
entirely broken though)
- VDP: added command/address stuff so you can write to VRAM, CRAM,
VSRAM
- VDP: added VRAM fill DMA
I would be really surprised if any commercial games showed anything at
all, so I'd probably recommend against wasting your time trying, unless
you're really bored :P
Also, I wanted to add: I am accepting patches\! So if anyone wants to
look over the 68K core for bugs, that would save me untold amounts of
time in the near future :D
byuu says:
Changelog:
- pulled the (u)intN type aliases into higan instead of leaving them
in nall
- added 68K LINEA, LINEF hooks for illegal instructions
- filled the rest of the 68K lambda table with generic instance of
ILLEGAL
- completed the 68K disassembler effective addressing modes
- still unsure whether I should use An to decode absolute
addresses or not
- pro: way easier to read where accesses are taking place
- con: requires An to be valid; so as a disassembler it does a
poor job
- making it optional: too much work; ick
- added I/O decoding for the VDP command-port registers
- added skeleton timing to all five processor cores
- output at 1280x480 (needed for mixed 256/320 widths; and to handle
interlace modes)
The VDP, PSG, Z80, YM2612 are all stepping one clock at a time and
syncing; which is the pathological worst case for libco. But they also
have no logic inside of them. With all the above, I'm averaging around
250fps with just the 68K core actually functional, and the VDP doing a
dumb "draw white pixels" loop. Still way too early to tell how this
emulator is going to perform.
Also, the 320x240 mode of the Genesis means that we don't need an aspect
correction ratio. But we do need to ensure the output window is a
multiple 320x240 so that the scale values work correctly. I was
hard-coding aspect correction to stretch the window an additional \*8/7.
But that won't work anymore so ... the main higan window is now 640x480,
960x720, or 1280x960. Toggling aspect correction only changes the video
width inside the window.
It's a bit jarring ... the window is a lot wider, more black space now
for most modes. But for now, it is what it is.
byuu says:
The 68K core now implements all 88 instructions. It ended up being 111
instructions in my core due to splitting up opcodes with the same name
but different addressing modes or directions (removes conditions at the
expense of more code.)
Technically, I don't have exceptions actually implemented yet, and
RESET/STOP don't do anything but set flags. So there's still more to
go. But ... close enough for statistics time!
The M68K core source code is 124,712 bytes in size. The next largest
core is the ARM7 core at 70,203 bytes in size.
The M68K object size is 942KiB; with the next largest being the V30MZ
core at 173KiB.
There are a total of 19,656 invalid opcodes in the 68000 revision (unless
of course I've made mistakes in my mappings, which is very probably.)
Now the fun part ... figuring out how to fix bugs in this core without
VDP emulation :/
byuu says:
Changelog:
- Emulator: use `(uintmax)-1 >> 1` for the units of time
- MD: implemented 13 new 68K instructions (basically all of the
remaining easy ones); 21 remain
- nall: replaced `(u)intmax_t` (64-bit) with *actual* `(u)intmax` type
(128-bit where available)
- this extends to everything: atoi, string, etc. You can even
print 128-bit variables if you like
22,552 opcodes still don't exist in the 68K map. Looking like quite a
few entries will be blank once I finish.
byuu says:
Changelog:
- added eight more 68K instructions
- split ADD(direction) into two separate ADD functions
I now have 54 out of 88 instructions implemented (thus, 34 remaining.)
The map is missing 25,182 entries out of 65,536. Down from 32,680 for
v101.00
Aside: this version number feels really silly. r10 and r11 surely will
as well ...
byuu says (in the public announcement):
Not a large changelog this time, sorry. This release is mostly to fix
the SA-1 issue, and to get some real-world testing of the new scheduler
model. Most of the work in the past month has gone into writing a 68000
CPU core; yet it's still only about half-way finished.
Changelog (since the previous release):
- fixed SNES SA-1 IRQ regression (fixes Super Mario RPG level-up
screen)
- new scheduler for all emulator cores (precision of 2^-127)
- icarus database adds nine new SNES games
- added Input/Frequency to settings file (allows simulation of
latency)
byuu says (in the WIP forum):
Changelog:
- in 32-bit mode, Thread uses uint64\_t with 2^-63 time units (10^-7
precision in the worst case)
- nearly ten times the precision of an attosecond
- in 64-bit mode, Thread uses uint128\_t with 2^-127 time units
(10^-26 precision in the worst case)
- far more accurate than yoctoseconds; almost closing in on planck
time
Note: a quartz crystal is accurate to 10^-4 or 10^-5. A cesium fountain
atomic clock is accurate to 10^-15. So ... yeah. 2^-63 was perfectly
fine; but there was no speed penalty whatsoever for using uint128\_t in
64-bit mode, so why not?
byuu says:
(Windows users may need to include <sys/time.h> at the top of
nall/chrono.hpp, not sure.)
Unchangelog:
- forgot to add the Scheduler clock=0 fix because I have the memory of
a goldfish
Changelog:
- new icarus database with nine additional games
- hiro(GTK,Qt) won't constantly write its settings.bml file to disk
anymore
- added latency simulator for fun (settings.bml => Input/Latency in
milliseconds)
So the last one ... I wanted to test out nall::chrono, and I was also
thinking that by polling every emulated frame, it's pretty wasteful when
you are using Fast Forward and hitting 200+fps. As I've said before,
calls to ruby::input::poll are not cheap.
So to get around this, I added a limiter so that if you called the
hardware poll function within N milliseconds, it'll return without
doing any actual work. And indeed, that increases my framerate of Zelda
3 uncapped from 133fps to 142fps. Yay. But it's not a "real" speedup,
as it only helps you when you exceed 100% speed (theoretically, you'd
need to crack 300% speed since the game itself will poll at 16ms at 100%
speed, but yet it sped up Zelda 3, so who am I to complain?)
I threw the latency value into the settings file. It should be 16,
but I set it to 5 since that was the lowest before it started negatively
impacting uncapped speeds. You're wasting your time and CPU cycles setting
it lower than 5, but if people like placebo effects it might work. Maybe
I should let it be a signed integer so people can set it to -16 and think
it's actually faster :P (I'm only joking. I took out the 96000hz audio
placebo effect as well. Not really into psychological tricks anymore.)
But yeah seriously, I didn't do this to start this discussion again for
the billionth time. Please don't go there. And please don't tell me this
WIP has higher/lower latency than before. I don't want to hear it.
The only reason I bring it up is for the fun part that is worth
discussing: put up or shut up time on how sensitive you are to
latency! You can set the value above 5 to see how games feel.
I personally can't really tell a difference until about 50. And I can't
be 100% confident it's worse until about 75. But ... when I set it to
150, games become "extra difficult" ... the higher it goes, the worse
it gets :D
For this WIP, I've left no upper limit cap. I'll probably set a cap of
something like 500ms or 1000ms for the official release. Need to balance
user error/trolling with enjoyability. I'll think about it.
[...]
Now, what I worry about is stupid people seeing it and thinking it's an
"added latency" setting, as if anyone would intentionally make things
worse by default. This is a limiter. So if 5ms have passed since the
game last polled, and that will be the case 99.9% of the time in games,
the next poll will happen just in time, immediately when the game polls
the inputs. Thus, a value below 1/<framerate>ms is not only pointless,
if you go too low it will ruin your fast forward max speeds.
I did say I didn't want to resort to placebo tricks, but I also don't
want to spark up public discussion on this again either. So it might
be best to default Input/Latency to 0ms, and internally have a max(5,
latency) wrapper around the value.
byuu wrote:
Aforementioned scheduler changes added. Longer explanation of why here:
http://hastebin.com/raw/toxedenece
Again, we really need to test this as thoroughly as possible for
regressions :/
This is a really major change that affects absolutely everything: all
emulation cores, all coprocessors, etc.
Also added ADDX and SUB to the 68K core, which brings us just barely
above 50% of the instruction encoding space completed.
[Editor's note: The "aformentioned scheduler changes" were described in
a previous forum post:
Unfortunately, 64-bits just wasn't enough precision (we were
getting misalignments ~230 times a second on 21/24MHz clocks), so
I had to move to 128-bit counters. This of course doesn't exist on
32-bit architectures (and probably not on all 64-bit ones either),
so for now ... higan's only going to compile on 64-bit machines
until we figure something out. Maybe we offer a "lower precision"
fallback for machines that lack uint128_t or something. Using the
booth algorithm would be way too slow.
Anyway, the precision is now 2^-96, which is roughly 10^-29. That
puts us far beyond the yoctosecond. Suck it, MAME :P I'm jokingly
referring to it as the byuusecond. The other 32-bits of precision
allows a 1Hz clock to run up to one full second before all clocks
need to be normalized to prevent overflow.
I fixed a serious wobbling issue where I was using clock > other.clock
for synchronization instead of clock >= other.clock; and also another
aliasing issue when two threads share a common frequency, but don't
run in lock-step. The latter I don't even fully understand, but I
did observe it in testing.
nall/serialization.hpp has been extended to support 128-bit integers,
but without explicitly naming them (yay generic code), so nall will
still compile on 32-bit platforms for all other applications.
Speed is basically a wash now. FC's a bit slower, SFC's a bit faster.
The "longer explanation" in the linked hastebin is:
Okay, so the idea is that we can have an arbitrary number of
oscillators. Take the SNES:
- CPU/PPU clock = 21477272.727272hz
- SMP/DSP clock = 24576000hz
- Cartridge DSP1 clock = 8000000hz
- Cartridge MSU1 clock = 44100hz
- Controller Port 1 modem controller clock = 57600hz
- Controller Port 2 barcode battler clock = 115200hz
- Expansion Port exercise bike clock = 192000hz
Is this a pathological case? Of course it is, but it's possible. The
first four do exist in the wild already: see Rockman X2 MSU1
patch. Manifest files with higan let you specify any frequency you
want for any component.
The old trick higan used was to hold an int64 counter for each
thread:thread synchronization, and adjust it like so:
- if thread A steps X clocks; then clock += X * threadB.frequency
- if clock >= 0; switch to threadB
- if thread B steps X clocks; then clock -= X * threadA.frequency
- if clock < 0; switch to threadA
But there are also system configurations where one processor has to
synchronize with more than one other processor. Take the Genesis:
- the 68K has to sync with the Z80 and PSG and YM2612 and VDP
- the Z80 has to sync with the 68K and PSG and YM2612
- the PSG has to sync with the 68K and Z80 and YM2612
Now I could do this by having an int64 clock value for every
association. But these clock values would have to be outside the
individual Thread class objects, and we would have to update every
relationship's clock value. So the 68K would have to update the Z80,
PSG, YM2612 and VDP clocks. That's four expensive 64-bit multiply-adds
per clock step event instead of one.
As such, we have to account for both possibilities. The only way to
do this is with a single time base. We do this like so:
- setup: scalar = timeBase / frequency
- step: clock += scalar * clocks
Once per second, we look at every thread, find the smallest clock
value. Then subtract that value from all threads. This prevents the
clock counters from overflowing.
Unfortunately, these oscillator values are psychotic, unpredictable,
and often times repeating fractions. Even with a timeBase of
1,000,000,000,000,000,000 (one attosecond); we get rounding errors
every ~16,300 synchronizations. Specifically, this happens with a CPU
running at 21477273hz (rounded) and SMP running at 24576000hz. That
may be good enough for most emulators, but ... you know how I am.
Plus, even at the attosecond level, we're really pushing against the
limits of 64-bit integers. Given the reciprocal inverse, a frequency
of 1Hz (which does exist in higan!) would have a scalar that consumes
1/18th of the entire range of a uint64 on every single step. Yes, I
could raise the frequency, and then step by that amount, I know. But
I don't want to have weird gotchas like that in the scheduler core.
Until I increase the accuracy to about 100 times greater than a
yoctosecond, the rounding errors are too great. And since the only
choice above 64-bit values is 128-bit values; we might as well use
all the extra headroom. 2^-96 as a timebase gives me the ability to
have both a 1Hz and 4GHz clock; and run them both for a full second;
before an overflow event would occur.
Another hastebin includes demonstration code:
#include <libco/libco.h>
#include <nall/nall.hpp>
using namespace nall;
//
cothread_t mainThread = nullptr;
const uint iterations = 100'000'000;
const uint cpuFreq = 21477272.727272 + 0.5;
const uint smpFreq = 24576000.000000 + 0.5;
const uint cpuStep = 4;
const uint smpStep = 5;
//
struct ThreadA {
cothread_t handle = nullptr;
uint64 frequency = 0;
int64 clock = 0;
auto create(auto (*entrypoint)() -> void, uint frequency) {
this->handle = co_create(65536, entrypoint);
this->frequency = frequency;
this->clock = 0;
}
};
struct CPUA : ThreadA {
static auto Enter() -> void;
auto main() -> void;
CPUA() { create(&CPUA::Enter, cpuFreq); }
} cpuA;
struct SMPA : ThreadA {
static auto Enter() -> void;
auto main() -> void;
SMPA() { create(&SMPA::Enter, smpFreq); }
} smpA;
uint8 queueA[iterations];
uint offsetA;
cothread_t resumeA = cpuA.handle;
auto EnterA() -> void {
offsetA = 0;
co_switch(resumeA);
}
auto QueueA(uint value) -> void {
queueA[offsetA++] = value;
if(offsetA >= iterations) {
resumeA = co_active();
co_switch(mainThread);
}
}
auto CPUA::Enter() -> void { while(true) cpuA.main(); }
auto CPUA::main() -> void {
QueueA(1);
smpA.clock -= cpuStep * smpA.frequency;
if(smpA.clock < 0) co_switch(smpA.handle);
}
auto SMPA::Enter() -> void { while(true) smpA.main(); }
auto SMPA::main() -> void {
QueueA(2);
smpA.clock += smpStep * cpuA.frequency;
if(smpA.clock >= 0) co_switch(cpuA.handle);
}
//
struct ThreadB {
cothread_t handle = nullptr;
uint128_t scalar = 0;
uint128_t clock = 0;
auto print128(uint128_t value) {
string s;
while(value) {
s.append((char)('0' + value % 10));
value /= 10;
}
s.reverse();
print(s, "\n");
}
//femtosecond (10^15) = 16306
//attosecond (10^18) = 688838
//zeptosecond (10^21) = 13712691
//yoctosecond (10^24) = 13712691 (hitting a dead-end on a rounding error causing a wobble)
//byuusecond? ( 2^96) = (perfect? 79,228 times more precise than a yoctosecond)
auto create(auto (*entrypoint)() -> void, uint128_t frequency) {
this->handle = co_create(65536, entrypoint);
uint128_t unitOfTime = 1;
//for(uint n : range(29)) unitOfTime *= 10;
unitOfTime <<= 96; //2^96 time units ...
this->scalar = unitOfTime / frequency;
print128(this->scalar);
this->clock = 0;
}
auto step(uint128_t clocks) -> void { clock += clocks * scalar; }
auto synchronize(ThreadB& thread) -> void { if(clock >= thread.clock) co_switch(thread.handle); }
};
struct CPUB : ThreadB {
static auto Enter() -> void;
auto main() -> void;
CPUB() { create(&CPUB::Enter, cpuFreq); }
} cpuB;
struct SMPB : ThreadB {
static auto Enter() -> void;
auto main() -> void;
SMPB() { create(&SMPB::Enter, smpFreq); clock = 1; }
} smpB;
auto correct() -> void {
auto minimum = min(cpuB.clock, smpB.clock);
cpuB.clock -= minimum;
smpB.clock -= minimum;
}
uint8 queueB[iterations];
uint offsetB;
cothread_t resumeB = cpuB.handle;
auto EnterB() -> void {
correct();
offsetB = 0;
co_switch(resumeB);
}
auto QueueB(uint value) -> void {
queueB[offsetB++] = value;
if(offsetB >= iterations) {
resumeB = co_active();
co_switch(mainThread);
}
}
auto CPUB::Enter() -> void { while(true) cpuB.main(); }
auto CPUB::main() -> void {
QueueB(1);
step(cpuStep);
synchronize(smpB);
}
auto SMPB::Enter() -> void { while(true) smpB.main(); }
auto SMPB::main() -> void {
QueueB(2);
step(smpStep);
synchronize(cpuB);
}
//
#include <nall/main.hpp>
auto nall::main(string_vector) -> void {
mainThread = co_active();
uint masterCounter = 0;
while(true) {
print(masterCounter++, " ...\n");
auto A = clock();
EnterA();
auto B = clock();
print((double)(B - A) / CLOCKS_PER_SEC, "s\n");
auto C = clock();
EnterB();
auto D = clock();
print((double)(D - C) / CLOCKS_PER_SEC, "s\n");
for(uint n : range(iterations)) {
if(queueA[n] != queueB[n]) return print("fail at ", n, "\n");
}
}
}
...and that's everything.]
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
byuu says:
All of the above fixes, plus I added all 24 variations on the shift
opcodes, plus SUBQ, plus fixes to the BCC instruction.
I can now run 851,767 instructions into Sonic the Hedgehog before hitting
an unimplemented instruction (SUB).
The 68K core is probably only ~35% complete, and yet it's already within
4KiB of being the largest CPU core, code size wise, in all of higan. Fuck
this chip.
byuu says:
I split the Register class and read/write handlers into DataRegister and
AddressRegister, given that they have different behaviors on byte/word
accesses (data tends to preserve the upper bits; address tends to
sign-extend things.)
I expanded EA to EffectiveAddress. No sense in abbreviating things
to death.
I've now implemented 26 instructions. But the new ones are just all the
stupid from/to ccr/sr instructions.
Ryphecha confirmed that you can't set the undefined bits, so I don't
think the BitField concept is appropriate for the CCR/SR. Instead, I'm
just storing direct flags and have (read,write)(CCR,SR) instead. This
isn't like the 65816 where you have subroutines that push and pop the
flag register. It's much more common to access individual flags. Doesn't
match the consistency angle of the other CPU cores, but ... I think this
is the right thing to for the 68K specifically.
byuu says:
Redesigned the handling of reading/writing registers to be about eight
times faster than the old system. More work may be needed ... it seems
data registers tend to preserve their upper bits upon assignment; whereas
address registers tend to sign-extend values into them. It may make
sense to have DataRegister and AddressRegister classes with separate
read/write handlers. I'd have to hold two Register objects inside the
EffectiveAddress (EA) class if we do that.
Implemented 19 opcodes now (out of somewhere between 60 and 90.) That gets
the first ~530,000 instructions in Sonic the Hedgehog running (though
probably wrong. But we can run a lot thanks to large initialization
loops.)
If I force the core to loop back to the reset vector on an invalid opcode,
I'm getting about 1500fps with a dumb 320x240 blit 60 times a second and
just the 68K running alone (no Z80, PSG, VDP, YM2612.) I don't know if
that's good or not. I guess we'll find out.
I had to stop tonight because the final opcode I execute is an RTS
(return from subroutine) that's branching back to address 0; which is
invalid ... meaning something went terribly wrong and the system crashed.
byuu says:
Another six hours in ...
I have all of the opcodes, memory access functions, disassembler mnemonics
and table building converted over to the new template<uint Size> format.
Certainly, it would be quite easy for this nightmare chip to throw me
another curveball, but so far I can handle:
- MOVE (EA to, EA from) case
- read(from) has to update register index for +/-(aN) mode
- MOVEM (EA from) case
- when using +/-(aN), RA can't actually be updated until the transfer
is completed
- LEA (EA from) case
- doesn't actually perform the final read; just returns the address
to be read from
- ANDI (EA from-and-to) case
- same EA has to be read from and written to
- for -(aN), the read has to come from aN-2, but can't update aN yet;
so that the write also goes to aN-2
- no opcode can ever fetch the extension words more than once
- manually control the order of extension word fetching order for proper
opcode decoding
To do all of that without a whole lot of duplicated code (or really
bloating out every single instruction with red tape), I had to bring
back the "bool valid / uint32 address" variables inside the EA struct =(
If weird exceptions creep in like timing constraints only on certain
opcodes, I can use template flags to the EA read/write functions to
handle that.
byuu says:
Six and a half hours this time ... one new opcode, and all old opcodes
now in a deprecated format. Hooray, progress!
For building the table, I've decided to move from:
for(uint opcode : range(65536)) {
if(match(...)) bind(opNAME, ...);
}
To instead having separate for loops for each supported opcode. This
lets me specialize parts I want with templates.
And to this aim, I'm moving to replace all of the
(read,write)(size, ...) functions with (read,write)<Size>(...) functions.
This will amount to the ~70ish instructions being triplicated ot ~210ish
instructions; but I think this is really important.
When I was getting into flag calculations, a ton of conditionals
were needed to mask sizes to byte/word/long. There was also lots of
conditionals in all the memory access handlers.
The template code is ugly, but we eliminate a huge amount of branch
conditions this way.
byuu says:
Four and a half hours of work and ... zero new opcodes implemented.
This was the best job I could do refining the effective address
computations. Should have all twelve 68000 modes implemented now. Still
have a billion questions about when and how I'm supposed to perform
certain edge case operations, though.
byuu says:
Up to ten 68K instructions out of somewhere between 61 and 88, depending
upon which PDF you look at. Of course, some of them aren't 100% completed
yet, either. Lots of craziness with MOVEM, and BCC has a BSR variant
that needs stack push/pop functions.
This WIP actually took over eight hours to make, going through every
possible permutation on how to design the core itself. The updated design
now builds both the instruction decoder+dispatcher and the disassembler
decoder into the same main loop during M68K's constructor.
The special cases are also really psychotic on this processor, and
I'm afraid of missing something via the fallthrough cases. So instead,
I'm ordering the instructions alphabetically, and including exclusion
cases to ignore binding invalid cases. If I end up remapping an existing
register, then it'll throw a run-time assertion at program startup.
I wanted very much to get rid of struct EA (EffectiveAddress), but
it's too difficult to keep track of the internal effective address
without it. So I split out the size to a separate parameter, since
every opcode only has one size parameter, and otherwise it was getting
duplicated in opcodes that take two EAs, and was also awkward with the
flag testing. It's a bit more typing, but I feel it's more clean this way.
Overall, I'm really worried this is going to be too slow. I don't want
to turn the EA stuff into templates, because that will massively bloat
out compilation times and object sizes, and will also need a special DSL
preprocessor since C++ doesn't have a static for loop. I can definitely
optimize a lot of EA's address/read/write functions away once the core
is completed, but it's never going to hold a candle to a templatized
68K core.
----
Forgot to include the SA-1 regression fix. I always remember immediately
after I upload and archive the WIP. Will try to get that in next time,
I guess.
byuu says:
Alright, I'm definitely going to need to find some people willing to
tolerate my questions on this chip, so I'm going to go ahead and announce
I'm working on this I guess.
This core is way too big for a surprise like the NES and WS cores
were. It'll probably even span multiple v10x releases before it's
even ready.
byuu says:
I now have enough of three instructions implemented to get through the
first four instructions in Sonic the Hedgehog.
But they're far from complete. The very first instruction uses EA
addressing, which is similar to x86's ModRM in terms of how disgustingly
complex it is. And it also accesses Z80 control registers, which obviously
isn't going to do anything yet.
The slow speed was me being stupid again. It's not 7.6MHz per frame,
it's 7.67MHz per second. So yeah, speed is so far acceptable again. But
we'll see how things go as I keep emulating more. The 68K decode is not
pretty at all.
byuu says:
Changelog:
- moved Thread, Scheduler, Cheat functionality into emulator/ for
all cores
- start of actual Mega Drive emulation (two 68K instructions)
I'm going to be rather terse on MD emulation, as it's too early for any
meaningful dialogue here.
byuu says:
Sigh ... I'm really not a good person. I'm inherently selfish.
My responsibility and obligation right now is to work on loki, and
then on the Tengai Makyou Zero translation, and then on improving the
Famicom emulation.
And yet ... it's not what I really want to do. That shouldn't matter;
I should work on my responsibilities first.
Instead, I'm going to be a greedy, self-centered asshole, and work on
what I really want to instead.
I'm really sorry, guys. I'm sure this will make a few people happy,
and probably upset even more people.
I'm also making zero guarantees that this ever gets finished. As always,
I wish I could keep these things secret, so if I fail / give up, I could
just drop it with no shame. But I would have to cut everyone out of the
WIP process completely to make it happen. So, here goes ...
This WIP adds the initial skeleton for Sega Mega Drive / Genesis
emulation. God help us.
(minor note: apparently the new extension for Mega Drive games is .md,
neat. That's what I chose for the folders too. I thought it was .smd,
so that'll be fixed in icarus for the next WIP.)
(aside: this is why I wanted to get v100 out. I didn't want this code in
a skeleton state in v100's source. Nor did I want really broken emulation,
which the first release is sure to be, tarring said release.)
...
So, basically, I've been ruminating on the legacy I want to leave behind
with higan. 3D systems are just plain out. I'm never going to support
them. They're too complex for my abilities, and they would run too slowly
with my design style. I'm not willing to compromise my design ideals. And
I would never want to play a 3D game system at native 240p/480i resolution
... but 1080p+ upscaling is not accurate, so that's a conflict I want
to avoid entirely. It's also never going to emulate computer systems
(X68K, PC-98, FM-Towns, etc) because holy shit that would completely
destroy me. It's also never going emulate arcade machines.
So I think of higan as a collection of 2D emulators for consoles
and handhelds. I've gone over every major 2D gaming system there is,
looking for ones with games I actually care about and enjoy. And I
basically have five of those systems supported already. Looking at the
remaining list, I see only three systems left that I have any interest
in whatsoever: PC-Engine, Master System, Mega Drive. Again, I'm not in
any way committing to emulating any of these, but ... if I had all of
those in higan, I think I'd be content to really, truly, finally stop
writing more emulators for the rest of my life.
And so I decided to tackle the most difficult system first. If I'm
successful, the Z80 core should cover a lot of the work on the SMS. And
the HuC6280 should land somewhere between the NES and SNES in terms of
difficulty ... closer to the NES.
The systems that just don't appeal to me at all, which I will never touch,
include, but are not limited to:
* Atari 2600/5200/7800
* Lynx
* Jaguar
* Vectrex
* Colecovision
* Commodore 64
* Neo-Geo
* Neo-Geo Pocket / Color
* Virtual Boy
* Super A'can
* 32X
* CD-i
* etc, etc, etc.
And really, even if something were mildly interesting in there ... we
have to stop. I can't scale infinitely. I'm already way past my limit,
but I'm doing this anyway. Too many cores bloats everything and kills
quality on everything. I don't want higan to become MESS v2.
I don't know what I'll do about the Famicom Disk System, PC-Engine CD,
and Mega CD. I don't think I'll be able to achieve 60fps emulating the
Mega CD, even if I tried to.
I don't know what's going to happen here with even the Mega Drive. Maybe
I'll get driven crazy with the documentation and quit. Maybe it'll end
up being too complicated and I'll quit. Maybe the emulation will end up
way too slow and I'll give up. Maybe it'll take me seven years to get
any games playable at all. Maybe Steve Snake, AamirM and Mike Pavone
will pool money to hire a hitman to come after me. Who knows.
But this is what I want to do, so ... here goes nothing.
[This version, with the internal version number changed back to "v100",
replaced the original v100 source archive on byuu.org soon after v100's
release, because it fixes important bugs in that version. --Ed]
byuu says:
Changelog:
- fixed default paths for Sufami Turbo slotted games
- moved WonderSwan orientation controls to the port rather than the device
- I do like hex_usr's idea here; but that'll need more consideration;
so this is a temporary fix
- added new debugger interface (see the public topic for more on that)
byuu says:
higan has finally reached v100!
I feel it's important to stress right away that this is not "version
1.00", nor is it a major milestone release. Rather than arbitrary version
numbers, all of my software simply bumps version numbers by one for each
official release. As such, higan v100 is simply higan's 100th release.
That said, the primary focus of this release has been code
clean-ups. These are always somewhat dangerous in that regressions are
possible. We've tested through sixteen WIP revisions, one of which was
open to the public, to try and minimize any regressions. But all the same,
please report any regressions if you discover any.
Changelog (since v099):
FC: render during pixels 1-256 instead of 0-255 [hex_usr]
FC: rewrote controller emulation code
SFC: 8% speedup over the previous release thanks to PPU optimizations
SFC: fixed nasty DB address wrapping regression from v099
SFC: USART developer controller removed; superseded by 21fx
SFC: Super Multitap option removed from controller port 1; ports
renamed 2-5
SFC: hidden option to experiment with 128KB VRAM (strictly for novelty)
higan: audio volume no longer divided by number of audio streams
higan: updated controller polling code to fix possible future mapping
issues
higan: replaced nall/stream with nall/vfs for file-loading subsystem
tomoko: can now load multi-slotted games via command-line
tomoko: synchronize video removed from UI; still available in the
settings file
tomoko, icarus: can navigate to root drive selection on Windows
all: major code cleanups and refactoring (~1MB diff against v099)
Note 1: the audio volume change means that SGB and MSU1 games won't
lose half the volume on the SNES sounds anymore. However, if one goes
overboard and drives the sound all the way to max volume with the MSU1,
clamping may occur. The obvious solution is not to drive volume that high
(it will vastly overpower the SNES audio, which usually never exceeds
25% volume.) Another option is to lower the volume in the audio settings
panel to 50%. In general, neither is likely to ever be necessary.
Note 2: the synchronize video option was hidden from the UI because it
is no longer useful. With the advent of compositors, the loss of the
complicated timing settings panel, support for the WonderSwan and its
75hz display, the need to emulate variable refresh rate behaviors in the
Game Boy, the unfortunate latency spike and audio distortion caused by
long Vsync pauses, and the arrival of adaptive sync technology ... it
no longer makes sense to present this option. However, as stated, you
can edit settings.bml to enable this option anyway if you insist and
understand the aforementioned risks.
Changelog (since v099r16 open beta):
- fixed MSU1 audio sign extension
- fixed compilation with SGB support disabled
- icarus can now navigate to root directory
- fixed compilation issues with OS X port
- (hopefully) fixed label height issue with hiro that affected icarus
import dialog
- (mostly) fixed BS Memory, Sufami Turbo slot loading
Errata:
- forgot to remove the " - Slot A", " - Slot B" suffixes for Sufami
Turbo slot loading
- this means you have to navigate up one folder and then into Sufami
Turbo/ to load games for this system
- moving WonderSwan orientation controls to the device slot is causing
some nastiness
- can now select orientation from the main menu, but it doesn't rotate
the display
byuu says:
Changelog:
- hiro: BrowserDialog can navigate up to drive selection on Windows
- nall: (file,path,dir,base,prefix,suffix)name =>
Location::(file,path,dir,base,prefix,suffix)
- higan/tomoko: rename audio filter label from "Sinc" to "IIR - Biquad"
- higan/tomoko: allow loading files via icarus on the command-line
once again
- higan/tomoko: (begrudging) quick hack to fix presentation window focus
on startup
- higan/audio: don't divide output audio volume by number of streams
- processor/r65816: fix a regression in (read,write)DB; fixes Taz-Mania
- fixed compilation regressions on Windows and Linux
I'm happy with where we are at with code cleanups and stability, so I'd
like to release v100. But even though I'm not assigning any special
significance to this version, we should probably test it more thoroughly
first.
byuu says:
Changelog:
- nall::lstring -> nall::string_vector
- added IntegerBitField<type, lo, hi> -- hopefully it works correctly...
- Multitap 1-4 -> Super Multitap 2-5
- fixed SFC PPU CGRAM read regression
- huge amounts of SFC PPU IO register cleanups -- .bits really is lovely
- re-added the read/write(VRAM,OAM,CGRAM) helpers for the SFC PPU
- but they're now optimized to the realities of the PPU (16-bit data
sizes / no address parameter / where appropriate)
- basically used to get the active-display overrides in a unified place;
but also reduces duplicate code in (read,write)IO
byuu says:
Changelog:
- (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel
like they were contributing enough to be worth it]
- cleaned up nall::integer,natural,real functionality
- toInteger, toNatural, toReal for parsing strings to numbers
- fromInteger, fromNatural, fromReal for creating strings from numbers
- (string,Markup::Node,SQL-based-classes)::(integer,natural,real)
left unchanged
- template<typename T> numeral(T value, long padding, char padchar)
-> string for print() formatting
- deduces integer,natural,real based on T ... cast the value if you
want to override
- there still exists binary,octal,hex,pointer for explicit print()
formatting
- lstring -> string_vector [but using lstring = string_vector; is
declared]
- would be nice to remove the using lstring eventually ... but that'd
probably require 10,000 lines of changes >_>
- format -> string_format [no using here; format was too ambiguous]
- using integer = Integer<sizeof(int)*8>; and using natural =
Natural<sizeof(uint)*8>; declared
- for consistency with boolean. These three are meant for creating
zero-initialized values implicitly (various uses)
- R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees
up struct IO {} io; naming]
- SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {}
(status,registers); now
- still some CPU::Status status values ... they didn't really fit into
IO functionality ... will have to think about this more
- SFC CPU, PPU, SMP now use step() exclusively instead of addClocks()
calling into step()
- SFC CPU joypad1_bits, joypad2_bits were unused; killed them
- SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it
- SFC PPU OAM moved into PPU::Object; since nothing else uses it
- the raw uint8[544] array is gone. OAM::read() constructs values from
the OAM::Object[512] table now
- this avoids having to determine how we want to sub-divide the two
OAM memory sections
- this also eliminates the OAM::synchronize() functionality
- probably more I'm forgetting
The FPS fluctuations are driving me insane. This WIP went from 128fps to
137fps. Settled on 133.5fps for the final build. But nothing I changed
should have affected performance at all. This level of fluctuation makes
it damn near impossible to know whether I'm speeding things up or slowing
things down with changes.
byuu says:
Changelog:
- GB core code cleanup completed
- GBA core code cleanup completed
- some more cleanup on missed processor/arm functions/variables
- fixed FC loading icarus bug
- "Load ROM File" icarus functionality restored
- minor code unification efforts all around (not perfect yet)
- MMIO->IO
- mmio.cpp->io.cpp
- read,write->readIO,writeIO
It's been a very long work in progress ... starting all the way back with
v094r09, but the major part of the higan code cleanup is now completed! Of
course, it's very important to note that this is only for the basic style:
- under_score functions and variables are now camelCase
- return-type function-name() are now auto function-name() -> return-type
- Natural<T>/Integer<T> replace (u)intT_n types where possible
- signed/unsigned are now int/uint
- most of the x==true,x==false tests changed to x,!x
A lot of spot improvements to consistency, simplicity and quality have
gone in along the way, of course. But we'll probably never fully finishing
beautifying every last line of code in the entire codebase. Still,
this is a really great start. Going forward, WIP diffs should start
being smaller and of higher quality once again.
I know the joke is, "until my coding style changes again", but ... this
was way too stressful, way too time consuming, and way too risky. I'm
too old and tired now for extreme upheavel like this again. The only
major change I'm slowly mulling over would be renaming the using
Natural<T>/Integer<T> = (u)intT; shorthand to something that isn't as
easily confused with the (u)int_t types ... but we'll see. I'll definitely
continue to change small things all the time, but for the larger picture,
I need to just accept the style I have and live with it.
byuu says:
Changelog:
- fixed FC AxROM / VRC7 regression
- BitField split to BooleanBitField/NaturalBitField (in preparation
for IntegerBitField)
- BitFieldReference removed
- GB CPU cleaned up
- GB Cartridge + Mappers cleaned up
- SFC CGRAM is now emulated as uint15[256] instead of uint[512]
- sfc/ppu/memory.cpp no longer needed; removed
- purged SFC Debugger hooks for now (some of the operator[] calls were
bypassing them anyway)
Unfortunately, for reasons that defy all semblance of logic, the CGRAM
change caused a slight speed hit. As have the last few changes. We're
now down to around 129.5fps compared to 123.fps for v099 and 134.5fps
at our peak (v099r01-r02).
I really like the style I came up with for the Game Boy mappers to settle
the purpose(ROM,RAM) vs (rom,ram)Purpose naming convention. If I ever get
around to redoing the NES mappers, that's likely the approach I'll take.
byuu says:
Changelog:
- NES PPU core updated to use BitFields (absolutely massive improvement
in code readability)
- NES APU core updated to new coding style
- NES cartridge/board and cartridge/chip updated to new coding style
- pushed NES PPU rendering one dot forward (doesn't fix King's Quest V
yet, sadly)
- fixed SNES PPU BG tilemask for 128KiB VRAM mode (doesn't fix Yoshi's
Island, though)
So ... I kind of went overboard with the fc/cartridge changes. This WIP
diff is 185KiB >_>
I didn't realize it was going to be as big a task as it was, but once
I started everything broke in a chain reaction, so I had to do it all
at once.
There's a massive chance we've broken a bunch of NES things. Any typos
in this WIP are going to be absolutely insidious to track down =(
But ... supposing I pulled it off, this means the Famicom core is now
fully converted to the new coding style as well. That leaves only the
GB and GBA cores. Once those are finished, then we'll finally be free
of these gigantic hellspawn diffs.
byuu says:
Changelog:
- higan/profile/ => higan/systems/ [temporary; unless we can't think of
a better base folder name]
- god-damn-better-have fixed the input polling bug
- re-added command-line and drag-and-drop loading
- command-line loading can now load multiple folders at once (SGB+GB
game; Sufami Turbo+Slot A+Slot B; etc)
- if you load just the base cart, it'll present you with a dialog to
optionally load slotted cart(s)
- MSU1 now goes through nall/vfs instead of directly accessing the
filesystem
- Famicom Cartridge, PPU cores updated to newer programming style
- there's countless opportunity for BitField and .bits() in the PPU
... but I'm worried about breaking things
If anyone has a working MSU1 game and can test the changes out, that'd
be appreciated. I still don't have a test ROM on my dev box.
I wouldn't worry too much about extensively testing the Famicom PPU
changes just yet ... I'm still struggling with what to name the structs
inside the classes between all of my emulators, and the BitField/.bits()
changes will be much more important to test at a later date.
The only use case left for Emulator::Interface::path(uint id) is for
21fx emulation. This peripheral loads a DLL/SO via LoadLibrary/dlopen,
which do not have any official ways to open a file in RAM. I'm
very hesitant to use the portable trick of writing the memory to a
temporary file, loading it, and deleting the temporary file once done
... it's a real waste of disk activity. I might make something like
vfs::file::isVirtual->bool,path()->string to get around this. But even
once I do, the underlying LoadLibrary/dlopen call is still going to be
direct disk access.
byuu says:
Changelog:
- Emulator::Interface::Medium::bootable removed
- Emulator::Interface::load(bool required) argument removed
[File::Required makes no sense on a folder]
- Super Famicom.sys now has user-configurable properties (CPU,PPU1,PPU2
version; PPU1 VRAM size, Region override)
- old nall/property removed completely
- volatile flags supported on coprocessor RAM files now (still not in
icarus, though)
- (hopefully) fixed SNES Multitap support (needs testing)
- fixed an OAM tiledata range clipping limit in 128KiB VRAM mode (doesn't
fix Yoshi's Island, sadly)
- (hopefully, again) fixed the input polling bug hex_usr reported
- re-added dialog box for when File::Required files are missing
- really cool: if you're missing a boot ROM, BIOS ROM, or IPL ROM,
it warns you immediately
- you don't have to select a game before seeing the error message
anymore
- fixed cheats.bml load/save location
byuu says:
Changelog:
- nall/vfs work 100% completed; even SGB games load now
- emulation cores now call load() for the base cartridges as well
- updated port/device handling; portmask is gone; device ID bug should
be resolved now
- SNES controller port 1 multitap option was removed
- added support for 128KiB SNES PPU VRAM (for now, edit sfc/ppu/ppu.hpp
VRAM::size=0x10000; to enable)
Overall, nall/vfs was a huge success!! We've substantially reduced
the amount of boilerplate code everywhere, while still allowing (even
easier than before) support for RAM-based game loading/saving. All of
nall/stream is dead and buried.
I am considering removing Emulator::Interface::Medium::id and/or
bootable flag. Or at least, doing something different with it. The
values for the non-bootable GB/BS/ST entries duplicate the ID that is
supposed to be unique. They are for GB/GBC and WS/WSC. Maybe I'll use
this as the hardware revision selection ID, and then gut non-bootable
options. There's really no reason for that to be there. I think at one
point I was using it to generate library tabs for non-bootable systems,
but we don't do that anymore anyway.
Emulator::Interface::load() may not need the required flag anymore ... it
doesn't really do anything right now anyway.
I have a few reasons for having the cores load the base cartridge. Most
importantly, it is going to enable a special mode for the WonderSwan /
WonderSwan Color in the future. If we ever get the IPLROMs dumped ... it's
possible to boot these systems with no games inserted to set user profile
information and such. There are also other systems that may accept being
booted without a cartridge. To reach this state, you would load a game and
then cancel the load dialog. Right now, this results in games not loading.
The second reason is this prevents nasty crashes when loading fails. So
if you're missing a required manifest, the emulator won't die a violent
death anymore. It's able to back out at any point.
The third reason is consistency: loading the base cartridge works the
same as the slot cartridges.
The fourth reason is Emulator::Interface::open(uint pathID)
values. Before, the GB, SB, GBC modes were IDs 1,2,3 respectively. This
complicated things because you had to pass the correct ID. But now
instead, Emulator::Interface::load() returns maybe<uint> that is nothing
when no game is selected, and a pathID for a valid game. And now open()
can take this ID to access this game's folder contents.
The downside, which is temporary, is that command-line loading is
currently broken. But I do intend on restoring it. In fact, I want to do
better than before and allow multi-cart booting from the command-line by
specifying the base cartridge and then slot cartridges. The idea should
be pretty simple: keep a queue of pending filenames that we fill from
the command-line and/or drag-and-drop operations on the main window,
and then empty out the queue or prompt for load dialogs from the UI
when booting a system. This also might be a bit more unorthodox compared
to the traditional emulator design of "loadGame(filename)", but ... oh
well. It's easy enough still.
The port/device changes are fun. We simplified things quite a bit. The
portmask stuff is gone entirely. While ports and devices keep IDs,
this is really just sugar-coating so UIs can use for(auto& port :
emulator->ports) and access port.id; rather than having to use for(auto
n : range(emulator->ports)) { auto& port = emulator->ports[n]; ... };
but they should otherwise generally be identical to the order they appear
in their respective ranges. Still, don't rely on that.
Input::id is gone. There was no point since we also got rid of the nasty
Input::order vector. Since I was in here, I went ahead and caved on the
pedantics and renamed Input::guid to Input::userData.
I removed the SNES controller port 1 multitap option. Basically, the only
game that uses this is N-warp Daisakusen and, no offense to d4s, it's
not really a good game anyway. It's just a quick demo to show 8-players
on the SNES. But in the UI, all it does is confuse people into wasting
time mapping a controller they're never going to use, and they're going
to wonder which port to use. If more compelling use cases for 8-players
comes about, we can reconsider this. I left all the code to support this
in place, so all you have to do is uncomment one line to enable it again.
We now have dsnes emulation! :D
If you change PPU::VRAM::size to 0x10000 (words), then you should now
have 128KiB of VRAM. Even better, it serializes the used-VRAM size,
so your save states shouldn't crash on you if you swap between the two
(though if you try this, you're nuts.)
Note that this option does break commercial software. Yoshi's Island in
particular. This game is setting A15 on some PPU register writes, but
not on others. The end result of this is things break horribly in-game.
Also, this option is causing a very tiny speed hit for obvious reasons
with the variable masking value (I'm even using size-1 for now.) Given
how niche this is, I may just leave it a compile-time constant to avoid
the overhead cost. Otherwise, if we keep the option, then it'll go into
Super Famicom.sys/manifest.bml ... I'll flesh that out in the near-future.
----
Finally, some fun for my OCD ... my monitor suddenly cut out on me
in the middle of working on this WIP, about six hours in of non-stop
work. Had to hit a bunch of ctrl+alt+fN commands (among other things)
and trying to log in headless on another TTY to do issue commands,
trying to recover the display. Finally power cycled the monitor and it
came back up. So all my typing ended up going to who knows where.
Usually this sort of thing terrifies me enough that I scrap a WIP and
start over to ensure I didn't screw anything up during the crashed screen
when hitting keys randomly.
Obviously, everything compiles and appears to work fine. And I know
it's extremely paranoid, but OCD isn't logical, so ... I'm going
to go over every line of the 100KiB r07->r08 diff looking for any
corruption/errors/whatever.
----
Review finished.
r08 diff review notes:
- fc/controller/gamepad/gamepad.cpp:
use uint device = ID::Device::Gamepad; not id = ...;
- gb/cartridge/cartridge.hpp:
remove redundant uint _pathID; (in Information::pathID already)
- gb/cartridge/cartridge.hpp:
pull sha256 inside Information
- sfc/cartridge/load/cpp:
add " - Slot (A,B)" to interface->load("Sufami Turbo"); to be more
descriptive
- sfc/controller/gamepad/gamepad.cpp:
use uint device = ID::Device::Gamepad; not id = ...;
- sfc/interface/interface.cpp:
remove n variable from the Multitap device input generation loop
(now unused)
- sfc/interface/interface.hpp:
put struct Port above struct Device like the other classes
- ui-tomoko:
cheats.bml is reading from/writing to mediumPaths(0) [system folder
instead of game folder]
- ui-tomoko:
instead of mediumPaths(1) - call emulator->metadataPathID() or something
like that
byuu says:
Changelog:
- (hopefully) fixed BS Memory and Sufami Turbo slot loading
- ported GB, GBA, WS cores to use nall/vfs
- completely removed loadRequest, saveRequest functionality from
Emulator::Interface and ui-tomoko
- loadRequest(folder) is now load(folder)
- save states now use a shared Emulator::SerializerVersion string
- whenever this is bumped, all older states will break; but this makes
bumping state versions way easier
- also, the version string makes it a lot easier to identify
compatibility windows for save states
- SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr]
NOTE: Super Game Boy loading is currently broken, and I'm not entirely
sure how to fix it :/
The file loading handoff was -really- complicated, and so I'm kind of
at a loss ... so for now, don't try it.
Everything else should theoretically work, so please report any bugs
you find.
So, this is pretty much it. I'd be very curious to hear feedback from
people who objected to the old nall/stream design, whether they are
happy with the new file loading system or think it could use further
improvements.
The 16-bit VRAM turned out to be a wash on performance (roughly the same
as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The
main reason for this was because Yoshi's Island was breaking horribly
until I changed the vramRead, vramWrite functions to take uint15 instead
of uint16.
I suspect the issue is we're using uint16s in some areas now that need
to be uint15, and this game is setting the VRAM address to 0x8000+,
causing us to go out of bounds on memory accesses.
But ... I want to go ahead and do something cute for fun, and just because
we can ... and this new interface is so incredibly perfect for it!! I
want to support an SNES unit with 128KiB of VRAM. Not out of the box,
but as a fun little tweakable thing. The SNES was clearly designed to
support that, they just didn't use big enough VRAM chips, and left one
of the lines disconnected. So ... let's connect it anyway!
In the end, if we design it right, the only code difference should be
one area where we mask by 15-bits instead of by 16-bits.
byuu says:
Changelog:
- Super Famicom core converted to use nall/vfs
- excludes Super Game Boy; since that's invoked from inside the GB core
This was definitely the major obstacle to test nall/vfs'
applicability. Things worked out pretty great in the end.
We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB
(cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes
a very large source of indirection. Before it was: "coprocessor <=>
cartridge <=> interface" for loading and saving data, and now it's just
"coprocessor <=> cartridge". And it may make sense to eventually turn
this into just "cartridge -> coprocessor" by making each coprocessor
class handle its own markup parsing.
It's nice to have all the manifest parsing in one location (well, sans
MSU1); but it's also nice for loading/unloading to be handled by each
coprocessor itself. So I'll have to think longer about that one.
I've also started handling Interface::save() differently. Instead of
keeping track of memory IDs and filenames, and iterating through that
vector of objects ... instead I now have a system that mirrors the markup
parsing on loading, but handles saving instead. This was actually the
reason the code size savings weren't more significant, but I like this
style more. As before, it removes an extra level of indirection.
So ... next up, I need to port over the GB, then GBA, then WS
cores. These shouldn't take too long since they're all very simple with
just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then
after that, gut all the old stream stuff from nall and higan. Kill the
(load,save)Request stuff, rename the load(Gamepak)Request to something
simpler, and then we should be good.
Anyway ... these are some huge changes.
byuu says:
Changelog:
- lots of code cleanups to processor/r6502 (the switch.cpp file is only
halfway done ...)
- lots of code cleanups to fc/cpu
- removed fc/input
- implemented fc/controller
hex_usr, you may not like this, but I want to keep the controller port
and expansion port interface separate, like I do with the SNES. I realize
the NES' is used more for controllers, and the SNES' more for hardware
expansions, but ... they're not compatible pinouts and you can't really
connect one to the other.
Right now, I've only implemented the controller portion. I'll have to
get to the peripheral portion later.
Also, the gamepad implementation there now may be wrong. It's based off
the Super Famicom version obviously. I'm not sure if the Famicom has
different behavior with latching $4016 writes, or not. But, it works in
Mega Man II, so it's a start.
Everyone, be sure to remap your controls, and then set port 1 -> gamepad
after loading your first Famicom game with the new WIP.
byuu says:
Changelog:
- finished cleaning up the SFC core to my new coding conventions
- removed sfc/controller/usart (superseded by 21fx)
- hid Synchronize Video option from the menu (still in the configuration
file)
Pretty much the only minor detail left is some variable names in the
SA-1 core that really won't look good at all if I move to camelCase,
so I'll have to rethink how I handle those. It's probably a good area
to attempt using BitFields, to see how it impacts performance. But I'll
do that in a test branch first.
But for the most part, this should be the end of the gigantic diffs (this
one was 174KiB), at least for the SFC/WS cores. Still have the FC/GB/GBA
cores to clean up more fully. Assuming we don't spot any new regressions,
we should be ~95% out of the woods on code cleanups breaking things.
byuu says:
Changelog:
- massive cleanups and optimizations on the PPU core
- ~9% speedup over v099 official
This is pretty much it for the low-hanging fruit of speeding up higan. Any
more gains from this point will be extremely hard-fought, unfortunately.
byuu says:
Time for a new release. There are a few important emulation improvements
and a few new features; but for the most part, this release focuses on
major code refactoring, the details of which I will mostly spare you.
The major change is that, as of v099, the SNES balanced and performance
cores have been removed from higan. Basically, in addition to my five
other emulation cores, these were too much of a burden to maintain. And
they've come along as far as I was able to develop them. If you need to
use these cores, please use these two from the v098 release.
I'm very well aware that ~80% of the people using higan for SNES
emulation were using the two removed profiles. But they simply had
to go. Hopefully in the future, we can compensate for their loss by
increasing the performance of the accuracy core.
Changelog (since v098):
SFC: balanced profile removed
SFC: performance profile removed
SFC: expansion port devices can now be changed during gameplay (atlhough
you shouldn't)
SFC: fixed bug in SharpRTC leap year calculations
SFC: emulated new research findings for the S-DD1 coprocessor
SFC: fixed CPU emulation-mode wrapping bug with pei, [dp], [dp]+y
instructions [AWJ]
SFC: fixed Super Game Boy bug that caused the bottom tile-row to flicker
in games
GB: added MBC1M (multi-cart) mapper; icarus can't detect these so manual
manifests are needed for now
GB: corrected return value when HuC3 unmapped RAM is read; fixes Robopon
[endrift]
GB: improved STAT IRQ emulation; fixes Altered Space, etc [endrift,
gekkio]
GB: partial emulation of DMG STAT write IRQ bug; fixes Legend of Zerd,
Road Rash, etc
nall: execute() fix, for some Linux platforms that had trouble detecting
icarus
nall: new BitField class; which allows for simplifying flag/register
emulation in various cores
ruby: added Windows WASAPI audio driver (experimental)
ruby: remove attempts to call glSwapIntervalEXT (fixes crashing on some
Linux systems)
ui: timing settings panel removed
video: restored saturation, gamma, luminance settings
video: added new post-emulation sprite system; light gun cursors are
now higher-resolution
audio: new resampler (6th-order Butterworth biquad IIR); quite a bit
faster than the old one
audio: added optional basic reverb filter (for fun)
higan: refresh video outside cooperative threads (workaround for shoddy
code in AMD graphics drivers)
higan: individual emulation cores no longer have unique names
higan: really substantial code refactoring; 43% reduction in binary size
Off the bat, here are the known bugs:
hiro/Windows: focus stealing bug on startup. Needs to be fixed in hiro,
not with a cheap hack to tomoko.
higan/SFC: some of the coprocessors are saving some volatile memory to
disk. Completely harmless, but still needs to be fixed.
ruby/WASAPI: some sound cards have a lot of issues with the current driver
(eg FitzRoy's). We need to find a clean way to fix this before it
can be made the default driver. Which would be a huge win because
the latency improvements are substantial, and in exclusive mode,
WASAPI allows G-sync to work very well.
[From the v099 WIP thread, here's the changelog since v098r19:
- GB: don't force mode 1 during force-blank; fixes v098r16 regression
with many Game Boy games
- GB: only perform the STAT write IRQ bug during vblank, not hblank
(still not hardware accurate, though)
-Ed.]
byuu says:
Changelog:
- added nall/bit-field.hpp
- updated all CPU cores (sans LR35902 due to some complexities) to use
BitFields instead of bools
- updated as many CPU cores as I could to use BitFields instead of union {
struct { uint8_t ... }; }; pairs
The speed changes are mostly a wash for this. In some instances,
I noticed a ~2-3% speedup (eg SNES emulation), and in others a 2-3%
slowdown (eg Famicom emulation.) It's within the margin of error, so
it's safe to say it has no impact.
This does give us a lot of new useful things, however:
- no more manual reconstruction of flag values from lots of left shifts
and ORs
- no more manual deconstruction of flag values from lots of ANDs
- ability to get completely free aliases to flag groups (eg GSU can
provide alt2, alt1 and also alt (which is alt2,alt1 combined)
- removes the need for the nasty order_lsbN macro hack (eventually will
make higan 100% endian independent)
- saves us from insane compilers that try and do nasty things with
alignment on union-structs
- saves us from insane compilers that try to store bit-field bits in
reverse order
- will allow some really novel new use cases (I'm planning an
instant-decode ARM opcode function, for instance.)
- reduces code size (we can serialize flag registers in one line instead
of one for each flag)
However, I probably won't use it for super critical code that's constantly
reading out register values (eg PPU MMIO registers.) I think there we
would end up with a performance penalty.
byuu says:
Changelog:
- hiro: fixed the BrowserDialog column resizing when navigating to new
folders (prevents clipping of filenames)
- note: this is kind of a quick-fix; but I have a good idea how to do
the proper fix now
- nall: added BitField<T, Lo, Hi> class
- note: not yet working on the SFC CPU class; need to go at it with
a debugger to find out what's happening
- GB: emulated DMG/SGB STAT IRQ bug; fixes Zerd no Densetsu and Road Rash
(won't fix anything else; don't get hopes up)
byuu says:
Changelog:
- fixed Super Game Boy regression from v096r04 with bottom tile row
flickering
- fixed GB STAT IRQ regression from previous WIP
- Altered Space is now playable
- GBVideoPlayer isn't; but nobody seems to know exactly what weird
hardware quirk that one relies on to work
- ~3-4% speed improvement in SuperFX games by eliminating function<>
callback on register assignments
- most noticeable in Doom in-game; least noticeable on Yoshi's Island
title screen (darn)
- finished GSU core and SuperFX coprocessor code cleanups
- did some more work cleaning up the LR35902 core and GB CPU code
Just a fair warning: don't get your hopes up on these GB
fixes. Cliffhanger now hangs completely (har har), and none of the
other bugs are fixed. We pretty much did all this work just for Altered
Space. So, I hope you like playing Altered Space.
byuu says:
Changelog:
- GNUmakefile: reverted $(call unique,) to $(strip)
- processor/r6502: removed templates; reduces object size from 146.5kb
to 107.6kb
- processor/lr35902: removed templates; reduces object size from 386.2kb
to 197.4kb
- processor/spc700: merged op macros for switch table declarations
- sfc/coprocessor/sa1: partial cleanups; flattened directory structure
- sfc/coprocessor/superfx: partial cleanups; flattened directory structure
- sfc/coprocessor/icd2: flattened directory structure
- gb/ppu: changed behavior of STAT IRQs
Major caveat! The GB/GBC STAT IRQ changes has a major bug in it somewhere
that's seriously breaking most games. I'm pushing the WIP anyway, because
I believe the changes to be mostly correct. I'd like to get more people
looking at these changes, and also try more heavy-handed hacking and
diff comparison logging between the previous WIP and this one.
byuu says:
Changelog:
- removed template usage from processor/spc700; cleaned up many function
names and the switch table
- object size: 176.8kb => 127.3kb
- source code size: 43.5kb => 37.0kb
- fixed processor/r65816 BRK/COP vector regression [hex_usr]
- corrected HuC3 unmapped RAM read value; fixes Robopon [endrift]
- cosmetic: simplified the butterworth constant calculation
[Wolfram|Alpha]
The SPC700 core changes took forever, about three hours of work.
Only the LR35902 and R6502 still need their template functions
removed. The point of this is that it doesn't cause any speed penalty
to do so, and it results in smaller binary sizes and faster compilation
times.
byuu says:
Changelog:
- improved attenuation of biquad filter by computing butterworth Q
coefficients correctly (instead of using the same constant)
- adding 1e-25 to each input sample into the biquad filters to try and
prevent denormalization
- updated normalization from [0.0 to 1.0] to [-1.0 to +1.0]; volume/reverb
happen in floating-point mode now
- good amount of work to make the base Emulator::Audio support any number
of output channels
- so that we don't have to do separate work on left/right channels;
and can instead share the code for each channel
- Emulator::Interface::audioSample(int16 left, int16 right); changed to:
- Emulator::Interface::audioSample(double* samples, uint channels);
- samples are normalized [-1.0 to +1.0]
- for now at least, channels will be the value given to
Emulator::Audio::reset()
- fixed GUI crash on startup when audio driver is set to None
I'm probably going to be updating ruby to accept normalized doubles as
well; but I'm not sure if I will try and support anything other 2-channel
audio output. It'll depend on how easy it is to do so; perhaps it'll be
a per-driver setting.
The denormalization thing is fierce. If that happens, it drops the
emulator framerate from 220fps to about 20fps for Game Boy emulation. And
that happens basically whenever audio output is silent. I'm probably
also going to make a nall/denormal.hpp file at some point with
platform-specific functionality to set the CPU state to "denormals as
zero" where applicable. I'll still add the 1e-25 offset (inaudible)
as another fallback.
byuu says:
Changelog:
- nall/dsp returns with new iir/biquad.hpp and resampler/cubic.hpp files
- nall/queue.hpp added (simple ring buffer ... nall/vector wouldn't
cause too many moves with FIFO)
- audio streams now only buffer 20ms; so even if multiple audio streams
desync, latency can never exceed 20ms
- replaced blackman windwed sinc FIR hermite audio filter with transposed
direct form II biquadratic sixth-order IIR butterworth filter (better
attenuation of frequencies above 20KHz, faster, no need for decimation,
less code)
- put in experimental eight-tap echo filter (a lot better than what I
had before, but still rather weak)
- substantial cleanups to the SuperFX GSU processor core (slightly
faster, 479KB->100KB object file, 42.7KB->33.4KB source code size,
way less code duplication)
We'll definitely want to test the whole SuperFX library (not many games)
just to make sure there's no regressions caused by this one.
Not sure what I want to do with audio processing effects yet. I've always
really wanted lots of fun controls to customize audio, and now finally
with this new biquad filter, I can finally start implementing real
effects. For instance, an equalizer wouldn't be too complicated anymore.
The new reverb effect is still a poor man's version. I need to find human
readable source for implementing a comb-filter properly. I'm pretty sure
I can already treat nall::queue as an all-pass filter since all that
does is phase shift (fancy audio term for "delay audio"). What's really
going to be hard is figuring out how to expose user-friendly settings for
controlling it. It looks like you need a bunch of coprime coefficients,
and I don't think casual users are going to be able to hand-enter coprime
values to get the echo effect they want. I uh ... don't even know how
to calculate coprime values dynamically right now >_> But we're going
to have to, as they are correlated to the output sampling rate.
We'll definitely want to make some audio profiles so that users can
quickly select pre-configured themes that sound nice, but expose the
underlying coefficients so that they can tweak stuff to their liking. This
isn't just about higan, this is about me trying to learn digital signal
processing, so please don't be too upset about feature creep or anything
on this.
Anyway ... I'm having some difficulties with my audio right now. When
the reverb effect is enabled, there's a bunch of static on system
reset for just a moment. But this should not be possible. nall::queue
is initializing all previous reverb sample elements to 0.0. I don't
understand where static is coming in from. Further, we have the same
issue with both the windowed sinc and the biquad filters ... a bit of
a popping sound when starting a game. Any help tracking this down would
be appreciated.
There's also one really annoying issue ... I can't seem to do reverb
or volume adjustments with normalized samples. If I say "volume *= 0.5"
in higan/audio/audio.cpp line 68, it doesn't just halve the volume, it
adds a whole bunch of distortion. This makes absolutely zero sense to
me. The sample values are between 0.0 (mute) and 1.0 (full volume) here,
so multiplying a double by 0.5 shouldn't cause distortion. So right now,
I'm doing these adjustments with less precision after denormalizing back
to int16. Anyone ever see something like that? :/
byuu says:
Changelog:
- higan/video: added support for Emulator::Sprite
- higan/resource: a new system for accessing embedded binary files
inside the emulation cores; holds the sprites
- higan/sfc/superscope,justifier: re-enabled display of crosshairs
- higan/sfc/superscope: fixed turbo toggle (also shows different
crosshair color when in turbo mode)
- higan/sfc/ppu: always outputs at 512x480 resolution now
- causes a slight speed-hit from ~127fps to ~125fps;
- but allows high-resolution 32x32 cursors that look way better;
- also avoids the need to implement sprite scaling logic
Right now, the PPU code to always output at 480-height is a really gross
hack. Don't worry, I'll make that nicer before release.
Also, superscope.cpp and justifier.cpp are built around a 256x240
screen. But since we now have 512x480, we can make the cursor's movement
much smoother by doubling the resolution on both axes. The actual games
won't see any accuracy improvements when firing the light guns, but the
cursors will animate nicer so I think it's still worth it. I'll work on
that before the next release as well.
The current 32x32 cursors are nicer, but we can do better now with full
24-bit color. So feel free to submit alternatives. I'll probably reject
them, but you can always try :D
The sprites don't support alpha blending, just color keying (0x00000000
= transparent; anything else is 0xff......). We can revisit that later
if necessary.
The way I have it designed, the only files that do anything with
Emulator::Sprite at all are the superscope and justifier folders.
I didn't have to add any hooks anywhere else. Rendering the sprite is
a lot cleaner than the old code, too.
byuu says:
Changelog:
- fixed nall/path.hpp compilation issue
- fixed ruby/audio/xaudio header declaration compilation issue (again)
- cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the
file was whitespace overkill)
- added null terminator entry to nall/windows/utf8.hpp argc[] array
- nall/windows/guid.hpp uses the Windows API for generating the GUID
- this should stop all the bug reports where two nall users were
generating GUIDs at the exact same second
- fixed hiro/cocoa compilation issue with uint# types
- fixed major higan/sfc Super Game Boy audio latency issue
- fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions
- major cleanups to higan/processor/r65816 core
- merged emulation/native-mode opcodes
- use camel-case naming on memory.hpp functions
- simplify address masking code for memory.hpp functions
- simplify a few opcodes themselves (avoid redundant copies, etc)
- rename regs.* to r.* to match modern convention of other CPU cores
- removed device.order<> concept from Emulator::Interface
- cores will now do the translation to make the job of the UI easier
- fixed plurality naming of arrays in Emulator::Interface
- example: emulator.ports[p].devices[d].inputs[i]
- example: vector<Medium> media
- probably more surprises
Major show-stoppers to the next official release:
- we need to work on GB core improvements: LY=153/0 case, multiple STAT
IRQs case, GBC audio output regs, etc.
- we need to re-add software cursors for light guns (Super Scope,
Justifier)
- after the above, we need to fix the turbo button for the Super Scope
I really have no idea how I want to implement the light guns. Ideally,
we'd want it in higan/video, so we can support the NES Zapper with the
same code. But this isn't going to be easy, because only the SNES knows
when its output is interlaced, and its resolutions can vary as
{256,512}x{224,240,448,480} which requires pixel doubling that was
hard-coded to the SNES-specific behavior, but isn't appropriate to be
exposed in higan/video.
byuu says:
Changelog:
- fixed major nall/vector/prepend bug
- renamed hiro/ListView to hiro/TableView
- added new hiro/ListView control which is a simplified abstraction of
hiro/TableView
- updated higan's cheat database window and icarus' scan dialog to use
the new ListView control
- compilation works once again on all platforms (Windows, Cocoa, GTK,
Qt)
- the loki skeleton compiles once again (removed nall/DSP references;
updated port/device ID names)
Small catch: need to capture layout resize events internally in Windows
to call resizeColumns. For now, just resize the icarus window to get it
to use the full window width for list view items.
byuu says:
Changelog:
- nall/vector rewritten from scratch
- higan/audio uses nall/vector instead of raw pointers
- higan/sfc/coprocessor/sdd1 updated with new research information
- ruby/video/glx and ruby/video/glx2: fuck salt glXSwapIntervalEXT!
The big change here is definitely nall/vector. The Windows, OS X and Qt
ports won't compile until you change some first/last strings to
left/right, but GTK will compile.
I'd be really grateful if anyone could stress-test nall/vector. Pretty
much everything I do relies on this class. If we introduce a bug, the
worst case scenario is my entire SFC game dump database gets corrupted,
or the byuu.org server gets compromised. So it's really critical that we
test the hell out of this right now.
The S-DD1 changes mean you need to update your installation of icarus
again. Also, even though the Lunar FMV never really worked on the
accuracy core anyway (it didn't initialize the PPU properly), it really
won't work now that we emulate the hard-limit of 16MiB for S-DD1 games.
byuu says:
Changelog:
- GB: support modeSelect and RAM for MBC1M (Momotarou Collection)
- audio: implemented native resampling support into Emulator::Stream
- audio: removed nall::DSP completely
Unfortunately, the new resampler didn't turn out quite as fast as I had
hoped. The final hermite resampling added some overhead; and I had to
bump up the kernel count to 500 from 400 to get the buzzing to go away
on my main PC. I think that's due to it running at 48000hz output
instead of 44100hz output, maybe?
Compared to Ryphecha's:
(NES) Mega Man 2: 167fps -> 166fps
(GB) Mega Man II: 224fps -> 200fps
(WSC) Riviera: 143fps -> 151fps
Odd that the WS/WSC ends up faster while the DMG/CGB ends up slower.
But this knocks 922 lines down to 146 lines. The only files left in all
of higan not written (or rewritten) by me are ruby/xaudio2.h and
libco/ppc.c
byuu says:
Changelog:
- emulation cores now refresh video from host thread instead of
cothreads (fix AMD crash)
- SFC: fixed another bug with leap year months in SharpRTC emulation
- SFC: cleaned up camelCase on function names for
armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes
- GB: added MBC1M emulation (requires manually setting mapper=MBC1M in
manifest.bml for now, sorry)
- audio: implemented Emulator::Audio mixer and effects processor
- audio: implemented Emulator::Stream interface
- it is now possible to have more than two audio streams: eg SNES
+ SGB + MSU1 + Voicer-Kun (eventually)
- audio: added reverb delay + reverb level settings; exposed balance
configuration in UI
- video: reworked palette generation to re-enable saturation, gamma,
luminance adjustments
- higan/emulator.cpp is gone since there was nothing left in it
I know you guys are going to say the color adjust/balance/reverb stuff
is pointless. And indeed it mostly is. But I like the idea of allowing
some fun special effects and configurability that isn't system-wide.
Note: there seems to be some kind of added audio lag in the SGB
emulation now, and I don't really understand why. The code should be
effectively identical to what I had before. The only main thing is that
I'm sampling things to 48000hz instead of 32040hz before mixing. There's
no point where I'm intentionally introducing added latency though. I'm
kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be
much appreciated :/
I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as
well, and that would be very bad.
byuu says:
Changelog:
- WS/WSC: re-added support for screen rotation (code is inside WS core)
- ruby: changed sample(uint16_t left, uint16_t right) to sample(int16_t
left, int16_t right);
- requires casting to uint prior to shifting in each driver, but
I felt it was misleading to use uint16_t just to avoid that
- ruby: WASAPI is now built in by default; has wareya's improvements,
and now supports latency adjust
- tomoko: audio settings panel has new "Exclusive Mode" checkbox for
WASAPI driver only
- note: although the setting *does* take effect in real-time, I'd
suggest restarting the emulator after changing it
- tomoko: audio latency can now be set to 0ms (which in reality means
"the minimum supported by the driver")
- all: increased cothread size from 512KiB to 2MiB to see if it fixes
bullshit AMD driver crashes
- this appears to cause a slight speed penalty due to cache locality
going down between threads, though
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
byuu says:
It took several hours, but I've rebuilt much of the SNES' bus memory
mapping architecture.
The new design unifies the cartridge string-based mapping
("00-3f,80-bf:8000-ffff") and internal bus.map calls. The map() function
now has an accompanying unmap() function, and instead of a fixed 256
callbacks, it'll scan to find the first available slot. unmap() will
free slots up when zero addresses reference a given slot.
The controllers and expansion port are now both entirely dynamic.
Instead of load/unload/power/reset, they only have the constructor
(power/reset/load) and destructor (unload). What this means is you can
now dynamically change even expansion port devices after the system is
loaded.
Note that this is incredibly dangerous and stupid, but ... oh well. The
whole point of this was for 21fx. There's no way to change the expansion
port device prior to loading a game, but if the 21fx isn't active, then
the reset vector hijack won't work. Now you can load a 21fx game, change
the expansion port device, and simply reset the system to active the
device.
The unification of design between controller port devices and expansion
port devices is nice, and overall this results in a reduction of code
(all of the Mapping stuff in Cartridge is gone, replaced with direct bus
mapping.) And there's always the potential to expand this system more in
the future now.
The big missing feature right now is the ability to push/pop mappings.
So if you look at how the 21fx does the reset vector, you might vomit
a little bit. But ... it works.
Also changed exit(0) to _exit(0) in the POSIX version of nall::execute.
[The _exit(0) thing is an attempt to make higan not crash when it tries
to launch icarus and it's not on $PATH. The theory is that higan forks,
then the child tries to exec icarus and fails, so it exits, all the
unique_ptrs clean up their resources and tell the X server to free
things the parent process is still using. Calling _exit() prevents
destructors from running, and seems to prevent the problem. -Ed.]
byuu says:
Changelog:
- SFC: fixed a regression on auto joypad polling due to missing
parentheses
- SFC: exported new PPU::vdisp() const -> uint; function [1]
- SFC: merged PPU MMIO functions into the read/write handles (as
I previously did for the CPU)
- higan: removed individual emulator core names (bnes, bsnes, bgb, bgba,
bws) [2] Forgot:
- to remove /tomoko from the about dialog
[1] note that technically I was relying on the cached, per-frame
overscan setting when the CPU and light guns were polling the number of
active display scanlines per frame. This was technically incorrect as
you can change this value mid-frame and it'll kick in. I've never seen
any game toggle overscan every frame, we only know about this because
anomie tested this a long time ago. So, nothing should break, but ...
you know how the SNES is. You can't even look at the code without
something breaking, so I figured I'd mention it >_>
[2] I'll probably keep referring to the SNES core as bsnes anyway.
I don't mind if you guys use the b<system> names as shorthand. The
simplification is mostly to make the branding easier.
byuu says:
Changelog:
- SFC: balanced profile removed
- SFC: performance profile removed
- SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed
- SFC: Coprocessor, Controller (and expansion port) shared Thread code
merged to SFC::Cothread
- Cothread here just means "Thread with CPU affinity" (couldn't think
of a better name, sorry)
- SFC: CPU now has vector<Thread*> coprocessors, peripherals;
- this is the beginning of work to allow expansion port devices to be
dynamically changed at run-time
- ruby: all audio drivers default to 48000hz instead of 22050hz now if
no frequency is assigned
- note: the WASAPI driver can default to whatever the native frequency
is; doesn't have to be 48000hz
- tomoko: removed the ability to change the frequency from the UI (but
it will display the frequency used)
- tomoko: removed the timing settings panel
- the goal is to work toward smooth video via adaptive sync
- the model is broken by not being in control of the audio frequency
anyway
- it's further broken by PAL running at 50hz and WSC running at 75hz
- it was always broken anyway by SNES interlace timing varying from
progressive timing
- higan: audio/ stub created (for now, it's just nall/dsp/ moved here
and included as a header)
- higan: video/ stub created
- higan/GNUmakefile: now includes build rules for essential components
(libco, emulator, audio, video)
The audio changes are in preparation to merge wareya's awesome WASAPI
work without the need for the nall/dsp resampler.
byuu says:
This release most notably adds WonderSwan and WonderSwan Color
emulation.
It is also the final release that will include the balanced and
performance profiles for bsnes.
Changelog (since v097):
- higan: added WonderSwan and WonderSwan Color emulation
- higan: simplified the coooperative-thread schedulers for all emulation
cores
- higan: moved from native (u)int[8,16,32,64]_t types to
Natural<T>/Integer<T> classes
- higan: major cleanups to the Makefiles; including auto-selection of
processor cores
- loki: very barebones skeleton in place now; does absolutely nothing
- these allow the removal of huge amounts of manual bit-twiddling with
more readable alternatives
- FC: fixed PPU OAM reads (mask the correct bits when writing) [hex_usr]
- SFC: fixed expansion port device mapping on game load
- SFC: reworked the way SGB games were loaded -* SFC core can now be
compiled without GB core (and thus without SGB support)
- SFC: added Super Disc expansion port device (although it's just
a non-functional skeleton so far)
- SFC: bugfix to SharpRTC emulation regarding leap year extra day counts
(Dai Kaijuu Monogatari II)
- SFC: major code cleanups to the CPU core and the R65816 processor base
class
- SFC: added 21fx emulation (not the old 21fx that became MSu1; reusing
the name for a new idea)
- basic idea is to move the serial USART to the expansion port along
with a reset vector hijack
- SFC: emulate reset vector pushing PC onto the stack on system soft
reset
- GB: pass gekkio's if_ie_registers and boot_hwio-G test ROMs
- GBA: reworked all handling of MMIO functions: removed the get/set
class functions
- nall: improved edge case return values for
(basename,pathname,dirname,...)
- ruby: fixed ~AudioXAudio2() typo (now calls destructor on exit)
- ruby: if DirectSoundCreate fails (no sound device present), return
false from init instead of crashing
- tomoko: added "All" option to filetype dropdown for ROM loading
- allows loading GBC games in SGB mode
- tomoko: locate() updated to search multiple paths [2]
- tomoko: fixed some oddities when changing the audio frequency/latency
settings
- icarus: can now work with WonderSwan and WonderSwan Color games
Note 1: 90% of the changelog for this release was related to the
WonderSwan emulation being in development. Doesn't make a lot of sense
to post about fixes since the code didn't exist publicly prior to this
release.
byuu says:
Changelog:
- bsnes-accuracy emulates reset vector properly[1]
- bsnes-balanced compiles once more
- bsnes-performance compiles once more
The balanced and performance profiles are fixed for the last time. They
will be removed for v098r01.
Please test this WIP as much as you can. I intend to release v098 soon.
I know save states are a little unstable for the WS/WSC, but they work
well enough for a release. If I can't figure it out soon, I'm going to
post v098 anyway.
[1] this one's been a really long time coming, but ... one of the bugs
I found when I translated Tekkaman Blade was that my translation patch
would crash every now and again when you hit the reset button on a real
SNES, but it always worked upon power on.
Turns out that while power-on initializes the stack register to $01ff,
reset does things a little bit differently. Reset actually triggers the
reset interrupt vector after putting the CPU into emulation mode, but it
doesn't initialize the stack pointer. The net effect is that the stack
high byte is set to $01, and the low byte is left as it was. And then
the reset vector runs, which pushes the low 16-bits of the program
counter, plus the processor flags, onto the stack frame. So you can
actually tell where the game was at when the system was reset ... sort
of.
It's a really weird behavior to be sure. But here's the catch: say
you're hacking a game, and so you hook the reset vector with jsl
showMyTranslationCreditsSplashScreen, and inside this new subroutine,
you then perform whatever bytes you hijacked, and then initialize the
stack frame to go about your business drawing the screen, and when
you're done, you return via rtl.
Generally, this works fine. But if S={0100, 0101, or 0102}, then the
stack will wrap due to being in emulation mode at reset. So it will
write to {0100, 01ff, 01fe}. But now in your subroutine, you enable
native mode. So when you return from your subroutine hijack, it reads
the return address from {01ff, 0200, 0201} instead of the expected
{01ff, 0100, 0101}. Thus, you get an invalid address back, and you
"return" to the wrong location, and your program dies.
The odds of this happening depend on how the game handles S, but
generally speaking, it's a ~1:85 chance.
By emulating this behavior, I'll likely expose this bug in many ROM
hacks that do splash screen hooks like this, including my own Tekkaman
Blade translation. And it's also very possible that there are commercial
games that screw this up as well.
But, it's what the real system does. So if any crashes start happening
as of this WIP upon resetting the game, well ... it'd happen on real
hardware, too.
byuu says:
Changelog:
- WS: fixed sprite window clipping (again)
- WS: don't set IRQ status bits of IRQ enable bits are clear
- SFC: signed/unsigned -> int/uint for DSP core
- SFC: removed eBoot
- SFC: added 21fx (not the same as the old precursor to MSU1; just
reusing the name)
Note: XI Little doesn't seem to be fixed after all ... but the other
three are. So I guess we're at 13 bugs :( And holy shit that music when
you choose a menu option is one of the worst sounds I've ever heard in
my life >_<
byuu says:
Changelog:
- fixed DAS instruction (Judgment Silversword score)
- fixed [VH]TMR_FREQ writes (Judgement Silversword audio after area 20)
- fixed initialization of SP (fixes seven games that were hanging on
startup)
- added SER_STATUS and SER_DATA stubs (fixes four games that were
hanging on startup)
- initialized IEEP data (fixes Super Robot Taisen Compact 2 series)
- note: you'll need to delete your internal.com in WonderSwan
(Color).sys folders
- fixed CMPS and SCAS termination condition (fixes serious bugs in four
games)
- set read/writeCompleted flags for EEPROM status (fixes Tetsujin 28
Gou)
- major code cleanups to SFC/R65816 and SFC/CPU
- mostly refactored disassembler to output strings instead of using
char* buffer
- unrolled all the subfolders on sfc/cpu to a single directory
- corrected casing for all of sfc/cpu and a large portion of
processor/r65816
I kind of went overboard on the code cleanup with this WIP. Hopefully
nothing broke. Any testing one can do with the SFC accuracy core would
be greatly appreciated.
There's still an absolutely huge amount of work left to go, but I do
want to eventually refresh the entire codebase to my current coding
style, which is extremely different from stuff that's been in higan
mostly untouched since ~2006 or so. It's dangerous and fickle work, but
if I don't do it, then the code will be a jumbled mess of several
different styles.
byuu says:
Changelog: (all WSC unless otherwise noted)
- fixed LINECMP=0 interrupt case (fixes FF4 world map during airship
sequence)
- improved CPU timing (fixes Magical Drop flickering and FF1 battle
music)
- added per-frame OAM caching (fixes sprite glitchiness in Magical Drop,
Riviera, etc.)
- added RTC emulation (fixes Dicing Knight and Judgement Silversword)
- added save state support
- added cheat code support (untested because I don't know of any cheat
codes that exist for this system)
- icarus: can now detect games with RTC chips
- SFC: bugfix to SharpRTC emulation (Dai Kaijuu Monogatari II)
- ( I was adding the extra leap year day to all 12 months instead of
just February ... >_< )
Note that the RTC emulation is very incomplete. It's not really
documented at all, and the two games I've tried that use it never even
ask you to set the date/time (so they're probably just using it to count
seconds.) I'm not even sure if I've implement the level-sensitive
behavior correctly (actually, now that I think about it, I need to mask
the clear bit in INT_ACK for the level-sensitive interrupts ...)
A bit worried about the RTC alarm, because it seems like it'll fire
continuously for a full minute. Or even if you turn it off after it
fires, then that doesn't seem to be lowering the line until the next
second ticks on the RTC, so that likely needs to happen when changing
the alarm flag.
Also not sure on this RTC's weekday byte. On the SharpRTC, it actually
computes this for you. Because it's not at all an easy thing to
calculate yourself in 65816 or V30MZ assembler. About 40 lines of code
to do it in C. For now, I'm requiring the program to calculate the value
itself.
Also note that there's some gibberish tiles in Judgement Silversword,
sadly. Not sure what's up there, but the game's still fully playable at
least.
Finally, no surprise: Beat-Mania doesn't run :P
byuu says:
Absolutely major improvements to the WS/C emulation today.
Changelog: (all WS/C related)
- fixed channel 3 sweep pitch adjustment
- fixed channel 3 sweep value sign extension
- removed errant channel 5 speed setting (not what's really going on)
- fixed sign extension on channel 5 samples
- improved DAC mixing of all five audio channels
- fixed r26 regression with PPU timing loop
- fixed sprite windowing behavior (sprite attribute flag is window mode;
not window enable)
- added per-scanline register latching to the PPU
- IRQs should terminate HLT even when the IRQ enable register bits are
clear
- fixed PALMONO reads
- added blur emulation
- added color emulation (based on GBA, so it heavily desaturates colors;
not entirely correct, but it helps a lot)
- no longer decimating audio to 24KHz; running at full 3.072MHz through
the windowed sinc filter [1]
- cleaned up PPU portRead / portWrite functions significantly
- emulated a weird quirk as mentioned by trap15 regarding timer
frequency writes enabling said timers [2]
- emulated LCD_CTRL sleep bit; screen can now be disabled (always draws
black in this case for now)
- improved OAM caching; but it's still disabled because it causes huge
amounts of sprite glitches (unsure why)
- fixed rendering of sprites that wrap around the screen edges back to
the top/left of the display
- emulated keypad interrupts
- icarus: detect orientation bit in game header
- higan: use orientation setting in manifest to set default screen
rotation
[1] the 24KHz -> 3.072MHz sound change is huge. Sound is substantially
improved over the previous WIPs. It does come at a pretty major speed
penalty, though. This is the highest frequency of any system in higan
running through an incredibly (amazing, yet) demanding sinc resampler.
Frame rate dropped from around 240fps to 150fps with the sinc filter on.
If you choose a different audio filter, you'll get most of that speed
back, but audio will sound worse again.
[2] we aren't sure if this is correct hardware behavior or not. It seems
to very slightly help Magical Drop, but not much.
The blur emulation is brutal. It's absolutely required for Riviera's
translucency simulation of selected menu items, but it causes serious
headaches due to the WS's ~75hz refresh rate running on ~60hz monitors
without vsync. It's probably best to leave it off and just deal with the
awful flickering on Riviera's menu options.
Overall, WS/C emulation is starting to get quite usable indeed. Couple
of major bugs that I'd really like to get fixed before releasing it,
though. But they're getting harder and harder to fix ...
Major Bugs:
- Final Fantasy battle background music is absent. Sound effects still
work. Very weird.
- Final Fantasy IV scrolling during airship flight opening sequence is
horribly broken. Scrolls one screen at a time.
- Magical Drop flickers like crazy in-game. Basically unplayable like
this.
- Star Hearts character names don't appear in the smaller dialog box
that pops up.
Minor Bugs:
- Occasional flickering during Riviera opening scenes.
- One-frame flicker of Leda's sprite at the start of the first stage.
byuu says:
Changelog:
- WS: fixed 8-bit sign-extended imul (fixes Star Hearts completely,
Final Fantasy world map)
- WS: fixed rcl/rcr carry shifting (fixes Crazy Climber, others)
- WS: added sound DMA emulation (Star Hearts rain sound for one example)
- WS: added OAM caching, but it's forced every line for now because
otherwise there are too many sprite glitches
- WS: use headphoneEnable bit instead of speakerEnable bit (fixes muted
audio in games)
- WS: various code cleanups (I/O mapping, audio channel naming, etc)
The hypervoice channel doesn't sound all that great just yet. But I'm
not sure how it's supposed to sound. I need a better example of some
more complex music.
What's left are some unknown register status bits (especially in the
sound area), keypad interrupts, RTC emulation, CPU prefetch emulation.
And then it's all just bugs. Lots and lots of bugs that need to be
fixed.
EDIT: oops, bad typo in the code.
ws/ppu/ppu.cpp line 20: change range(256) to range(224).
Also, delete the r.speed stuff from channel5.cpp to make the rain sound
a lot better in Star Hearts. Apparently that's outdated and not what the
bits really do.
byuu says:
Changelog:
- WS: added HblankTimer and VblankTimer IRQs; although they don't appear
to have any effect on any games that use them :/
- WS: added sound emulation; works perfectly in some games (eg Riviera);
is completely silent in most games (eg GunPey)
The sound emulation only partially supports the hypervoice (headphone
only) channel. I need to implement the SDMA before it'll actually do
anything useful. I'm a bit confused about how exactly things work. It
looks like the speaker volume shift and clamp only applies to speaker
mode and not headphone mode, which is very weird. Then there's the
software possibility of muting the headphones and/or the speaker.
Preferably, I want to leave the emulator always in headphone mode for
the extra audio channel. If there are games that force-mute the
headphones, but not speakers, then I may need to force headphones back
on but with the hypervoice channel disabled. I guess we'll see how
things go.
Rough guess is probably that the channels default to enabled after the
IPLROM, and games aren't bothering to manually enable them or something.
byuu says:
Changelog:
- WS: fixed bug when IRQs triggered during a rep string instruction
- WS: added sprite attribute caching (per-scanline); absolutely massive
speed-up
- WS: emulated limit of 32 sprites per scanline
- WS: emulated the extended PPU register bit behavior based on the
DISP_CTRL tile bit-depth setting
- WS: added "Rotate" key binding; can be used to flip the WS display
between horizontal and vertical in real-time
The prefix emulation may not be 100% hardware-accurate, but the edge
cases should be extreme enough to not come up in the WS library. No way
to get the emulation 100% down without intensive hardware testing.
trap15 pointed me at a workflow diagram for it, but that diagram is
impossible without a magic internal stack frame that grows with every
IRQ, and can thus grow infinitely large.
The rotation thing isn't exactly the most friendly set-up, but oh well.
I'll see about adding a default rotation setting to manifests, so that
games like GunPey can start in the correct orientation. After that, if
the LCD orientation icon turns out to be reliable, then I'll start using
that. But if there are cases where it's not reliable, then I'll leave it
to manual button presses.
Speaking of icons, I'll need a set of icons to render on the screen.
Going to put them to the top right on vertical orientation, and on the
bottom left for horizontal orientation. Just outside of the video
output, of course.
Overall, WS is getting pretty far along, but still some major bugs in
various games. I really need sound emulation, though. Nobody's going to
use this at all without that.
byuu says:
Changelog:
- emulated SuperDisc $21e1 basic interface (NEC 4-bit MCU); all hardware
tests pass now (but they don't test much)
- WS/V30MZ: fixed inc/dec reg flag calculation
- WS/V30MZ: fixed lds/les instructions
WS/C compatibility should be way up now. SuperDisc BIOS passes all tests
now (but they only test for the presence of the interface, nothing
more.)
byuu says:
Changelog:
- WS: fixed lods, scas instructions
- WS: implemented missing GRP4 instructions
- WS: fixed transparency for screen one
- WSC: added color-mode PPU rendering
- WS+WSC: added packed pixel mode support
- WS+WSC: added dummy sound register reads/writes
- SFC: added threading to SuperDisc (it's hanging for right now; need to
clear IRQ on $21e2 writes)
SuperDisc Timer and Sound Check were failing before due to not turning
off IRQs on $21e4 clear, so I'm happy that's fixed now.
Riviera starts now, and displays the first intro screen before crashing.
Huge, huge amounts of corrupted graphics, though. This game's really
making me work for it :(
No color games seem fully playable yet, but a lot of monochrome and
color games are now at least showing more intro screen graphics before
dying.
This build defaults to horizontal orientation, but I left the inputs
bound to vertical orientation. Whoops. I still need to implement
a screen flip key binding.
byuu says:
Changelog:
- icarus: WS/C detects RAM type/size heuristically now
- icarus: WS/C uses ram type=$type instead of $type
- WS: use back color instead of white for backdrop
- WS: fixed sprite count limit; removes all the garbled sprites from
GunPey
- WS: hopefully fixed sprite priority with screen 2
- WS: implemented keypad polling; GunPey is now fully playable
- SNES: added Super Disc expansion port device (doesn't do anything,
just for testing)
Note: WS is hard-coded to vertical orientation right now. But there's
basic code in there for all the horizontal stuff.
byuu says:
Changelog:
- WS: fixed a major CPU bug where I was using the wrong bits for
ModR/M's memory mode
- WS: added grayscale PPU emulation (exceptionally buggy)
GunPey now runs, as long as you add:
eeprom name=save.ram size=0x800
to the manifest after importing with icarus.
Right now, you can't control the game due to missing keypad polling.
There's also a lot of glitchiness with the sprites. Seems like they're
not getting properly cleared sometimes or something.
Also, the PPU emulation is totally unrealistic bullshit. I decode and
evaluate every single tile and sprite on every single pixel of output.
No way in hell the hardware could ever come close to that. The speed's
around 500fps without the insane sprite evaluations, and around 90fps
with it. Obviously, I'll fix this in time.
Nothing else seems to run that I've tried. Not even far enough to
display any output whatsoever. Tried Langrisser Millenium, Rockman
& Forte and Riviera. I really need to update icarus to try and encode
eeprom/sram sizes, because that's going to break a lot of stuff if it's
missing.
byuu says:
Changelog:
- fixed nall/windows/guard.hpp
- fixed hiro/(windows,gtk)/header.hpp
- fixed Famicom PPU OAM reads (mask the correct bits when writing)
[hex_usr]
- removed the need for (system := system) lines from higan/GNUmakefile
- added "All" option to filetype dropdown for ROM loading
- allows loading GBC games in SGB mode (and technically non-GB(C)
games, which will obviously fail to do anything)
- loki can load and play game folders now (command-line only) (extremely
unimpressive; don't waste your time :P)
- the input is extremely hacked in as a quick placeholder; not sure
how I'm going to do mapping yet for it
byuu says:
Changelog:
- fixed SNES sprite priority regression from r17
- added nall/windows/guard.hpp to guard against global namespace
pollution (similar to nall/xorg/guard.hpp)
- almost fixed Windows compilation (still accuracy profile only, sorry)
- finished porting all of gba/ppu's registers over to the new .bit,.bits
format ... all GBA registers.cpp files gone now
- the "processors :=" line in the target-$(ui)/GNUmakefile is no longer
required
- processors += added to each emulator core
- duplicates are removed using the new nall/GNUmakefile's $(unique)
function
- SFC core can be compiled without the GB core now
- "-DSFC_SUPERGAMEBOY" is required to build in SGB support now (it's
set in target-tomoko/GNUmakefile)
- started once again on loki (higan/target-loki/) [as before, loki is
Linux/BSD only on account of needing hiro::Console]
loki shouldn't be too horrendous ... I hope. I just have the base
skeleton ready for now. But the code from v094r08 should be mostly
copyable over to it. It's just that it's about 50KiB of incredibly
tricky code that has to be just perfect, so it's not going to be quick.
But at least with the skeleton, it'll be a lot easier to pick away at it
as I want.
Windows compilation fix: move hiro/windows/header.hpp line 18 (header
guard) to line 16 instead.
byuu says:
Changelog:
- ruby: if DirectSoundCreate fails (no sound device present), return
false from init instead of crashing
- nall: improved edge case return values for
(basename,pathname,dirname,...)
- nall: renamed file_system_object class to inode
- nall: varuint_t replaced with VariadicNatural; which contains
.bit,.bits,.byte ala Natural/Integer
- nall: fixed boolean compilation error on Windows
- WS: popa should not restore SP
- GBA: rewrote the CPU/APU cores to use the .bit,.bits functions;
removed registers.cpp from each
Note that the GBA changes are extremely major. This is about five hours
worth of extremely delicate work. Any slight errors could break
emulation in extremely bad ways. Let's hold off on extensive testing
until the next WIP, after I do the same to the PPU.
So far ... endrift's SOUNDCNT_X I/O test is failing, although that code
didn't change, so clearly I messed up SOUNDCNT_H somehow ...
To compile on Windows:
1. change nall/string/platform.hpp line 47 to
return slice(result, 0, 3);
2. change ruby/video.wgl.cpp line 72 to
auto lock(uint32_t*& data, uint& pitch, uint width, uint height) -> bool {
3. add this line to the very top of hiro/windows/header.cpp:
#define boolean FuckYouMicrosoft
byuu says:
Changelog:
- sfc/ppu/sprite updated to use new .bit(s) functions; masked sizes
better; added valid flags instead of using magic numbers
- ws/ppu updates to use new .bit(s) functions
- ws/ppu: added line compare interrupt support
- added ws/eeprom; emulation of WS/WSC internal EEPROM and cartridge
EEPROM (1kbit - 16kbit supported)
- added basic read/write handlers for remaining WS/WSC PPU registers
WS EEPROM emulation is basically a direct copy of trap15's code. Still
some unknown areas in there, but hopefully it's enough to get further
into games that depend on EEPROM support. Note that you'll have to
manually add the eeprom line to the manifest for now, as icarus doesn't
know how to detect EEPROM/sizes yet.
I figured the changes to the SNES PPU sprites would slow it down a tad,
but it actually sped it up. Most of the impact from the integer classes
are gone now.
byuu says:
Changelog:
- higan now uses Natural<Size>/Integer<Size> for its internal types
- Super Famicom emulation now uses uint24 instead of uint for bus
addresses (it's a 24-bit bus)
- cleaned up gb/apu MMIO writes
- cleaned up sfc/coprocessor/msu1 MMIO writes
- ~3% speed penalty
I've wanted to do that 24-bit bus thing for so long, but have always
been afraid of the speed impact. It's probably going to hurt
balanced/performance once they compile again, but it wasn't significant
enough to harm the accuracy core's frame rate, thankfully. Only lost one
frame per second.
The GBA core handlers are clearly going to take a lot more work. The
bit-ranges will make it substantially easier to handle, though. Lots of
32-bit registers where certain values span multiple bytes, but we have
to be able to read/write at byte-granularity.
byuu says:
Got it. Wow, that didn't hurt nearly as much as I thought it was going
to.
Dropped from 127.5fps to 123.5fps to use Natural/Integer for
(u)int(8,16,32,64).
That's totally worth the cost.
byuu says:
This is a few days old, but oh well.
This WIP changes nall,hiro,ruby,icarus back to (u)int(8,16,32,64)_t.
I'm slowly pushing for (u)int(8,16,32,64) to use my custom
Integer<Size>/Natural<Size> classes instead. But it's going to be one
hell of a struggle to get that into higan.
byuu says:
I refactored my schedulers. Added about ten lines to each scheduler, and
removed about 100 lines of calling into internal state in the scheduler
for the FC,SFC cores and about 30-40 lines for the other cores. All of
its state is now private.
Also reworked all of the entry points to static auto Enter() and auto
main(). Where Enter() handles all the synchronization stuff, and main()
doesn't need the while(true); loop forcing another layer of indentation
everywhere.
Took a few hours to do, but totally worth it. I'm surprised I didn't do
this sooner.
Also updated icarus gmake install rule to copy over the database.
byuu says:
Nothing WS-related this time.
First, I fixed expansion port device mapping. On first load, it was
mapping the expansion port device too late, so it ended up not taking
effect. I had to spin out the logic for that into
Program::connectDevices(). This was proving to be quite annoying while
testing eBoot (SNES-Hook simulation.)
Second, I fixed the audio->set(Frequency, Latency) functions to take
(uint) parameters from the configuration file, so the weird behavior
around changing settings in the audio panel should hopefully be gone
now.
Third, I rewrote the interface->load,unload functions to call into the
(Emulator)::System::load,unload functions. And I have those call out to
Cartridge::load,unload. Before, this was inverted, and Cartridge::load()
was invoking System::load(), which I felt was kind of backward.
The Super Game Boy really didn't like this change, however. And it took
me a few hours to power through it. Before, I had the Game Boy core
dummying out all the interface->(load,save)Request calls, and having the
SNES core make them for it. This is because the folder paths and IDs
will be different between the two cores.
I've redesigned things so that ICD2's Emulator::Interface overloads
loadRequest and saveRequest, and translates the requests into new
requests for the SuperFamicom core. This allows the Game Boy code to do
its own loading for everything without a bunch of Super Game Boy special
casing, and without any awkwardness around powering on with no cartridge
inserted.
This also lets the SNES side of things simply call into higher-level
GameBoy::interface->load,save(id, stream) functions instead of stabbing
at the raw underlying state inside of various Game Boy core emulation
classes. So things are a lot better abstracted now.
byuu says:
Alright, well interrupts are in. At least Vblank is.
I also fixed a bug in vector() indexing, MoDRM mod!=3&®==6 using SS
instead of DS, opcodes a0-a3 allowing segment override, and added the
"irq_disable" stuff to the relevant opcodes to suppress IRQs after
certain instructions.
But unfortunately ... still no go on Riviera. It's not reading any
unmapped ports, and although it enables Vblank IRQs and they set port
$b4's status bit, the game never sets the IE flag, so no interrupts ever
actually fire. The game does indeed appear to be sitting in a rather
huge loop, which is probably dependent upon some RAM variable being set
from the Vblank IRQ, but I don't know how I'm supposed to be triggering
it.
... I'm really quite stumped here >_>
byuu says:
All 256 instructions implemented fully. Fixed a major bug with
instructions that both read and write to ModRM with displacement.
Riviera now runs into an infinite loop ... possibly crashed, possibly
waiting on interrupts or in to return something. Added a bunch of PPU
settings registers, but nothing's actually rendering with them yet.
244 of 256 opcodes implemented now, although the interrupt triggering
portions are missing from them still. Much better handling of prefixes
now.
I definitely have a newfound hatepreciation for x86 now >_>
byuu says:
Up to 211 opcodes implemented, with the caveat that the four opcodes
that make up group 3 and group 4 don't do anything yet. Both groups seem
to have some "illegal" instructions in them, so that'll be "fun".
I have a new mechanic in place for opcode prefixes, but it could use
some work still. I also only have it working to override ModRM mem
addressing, but of course it does it in a lot of other places like the
string operations.
Making it about 5.5 million instructions into Gunpey now, but of course
that doesn't mean much. Could be going off the rails at any point due to
CPU bugs or unimplemented ports. Riviera's still crashing.
byuu says:
26 hours in, 173 instructions implemented. Although the four segment
prefix opcodes don't actually do anything yet. There's less than 256
actual instructions on the 80186, not sure of the exact count.
Gunpey gets around ~8,200 instructions in before hitting an unsupported
opcode (loop). Riviera goes off the rails on a retf and ends up
executing an endless stream of bad opcodes in RAM =( Both games hammer
the living shit out of the in/out ports pretty much immediately.
byuu says:
Man, the 80186 is taking a lot longer to implement than I thought it
would. So far I'm 18 hours into this emulator. Whereas I had Super Mario
Bros fully playable (no sound) in 12 hours for the NES >_>
I refactored all the byte/word variant functions to single functions
that take a size parameter. Cuts the amount of code in half.
Also implemented repz/repnz + movsb/movsw, so Riviera now gets 299
instructions in before dying. Nobody really bothers to explain how the
CPU actually implements these instructions, but I think I have it right:
ignore non-string opcodes that follow rep, invoke the string operations
inside the rep opcodes to prevent interrupts from triggering between the
two (which will be even more fun for segment selector overrides ...)
The next opcode needed is 0xC7, which ... throws ModRM on its head. In
this mode, ModRM is only used to determine the target operand (and it
doesn't use the middle bits for that at all), and the source is an
immediate that follows it. Gonna have to waste a few more hours thinking
about how best to handle that.
Also, disabled HiDPI for higan as well on OS X.
byuu says:
More V30MZ implemented, a lot more to go.
icarus now supports importing WS and WSC games. It expects them to have
the correct file extension, same for GB and GBC.
> Ugh, apparently HiDPI icarus doesn't let you press the check boxes.
I set the flag value in the plist to false for now. Forgot to do it for
higan, but hopefully I won't forget before release.
byuu says:
Lots of improvements. We're now able to start executing some V30MZ
instructions. 32 of 256 opcodes implemented so far.
I hope this goes without saying, but there's absolutely no point in
loading WS/WSC games right now. You won't see anything until I have the
full CPU and partial PPU implemented.
ROM bank 2 works properly now, the I/O map is 16-bit (address) x 16-bit
(data) as it should be*, and I have a basic disassembler in place
(adding to it as I emulate new opcodes.)
(* I don't know what happens if you access an 8-bit port in 16-bit mode
or vice versa, so for now I'm just treating the handlers as always being
16-bit, and discarding the upper 8-bits when not needed.)
byuu says:
So, this WIP starts work on something new for higan. Obviously, I can't
keep it a secret until it's ready, because I want to continue daily WIP
releases, and of course, solicit feedback as I go along.
byuu says:
Note: balanced/performance profiles still broken, sorry.
Changelog:
- added nall/GNUmakefile unique() function; used on linking phase of
higan
- added nall/unique_pointer
- target-tomoko and {System}::Video updated to use
unique_pointer<ClassName> instead of ClassName* [1]
- locate() updated to search multiple paths [2]
- GB: pass gekkio's if_ie_registers and boot_hwio-G test ROMs
- FC, GB, GBA: merge video/ into the PPU cores
- ruby: fixed ~AudioXAudio2() typo
[1] I expected this to cause new crashes on exit due to changing the
order of destruction of objects (and deleting things that weren't
deleted before), but ... so far, so good. I guess we'll see what crops
up, especially on OS X (which is already crashing for unknown reasons on
exit.)
[2] right now, the search paths are: programpath(), {configpath(),
"higan/"}, {localpath(), "higan/"}; but we can add as many more as we
want, and we can also add platform-specific versions.
byuu says:
A minor WIP to get us started.
Changelog:
- System::Video merged to PPU::Video
- System::Audio merged to DSP::Audio
- System::Configuration merged to Interface::Settings
- created emulator/emulator.cpp and accompanying object file for shared
code between all cores
Currently, emulator.cpp just holds a videoColor() function that takes
R16G16B16, performs gamma/saturation/luma adjust, and outputs
(currently) A8R8G8B8. It's basically an internal function call for cores
to use when generating palette entries. This code used to exist inside
ui-tomoko/program/interface.cpp, but we have to move it internal for
software display emulation. But in the future, we could add other useful
cross-core functionality here.
byuu says:
This release features improvements to all emulation cores, but most
substantially for the Game Boy core. All of blargg's test ROMs that pass
in gambatte now either pass in higan, or are off by 1-2 clocks (the
actual behaviors are fully emulated.) I consider the Game Boy core to
now be fairly accurate, but there's still more improvements to be had.
Also, what's sure to be a major feature for some: higan now has full
support for loading and playing ordinary ROM files, whether they have
copier headers, weird extensions, or are inside compressed archives. You
can load these games from the command-line, from the main Library menu
(via Load ROM Image), or via drag-and-drop on the main higan window. Of
course, fans of game folders and the library need not worry: that's
still there as well.
Also new, you can drop the (uncompressed) Game Boy Advance BIOS onto the
higan main window to install it into the correct location with the
correct file name.
Lastly, this release technically restores Mac OS X support. However,
it's still not very stable, so I have decided against releasing binaries
at this time. I'd rather not rush this and leave a bad first impression
for OS X users.
Changelog (since v096):
- higan: project source code hierarchy restructured; icarus directly
integrated
- higan: added software emulation of color-bleed, LCD-refresh,
scanlines, interlacing
- icarus: you can now load and import ROM files/archives from the main
higan menu
- NES: fixed manifest parsing for board mirroring and VRC pinouts
- SNES: fixed manifest for Star Ocean
- SNES: fixed manifest for Rockman X2,X3
- GB: enabling LCD restarts frame
- GB: emulated extra OAM STAT IRQ quirk required for GBVideoPlayer
(Shonumi)
- GB: VBK, BGPI, OBPI are readable
- GB: OAM DMA happens inside PPU core instead of CPU core
- GB: fixed APU length and sweep operations
- GB: emulated wave RAM quirks when accessing while channel is enabled
- GB: improved timings of several CPU opcodes (gekkio)
- GB: improved timings of OAM DMA refresh (gekkio)
- GB: CPU uses open collector logic; return 0xFF for unmapped memory
(gekkio)
- GBA: fixed sequencer enable flags; fixes audio in Zelda - Minish Cap
(Jonas Quinn)
- GBA: fixed disassembler masking error (Lioncash)
- hiro: Cocoa support added; higan can now be compiled on Mac OS X 10.7+
- nall: improved program path detection on Windows
- higan/Windows: moved configuration data from %appdata% to
%localappdata%
- higan/Linux,BSD: moved configuration data from ~/.config/higan to
~/.local/higan
byuu says:
Changelog:
- configuration files are now stored in localpath() instead of configpath()
- Video gamma/saturation/luminance sliders are gone now, sorry
- added Video Filter->Blur Emulation [1]
- added Video Filter->Scanline Emulation [2]
- improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn]
[1] For the Famicom, this does nothing. For the Super Famicom, this
performs horizontal blending for proper pseudo-hires translucency. For
the Game Boy, Game Boy Color, and Game Boy Advance, this performs
interframe blending (each frame is the average of the current and
previous frame), which is important for things like the GBVideoPlayer.
[2] Right now, this only applies to the Super Famicom, but it'll come to
the Famicom in the future. For the Super Famicom, this option doesn't
just add scanlines, it simulates the phosphor decay that's visible in
interlace mode. If you observe an interlaced game like RPM Racing on
a real SNES, you'll notice that even on perfectly still screens, the
image appears to shake. This option emulates that effect.
Note 1: the buffering right now is a little sub-optimal, so there will
be a slight speed hit with this new support. Since the core is now
generating native ARGB8888 colors, it might as well call out to the
interface to lock/unlock/refresh the video, that way it can render
directly to the screen. Although ... that might not be such a hot idea,
since the GBx interframe blending reads from the target buffer, and that
tends to be a catastrophic option for performance.
Note 2: the balanced and performance profiles for the SNES are
completely busted again. This WIP took 6 1/2 hours, and I'm exhausted.
Very much not looking forward to working on those, since those two have
all kinds of fucked up speedup tricks for non-interlaced and/or
non-hires video modes.
Note 3: if you're on Windows and you saved your system folders somewhere
else, now'd be a good time to move them to %localappdata%/higan
byuu says:
This WIP finally achieves the vision I've had for icarus.
I also fixed a mapping issue with Cx4 that, oddly enough, only caused
the "2" from the Mega Man X2 title screen to disappear.
[Editor's note - "the vision for icarus" was described in a separate,
public forum post: http://board.byuu.org/phpbb3/viewtopic.php?p=20584
Quoting for posterity:
icarus is now a full-fledged part of higan, and will be bundled with
each higan WIP as well. This will ensure that in the future, the
exact version of icarus you need to run higan will be included right
along with it. As of this WIP, physical manifest files are now truly
and entirely optional.
From now on, you can associate your ROM image files with higan's
main binary, or drop them directly on top of it, to load and play
your games.
Furthermore, there are two new menu options that appear under the
library menu when icarus is present:
- "Load ROM File ..." => gives you a single-file selection dialog to
import (and if possible) run the game
- "Import ROM Files ..." => gives you a multi-file import dialog
with checkboxes to pull in multiple games at once
Finally, as before, icarus can generate manifest.bml files for
folders that lack them.
For people who like the game folder and library system, nothing's
changed. Keep using higan as you have been.
For people who hate it, you can now use higan like your classic
emulators. Treat the "Library->{System Name}" entries as your
"favorites" list: the games you actually play. Treat the
"Library->Load ROM" as your standard open file dialog in other
emulators. And finally, treat "Advanced->Game Library" as your save
data path for cheat codes, save states, save RAM, etc.
]
byuu says:
Changelog:
- GB: re-enabling the LCD resets the display to LY=0,LX=0 [1]
- GB: emulated new findings (as of today!) for a DMG quirk that triggers
an extra OAM STAT IRQ when Vblank STAT IRQs are off
- GB: made VBK, BGPI, OBPI readable
- GB: fixed APU length operations
- GB: fixed APU sweep operations
- NES: fixed cartridge/ -> board/ manifest lookups for mirroring/pinous
- hiro/Cocoa: added endrift's plist keys
Fixed:
- Astro Rabby is fully playable, even the title screen works correctly
- Bomb Jack is fully playable
- Kirby's Dream Land 2 intro scrolling first scanline of Rick is now fixed
- GBVideoPlayer functions correctly [2]
- Shin Megami Tensei: Devichil series regression fixed
[1] doesn't pass oam_bug-2/1-lcd_sync; because it seems to want
LY=0,LX>0, and I can't step the PPU in a register write as it's not
a state machine; the effect is emulated, it just starts the frame a tiny
bit sooner. blargg's testing is brutal, you can't be even one cycle off
or the test will fail.
[2] note that you will need the GBC Display Emulation shader from
hunterk's repository, or it will look like absolute shit. The
inter-frame blending is absolutely critical here.
byuu says:
Changelog:
- fixed S-DD1 RAM writes (Star Ocean audio fixed)
- applied all of the DMG test ROM fixes discussed earlier; passes many
more test ROMs now
- at least until the GBVideoPlayer is working: for debugging purposes,
CPU/PPU single-step now instead of sync just-in-time (~30% slower)
- fixed OS X crash on NSTextView (hopefully, would be very odd if not)
Unfortunately passing these test ROMs caused my favorite GB/GBC game to
break all of its graphics =(
Shin Megami Tensei - Devichil - Kuro no Sho (Japan) is all garbled now.
I'm really quite bummed by this ... but I guess I'll go through and
revert r04's fixes one at a time until I find what's causing it.
On the plus side, Astro Rabby is playable now. Still acts weird when
pressing B/A on the first screen, but the start button will start the
game.
EDIT: got it. Shin Megami Tensei - Devichil requires FF4F (VBK) to be
readable. Before, it was always returning 0x00. With my return 0xFF
patch, that broke. But it should be returning the VBK value, which also
fixes it. Also need to handle FF68/FF6A reads. Was really hoping that'd
help GBVideoPlayer too, but nope. It doesn't read any of those three
registers.
byuu says:
Changelog:
- fixed icarus to save settings properly
- fixed higan's full screen toggle on OS X
- increased "Add Codes" button width to avoid text clipping
- implemented cocoa/canvas.cpp
- added 1s delay after mapping inputs before re-enabling the window
(wasn't actually necessary, but already added it)
- fixed setEnabled(false) on Cocoa's ListView and TextEdit widgets
- updated nall::programpath() to use GetModuleFileName on Windows
- GB: system uses open collector logic, so unmapped reads return 0xFF,
not 0x00 (passes blargg's cpu_instrs again) [gekkio]
byuu says:
New update. Most of the work today went into eliminating hiro::Image
from all objects in all ports, replacing with nall::image. That took an
eternity.
Changelog:
- fixed crashing bug when loading games [thanks endrift!!]
- toggling "show status bar" option adjusts window geometry (not
supposed to recenter the window, though)
- button sizes improved; icon-only button icons no longer being cut off
byuu says:
Warning: this is not for the faint of heart. This is a very early,
unpolished, buggy release. But help testing/fixing bugs would be greatly
appreciated for anyone willing.
Requirements:
- Mac OS X 10.7+
- Xcode 7.2+
Installation Commands:
cd higan
gmake -j 4
gmake install
cd ../icarus
gmake -j 4
gmake install
(gmake install is absolutely required, sorry. You'll be missing key
files in key places if you don't run it, and nothing will work.)
(gmake uninstall also exists, or you can just delete the .app bundles
from your Applications folder, and the Dev folder on your desktop.)
If you want to use the GBA emulation, then you need to drop the GBA BIOS
into ~/Emulation/System/Game\ Boy\ Advance.sys\bios.rom
Usage:
You'll now find higan.app and icarus.app in your Applications folders.
First, run icarus.app, navigate to where you keep your game ROMs. Now
click the settings button at the bottom right, and check "Create
Manifests", and click OK. (You'll need to do this every time you run
icarus because there's some sort of bug on OSX saving the settings.) Now
click "Import", and let it bring in your games into ~/Emulation.
Note: "Create Manifests" is required. I don't yet have a pipe
implementation on OS X for higan to invoke icarus yet. If you don't
check this box, it won't create manifest.bml files, and your games won't
run at all.
Now you can run higan.app. The first thing you'll want to do is go to
higan->Preferences... and assign inputs for your gamepads. At the very
least, do it for the default controller for all the systems you want to
emulate.
Now this is very important ... close the application at this point so
that it writes your config file to disk. There's a serious crashing bug,
and if you trigger it, you'll lose your input bindings.
Now the really annoying part ... go to Library->{System} and pick the
game you want to play. Right now, there's a ~50% chance the application
will bomb. It seems the hiro::pListView object is getting destroyed, yet
somehow the internal Cocoa callbacks are being triggered anyway. I don't
know how this is possible, and my attempts to debug with lldb have been
a failure :(
If you're unlucky, the application will crash. Restart and try again. If
it crashes every single time, then you can try launching your game from
the command-line instead. Example:
open /Applications/higan.app \
--args ~/Emulation/Super\ Famicom/Zelda3.sfc/
Help wanted:
I could really, really, really use some help with that crashing on game
loading. There's a lot of rough edges, but they're all cosmetic. This
one thing is pretty much the only major show-stopping issue at the
moment, preventing a wider general audience pre-compiled binary preview.
byuu says:
Changelog:
- restructured the project and removed a whole bunch of old/dead
directives from higan/GNUmakefile
- huge amounts of work on hiro/cocoa (compiles but ~70% of the
functionality is commented out)
- fixed a masking error in my ARM CPU disassembler [Lioncash]
- SFC: decided to change board cic=(411,413) back to board
region=(ntsc,pal) ... the former was too obtuse
If you rename Boolean (it's a problem with an include from ruby, not
from hiro) and disable all the ruby drivers, you can compile an
OS X binary, but obviously it's not going to do anything.
It's a boring WIP, I just wanted to push out the project structure
change now at the start of this WIP cycle.
byuu says:
Changelog (since v095):
- higan: absolutely massive amounts of coding style updates; probably
150 hours of work here
- higan: manifest format updated for much greater consistency and
simplicity
- higan: wrote popen() replacement to suppress console flashing when
loading games via icarus
- icarus: now includes external database with mapping information for
all verified games
- icarus: added support for importing Campus Challenge '92 and Powerfest
'94
- icarus: merged settings.bml with higan; changing library path in one
affects the other now
- SFC: added MSU1 audio resume support
- SFC: added new expansion port device (eBoot); simulation of SNES-Boot
hardware
- SFC: expansion port device can now be selected from system menu
- SFC: updated handling of open bus (thanks to Exophase for the design
idea)
- SFC: "BS-X Satellaview" library folder renamed to "BS Memory"
- GBA: fixed 8-bit SRAM reading/writing
- GBA: PRAM is 16-bits wide
- GBA: VRAM OBJ 8-bit writes are ignored
- GBA: BGnCNT unused bits are writable
- GBA: BG(0,1)CNT can't set d13
- GBA: BLDALPHA is readable (fixes many games including Donkey Kong
Country)
- GBA: DMA masks &~1/Half, &~3/Word
- GBA: fixed many other I/O register reads; gets perfect score on
endrift's I/O tests
- GBA: fixed caching of r(d) to pass armwrestler tests (Jonas Quinn)
- GBA: blocked DMA to/from BIOS region (Cydrak)
- GBA: fixed sign-extend and rotate on ldrs instructions (Cydrak)
- tomoko: added "Ignore Manifests" option to advanced settings panel
- tomoko: re-added support for ruby/quark video shaders
- tomoko: improved aspect correction behavior
- tomoko: added new tool, "Manifest Viewer" (mostly useful for
developers)
- ruby: fixed mouse capture clipping on Windows (Cydrak)
- ruby: won't crash when using OpenGL 3.2 Linux driver with only OpenGL
2.0 available
- ruby: added Linux fallback OpenGL 2.0 driver (not compiled in by
default)
- ruby: added preliminary WASAPI driver (not compiled in by default, due
to bugginess)
- hiro: fixed the appearance of Button and ListView::CheckButton on
Windows classic
- hiro: added missing return values from several functions (fixes
crashes with Clang)
byuu says:
Changelog:
- replaced popen() with execvp() / CreateProcess()
- suppressed (hid) controllers with no mappable inputs from the input
settings panel
This gets rid of the window flashing when loading games with
higan+icarus. And hiding of empty devices should be a huge usability
improvement, especially since "None" was appearing at the top of the
list before for the SNES.
byuu says:
higan supports Event mapping again.
Further, icarus can now detect Event ROMs and MSU1 games.
Event ROMs must be named "program.rom", "slot-(1,2,3).rom" MSU1 games
must contain "msu1.rom"; and tracks must be named "track-#.pcm"
When importing the CC'92, PF'94 ROMs, the program.rom and
slot-(1,2,3).rom files must be concatenated. The DSP firmware can
optionally be separate, but I'd recommend you go ahead and merge it all
to one file. Especially since that common "higan DSP pack" floating
around on the web left out the DSP1 ROMs (only has DSP1B) for god knows
what reason.
There is no support for loading "game.sfc+game.msu+game-*.pcm", because
I'm not going to support trying to pull in all of those files through
importing. Games will have to be distributed as game folders to use
MSU1. The MSU1 icarus support is simply so your game folders won't
require an unstable manifest.bml file to be played. So once they're in
there, they are good for life.
Note: the Event sizes in icarus' SFC heuristics are wrong for appended
firmware. Change from 0xXX8000 to 0xXX2000 and it works fine. Will be
fixed in r18.
Added Sintendo's flickering fixes. The window one's a big help for
regular controls, but the ListView double buffering does nothing for me
on Windows 7 :( Fairly sure I know why, but too lazy to try and fix that
now.
Also fixes the mMenu thing.
byuu says (in the WIP forum):
Changelog:
- satellaviewcartridge/SatellaviewCartridge is now bsmemory/BSMemory
- Emulation/BS-X Satellaview/ is now Emulation/BS Memory/
- masking is in for MCC's mcu (awful hack in the code, but that's
temporary)
- BS Memory types are now "flash" or "mrom"
- fixed loading Same Game - Tengai Hen
- icarus fixed up a lot; can load database entries for any supported
media type now (only the SFC DB exists currently)
mMenu::remove() fix will be in the next WIP.
byuu says (in the public beta thread):
Changelog:
- GBA emulation accuracy improved quite a bit
- video shaders are supported once again
- icarus shares settings.bml with higan; changing library path in
one now affects the other
- icarus manifest generation now uses my SNES game dumping database
for perfect mapping of US games
- major overhaul to manifest file format. As long as you have
v095-style folders without manifest.bml, you will be fine
- if not, go to higan->settings->configuration->advanced and check
"Ignore Manifests" before loading your first game
- new "Manifest Viewer" tool (not really meant for regular users;
more of a developer tool)
- experimental (but disabled in the binary) WASAPI driver. Help
stabilizing it would be *greatly* appreciated!
- lots of other stuff
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
byuu says:
Got it. They broke in r05.
Changelog:
- fixed typo in sfc/cpu/timing.cpp that was breaking coprocessor games
with clocks
- updated sfc/coprocessor/hitachidsp to not access Bus directly
byuu says:
Changelog:
- SFC: "uint8 read(uint addr)" -> "uint8 read(uint addr, uint8 data)"
- hiro: mHorizontalLayout::setGeometry() return value
- hiro/GTK: ListView,TreeView::setFocused() does not grab focus of first
item
Notes:
- nall/windows/utf8.hpp needs using uint = unsigned; at the top to
compile
- sfc/balanced, sfc/performance won't compile yet
Seems Cx4 games broke a while back. Not from this WIP, either. I'll go
back and find out what's wrong now.
byuu says:
Changelog:
- int_t<bits> replaced with Integer<bits>
- uint_t<bits> replaced with Natural<bits>
- fixed "Synchronize Audio" menu option that broke recently
- all of sfc/performance ported to "auto function() -> return;" syntax
With this WIP, all of higan is finally ported over to the new function
declaration syntax. Thank the gods.
There's still going to be periodic disruption for diffs from porting
over signed->int, unsigned->uint, and whatever we come up with for the
new Natural<> and Integer<> classes. But the worst of it's behind us
now.
byuu says:
Changelog:
- all of fc/ ported to "auto function() -> return;" syntax
- (includes all of cartridge/board and cartridge/chip as well; even
though they're all deprecated)
- sfc balanced profile ported to "auto function() -> return;" syntax
- sfc balanced and performance profiles compile again
- Linux always gets -ldl
- removed arch=x86 logic from nall/GNUmakefile, as TDM/GCC64 can't
produce bug-free 32-bit binaries anyway
The only code that continues to use the old function syntax is the SFC
performance core, obscure parts of nall that higan doesn't use, and the
pieces of code that weren't written by me (blargg's SFC-DSP, Ryphecha's
sinc resampler, and OV2's xaudio2 header file.)
I was too burned out to finish it tonight. The above was about four
hours straight of non-stop typing. Really can't wait to be done with
this once and for all.
byuu says:
Changelog:
- added preliminary WASAPI driver (it's really terrible, though. Patches
most welcome.)
- all of processor/ updated to auto fn() -> ret syntax
- all of gb/ updated to auto fn() -> ret syntax
If you want to test the WASAPI driver, then edit ui-tomoko/GNUmakefile,
and replace audio.xaudio2 with audio.wasapi Note that the two drivers
are incompatible and cannot co-exist (yet. We can probably make it work
in the future.)
All that's left for the auto fn() -> ret syntax is the NES core and the
balanced/performance SNES components. This is kind of a big deal because
this syntax change causes diffs between WIPs to go crazy. So the sooner
we get this done and out of the way, the better. It's also nice from
a consistency standpoint, of course.
byuu says:
This release adds a settings dialog that lets you control the library
path, optionally generate manifest.bml files, and optionally bypass the
internal games database (so far this is only the US SNES set.)
Also, the settings.bml file can exist in the same folder as the binary
now (portable mode). Plus it can share the same config file as
higan/tomoko itself does. This will allow you to change the library
location in either program and have it affect the other program as well.
It's a bit hackish, but it works >_>
Note: don't use this with higan v095.06 or earlier, or bad things will
happen.
byuu says:
Changelog:
- entire GBA core ported to auto function() -> return; syntax
- fixed GBA BLDY bug that was causing flickering in a few games
- replaced nall/config usage with nall/string/markup/node
- this merges all configuration files to a unified settings.bml file
- added "Ignore Manifests" option to the advanced setting tab
- this lets you keep a manifest.bml for an older version of higan; if
you want to do regression testing
Be sure to remap your controller/hotkey inputs, and for SNES, choose
"Gamepad" from "Controller Port 1" in the system menu. Otherwise you
won't get any input. No need to blow away your old config files, unless
you want to.
byuu says:
Changelog:
- fixed I/O register reads; perfect score on endrift's I/O tests now
- fixed mouse capture clipping on Windows [Cydrak]
- several hours of code maintenance work done on the SFC core
All higan/sfc files should now use the auto fn() -> ret; syntax. Haven't
converted all unsigned->uint yet. Also, probably won't do sfc/alt as
that's mostly just speed hack stuff.
Errata:
- forgot auto& instead of just auto on SuperFamicom::Video::draw_cursor,
which makes Super Scope / Justifier crash. Will be fixed in the next
WIP.
byuu says:
Changelog:
- GBA: lots of emulation improvements
- PPU PRAM is 16-bits wide
- DMA masks &~1/Half, &~3/Word
- VRAM OBJ 8-bit writes are ignored
- OAM 8-bit writes are ignored
- BGnCNT unused bits are writable*
- BG(0,1)CNT can't set the d13
- BLDALPHA is readable (fixes Donkey Kong Country, etc)
- SNES: lots of code cleanups
- sfc/chip => sfc/coprocessor
- UI: save most recent controller selection
GBA test scores: 1552/1552, 37/38, 1020/1260
(* forgot to add the value to the read function, so endrift's I/O tests
for them will fail. Fixed locally.)
Note: SNES is the only system with multiple controller/expansion port
options, and as such is the only one with a "None" option. Because it's
shared by the controller and expansion port, it ends up sorted first in
the list. This means that on your first run, you'll need to go to Super
Famicom->Controller Port 1 and select "Gamepad", otherwise input won't
work.
Also note that changing the expansion port device requires loading a new
cart. Unlike controllers, you aren't meant to hotplug expansion port
devices.
Changelog:
- S-SMP core code style updated
- S-SMP loads reset vector from IPLROM ($fffe-ffff)
- sfc/base => sfc/expansion
- system/input => system/device
- added expansion/eBoot (simulation of defparam's SNES-Boot device)
- expansion port device can now be selected from Super Famicom menu
option
- improved GBA MROM/SRAM reading
endrift's memory test is up to 1388/1552.
Note: I added the expansion port devices to the same group as controller
ports. I also had to move "None" to the top of the list. Before v096,
I am going to have to add caching of port selections to the
configuration file, check the proper default item in the system menu,
and remove the items with no mappings from the input configuration
window. Lots of work >_>
byuu says:
Note: you will need the new icarus (and please use the "no manifest"
system) to run GBA games with this WIP.
Changelog:
- fixed caching of r(d) to pass armwrestler tests [Jonas Quinn]
- DMA to/from GBA BIOS should fail [Cydrak]
- fixed sign-extend and rotate on ldrs instructions [Cydrak]
- fixed 8-bit SRAM reading/writing [byuu]
- refactored GBA/cartridge
- cartridge/rom,ram.type is now cartridge/mrom,sram,eeprom,flash
- things won't crash horribly if you specify a RAM size larger than
the largest legal size in the manifest
- specialized MROM / SRAM classes replace all the shared read/write
functions that didn't work right anyway
- there's a new ruby/video.glx2 driver, which is not enabled by default
- use this if you are running Linux/BSD, but don't have OpenGL 3.2 yet
- I'm not going to support OpenGL2 on Windows/OS X, because these OSes
don't ship ancient video card drivers
- probably more. What am I, clairvoyant? :P
For endrift's tests, this gets us to 1348/1552 memory and 1016/1260
timing. Overall, this puts us back in second place. Only no$ is ahead
on memory, but bgba is even more ahead on timing.
byuu says:
Aspect correction is fixed now. Works way better than in v095 official.
It's still force-enabled in fullscreen mode. The idea of disabling it is
that it looks bad at 2x scale. But when you're fullscreen with a minimum
of 4x scale, there's no reason not to enable it.
It won't turn on at all for GB/C/A anymore. And I dropped the cute
attempt at making the aspect prettier on 2560x1600 monitors, so it'll be
the stock 8:7 across the board now for S/NES.
Also, the aspect correction will affect the window even when a game's
not loaded now, so the size won't bounce around as you change games in
windowed mode between GB/C/A and S/NES.
...
I also enhanced the ruby/glx driver. It won't crash if OpenGL 3.2 isn't
available anymore (fails safely ... had to capture the Xlib error
handler to suppress that), and it defaults to the MESA glXSwapInterval
before the SGI version. Because apparently the MESA version defines the
SGI version, but makes it a no-op. What. The. Fuck. right? But whatever,
reordering the enumerations fixes the ability to toggle Vsync on AMD
GPUs now.
...
Video shaders are back again. If you are using the OpenGL driver, you'll
see a "Video Shaders" menu beneath the "Video Filters" menu (couldn't
merge it with the filters due to hiro now constructing menu ordering
inside the header files. This works fine though.)
You want either "higan.exe" + "Video Shaders/" or "~/.local/bin/tomoko"
+ "~/.local/tomoko/Video Shaders/"
byuu says:
Changelog:
- added MSU1 resume support
- updated sfc/dsp, sfc/controller to match my coding style
- fixed hiro/Windows Button and ListView::CheckButton in Windows Classic
mode
byuu says:
After 20 months of development, higan v095 is released at long last!
The most notable feature is vastly improved Game Boy Advance emulation.
With many thanks to endrift, Cydrak, Jonas Quinn and jchadwick, this
release contains substantially improved CPU timings and many bugfixes.
Being one of only two GBA emulators to offer ROM prefetch emulation,
higan is very near mGBA in terms of accuracy, and far ahead of all
others. As a result of these fixes, compatibility is also much higher
than in v094.
There are also several improvements to SNES emulation. Most
significantly is support for mid-scanline changes to the background mode
in the accuracy profile.
Due to substantial changes to the user interface library used by higan,
this release features yet again a brand-new UI. With the exception of
video shaders and NSS DIP switch selection, it is at feature-parity with
the previous UI. It also offers some new features that v094 lacked.
The cheat code database has also been updated to the latest version by
mightymo.
ananke has been superseded by icarus.
The new tomoko UI does not support shaders, and if it ever does it will
probably use another format, so not much point keeping the old files
around.
byuu says:
- fixes checkboxes (-again- again [*again*])
- won't check folders with select all / unselect all
- won't crash anymore if the SNES ROM image is too small (Saturday Night
Slam Masters was crashing it before due to DB size error)
- corrected heuristics for Sufami Turbo base cart (mirrors the
absurdities of the real cart precisely, since it's one of a kind)
- corrected a few DB issues (BS-X name + PSRAM (again [*again*]), SNSM,
LAH) (_again_)
- these are temporary. Monkey patched in the generated .hpp source
rather than the actual DB
- not going to fix the SFT sizes because I want to verify what
happened there first
byuu says:
With any luck, this will be the final WIP before v095. If all looks
good, this will be identical to v095. But if we hit some major issues,
I'll try and fix those first.
The most notable part of this release is probably Jonas Quinn's fix for
the unmapped regions of the GBA memory map. This allows games like Mario
& Luigi and Zelda: Minish Cap to (hopefully) be fully playable now.
icarus now supports my game database, so all games I've dumped will be
emulated with bit-perfect memory maps and native-language game titles.
byuu says:
Changelog:
- return open bus instead of mirroring addresses on the bus (fixes
Mario&Luigi, Minish Cap, etc) [Jonas Quinn]
- add boolean flag to load requests for slotted game carts (fixes slot
load prompts)
- rename BS-X Town cart from psram to ram
- icarus: add support for game database
Note: I didn't rename "bsx" to "mcc" in the database for icarus before
uploading that. But I just fixed it locally, so it'll be in the next
WIP. For now, make it create the manifest for you and then rename it
yourself. I did fix the PSRAM size to 256kbit.
byuu says:
Updated to compile with all of the new hiro changes. My next step is to
write up hiro API documentation, and move the API from alpha (constantly
changing) to beta (rarely changing), in preparation for the first stable
release (backward-compatible changes only.)
Added "--fullscreen" command-line option. I like this over
a configuration file option. Lets you use the emulator in both modes
without having to modify the config file each time.
Also enhanced the command-line game loading. You can now use any of
these methods:
higan /path/to/game-folder.sfc
higan /path/to/game-folder.sfc/
higan /path/to/game-folder.sfc/program.rom
The idea is to support launchers that insist on loading files only.
Technically, the file can be any name (manifest.bml also works); the
only criteria is that the file actually exists and is a file, and not
a directory. This is a requirement to support the first version (a
directory lacking the trailing / identifier), because I don't want my
nall::string class to query the file system to determine if the string
is an actual existing file or directory for its pathname() / dirname()
functions.
Anyway, every game folder I've made so far has program.rom, and that's
very unlikely to change, so this should be fine.
Now, of course, if you drop a regular "game.sfc" file on the emulator,
it won't even try to load it, unless it's in a folder that ends in .fc,
.sfc, etc. In which case, it'll bail out immediately by being unable to
produce a manifest for what is obviously not really a game folder.
byuu says:
I imagine you guys will like this WIP very much.
Changelog:
- ListView check boxes on Windows
- ListView removal of columns on reset (changing input dropdowns)
- DirectSound audio duplication on latency change
- DirectSound crash on 20ms latency
- Fullscreen window sizing in multi-monitor setups
- Allow joypad bindings of hotkeys
- Allow triggers to be mapped (Xbox 360 / XInput / Windows only)
- Support joypad rumble for Game Boy Player
- Video scale settings modified from {1x,2x,3x} to {2x,3x,4x}
- System menu now renames to active emulation core
- Added fast forward hotkey
Not changing for v095:
- not adding input focus settings yet
- not adding shaders yet
Not changing at all:
- not implementing maximize
byuu says:
Changelog (since the last open beta):
- icarus is now included. icarus is used to import game files/archives
into game paks (folders)
- SNES: mid-scanline BGMODE changes now emulated correctly (used only by
atx2.smc Anthrox Demo)
- GBA: fixed a CPU bug that was causing dozens of games to have
distorted audio
- GBA: fixed default FlashROM ID; should allow much higher compatibility
- GBA: now using Cydrak's new, much improved, GBA color emulation filter
(still a work-in-progress)
- re-added command-line loading support for game paks (not for game
files/archives, sorry!)
- Qt port now compiles and runs again (may be a little buggy;
Windows/GTK+ ports preferred)
- SNES performance profile now compiles and runs again
- much more
byuu says:
Changelog:
- updated to newest hiro API
- SFC performance profile builds once again
- hiro: Qt port completed
Errata 1: the hiro/Qt target won't run tomoko just yet. Starts by
crashing inside InputSettings because hiro/Qt isn't forcefully selecting
the first item added to a ComboButton just yet. Even with a monkey patch
to get around that, the UI is incredibly unstable. Lots of geometry
calculation bugs, and a crash when you try and access certain folders in
the browser dialog. Lots of work left to be done there, sadly.
Errata 2: the hiro/Windows port has black backgrounds on all ListView
items. It's because I need to test for unassigned colors and grab the
default Windows brush colors in those cases.
Note: alternating row colors on multi-column ListView widgets is gone
now. Not a bug. May add it back later, but I'm not sure. It doesn't
interact nicely with per-cell background colors.
Things left to do:
First, I have to fix the Windows and Qt target bugs.
Next, I need to go through and revise the hiro API even more (nothing
too major.)
Next, I need to update icarus to use the new hiro API, and add support
for the SFC games database.
Next, I have to rewrite my TSV->BML cheat code tool.
Next, I need to post a final WIP of higan+icarus publicly and wait a few
days.
Next, I need to fix any bugs reported from the final WIP that I can.
Finally, I should be able to release v095.
byuu says:
Changelog:
- SNES mid-scanline BGMODE fixes finally merged (can run
atx2.zip{mode7.smc}+mtest(2).sfc properly now)
- Makefile now discards all built-in rules and variables
- switch on bool warning disabled for GCC now as well (was already
disabled for Clang)
- when loading a game, if any required files are missing, display
a warning message box (manifest.bml, program.rom, bios.rom, etc)
- when loading a game (or a game slot), if manifest.bml is missing, it
will invoke icarus to try and generate it
- if that fails (icarus is missing or the folder is bad), you will get
a warning telling you that the manifest can't be loaded
The warning prompt on missing files work for both games and the .sys
folders and their files. For some reason, failing to load the DMG/CGB
BIOS is causing a crash before I can display the modal dialog. I have no
idea why, and the stack frame backtrace is junk.
I also can't seem to abort the failed loading process. If I call
Program::unloadMedia(), I get a nasty segfault. Again with a really
nasty stack trace. So for now, it'll just end up sitting there emulating
an empty ROM (solid black screen.) In time, I'd like to fix that too.
Lastly, I need a better method than popen for Windows. popen is kind of
ugly and flashes a console window for a brief second even if the
application launched is linked with -mwindows. Not sure if there even is
one (I need to read the stdout result, so CreateProcess may not work
unless I do something nasty like "> %tmp%/temp") I'm also using the
regular popen instead of _wpopen, so for this WIP, it won't work if your
game folder has non-English letters in the path.
byuu says:
I'll post more detailed changes later, but basically:
- fixed Baldur's Gate bug
- guess if no flash ROM ID present (fixes Magical Vacation, many many
others)
- nall cleanups
- sfc/cartridge major cleanups
- bsxcartridge/"bsx" renamed to mcc/"mcc" after the logic chip it uses
(consistency with SGB/ICD2)
- ... and more!
byuu says:
Changelog:
- synchronizes lots of nall changes
- changes displayed program title from tomoko to higan(*)
- browser dialog sort is case-insensitive
- .sys folders look at user-selected library path; no longer hard-coded
Tried to get rid of the file modes from the Windows browser dialog, but
it was being a bitch so I left it on for now.
- The storage locations and binary still use tomoko. I'm not really sure
what to do here. The idea is there may be more than one "higan" UI in
the future, but I don't want people to go around calling the entire
program by the UI name. For official Windows releases, I can rename
the binaries to "higan-{profile}.exe", and by putting the config files
with the binary, they won't ever see the tomoko folder. Linux is of
course trickier.
Note: Windows users will need to edit hiro/components.hpp and comment
out these lines:
#define Hiro_Console
#define Hiro_IconView
#define Hiro_SourceView
#define Hiro_TreeView
I forgot to do that, and too lazy to upload another WIP.
byuu says:
Changelog:
- GBA emulation accuracy has been substantially improved [Cydrak]
- GBA ldm bug fixed [jchadwick]
- SNES SuperFX timing has been improved [AWJ, ARM9, qwertymodo]
- SNES accuracy profile is now ~8% faster than before
- you no longer need to copy the .sys profile folders to
~/Emulation/System
- you still need to put bios.rom (GBA BIOS) into Game Boy
Advance.sys to use GBA emulation!!
- you no longer need to pre-configure inputs before first use
- loading games / changing window size won't recenter window
- checkboxes in cheat editor update correctly
- can't type into state manager description textbox on an empty slot
- typing in state manager description box works correctly; and updates
list view correctly
- won't show files that match game extensions anymore (only game folders
show up)
- libco Win64 port fixes with FPU^H^H^H XMM registers
- libco ARM port now available; so you too can play at 15fps on an RPi2!
[jessedog3, Cydrak]
- controller selection will check the default item in the menu now on
game load
- as usual, a whole lot of other stuff I'm forgetting
Known issues:
- type-ahead find does not work in list views (eg game selection
dialog); I don't know how to fix this
- there's no game file importer yet
- there's no shader support yet
- there's no profiler available for the timing panel, you need to adjust
values manually for now
byuu says:
GBA timings are *almost* perfect now. Off by 1-3 cycles on each test,
sans a few DMA ones that seem to not run at all according to the numbers
(crazy.)
byuu says:
Fixes SuperFX fmult, lmult timings; rambr, bramr and clsr assignment
masking. Implements true GBA ROM prefetch (buggy, lower test score, but
runs Mario & Luigi without crashing on battles anymore.)
byuu says:
Small WIP, just fixes the timings for GSU multiply.
However, the actual product may still be wrong when CLSR and MS0 are
both set. Since I wasn't 'corrupting' the value in said case before,
then this behavior can only be better than before.
Turned the (cache,memory)_access_timing into functions that compute the
values; and pulled "clockspeed" into GSU.
Also, I'm thinking it might be kind of pointless to have clockspeed at
all. Supposedly even the Mario Chip can run at 21.48MHz anyway.
Enforcing 10.74MHz mode seems kind of silly. If we change it to just be
a "default value for CLSR", then we can just inline the memory access
tests without the need for the access_timing functions (literally just
clsr?2:1 then)
Slight compilation bug: go to processor/gsu/registers.hpp:33 and add
reg16_t() = default;
I missed it due to a partial recompile. Too lazy to upload another WIP
just for that.
Probably not worth doing much SuperFX testing just yet, as it looks like
they're doing some other tests at the moment on NESdev.
byuu says:
Lots more timing improvements to GBA emulation. We're now ahead of
everything but mGBA.
Mario & Luigi is still hanging in battles, so I guess my prefetch
simulation isn't as good as Cydrak's previous attempt, no surprise.
byuu says:
This WIP scores 448/920 tests passed.
Gave a shot at ROM prefetch that failed miserably (ranged from 409 to
494 tests passed. Nowhere near where it would be if it were implemented
correctly.)
Three remaining issues:
- ROM prefetch
- DMA timing
- timers (I suspect it's a 3-clock delay in starting, not a 3-clock into
the future affair)
Probably only going to be able to get the timers working without heroic
amounts of effort.
MUL timing is fixed to use idle cycles.
STMIA is fixed to set sequential at the right moments.
DMA priority support is added, so DMA 0 can interrupt DMA 1 mid-transfer.
In other news ...
I'm calling gtk_widget_destroy on the GtkWindow now, so hopefully those
Window_configure issues go away.
I realize I was leaking Display* handles in the X-video driver while
I was looking at it, so I fixed those.
I added DT_NOPREFIX so the Windows ListView will show & characters
correctly now.
byuu says:
This WIP does substantially better on endrift's GBA timing tests. Still
not perfect, though. But hopefully enough to get me out of dead last
place. I also finally fixed the THUMB-mode ldmia bug that jchadwick
reported.
So, GBA emulation should be improved quite a bit, hopefully.
byuu says:
Note: for Windows users, please go to nall/intrinsics.hpp line 60 and
correct the typo from "DISPLAY_WINDOW" to "DISPLAY_WINDOWS" before
compiling, otherwise things won't work at all.
This will be a really major WIP for the core SNES emulation, so please
test as thoroughly as possible.
I rewrote the 65816 CPU core's dispatcher from a jump table to a switch
table. This was so that I could pass class variables as parameters to
opcodes without crazy theatrics.
With that, I killed the regs.r[N] stuff, the flag_t operator|=, &=, ^=
stuff, and all of the template versions of opcodes.
I also removed some stupid pointless flag tests in xcn and pflag that
would always be true.
I sure hope that AWJ is happy with this; because this change was so that
my flag assignments and branch tests won't need to build regs.P into
a full 8-bit variable anymore.
It does of course incur a slight performance hit when you pass in
variables by-value to functions, but it should help with binary size
(and thus cache) by reducing a lot of extra functions. (I know I could
have used template parameters for some things even with a switch table,
but chose not to for the aforementioned reasons.)
Overall, it's about a ~1% speedup from the previous build. The CPU core
instructions were never a bottleneck, but I did want to fix the P flag
building stuff because that really was a dumb mistake v_v'
byuu says:
This WIP substantially restructures the ruby API for the first time
since that project started.
It is my hope that with this restructuring, destruction of the ruby
objects should now be deterministic, which should fix the crashing on
closing the emulator on Linux. We'll see I guess ... either way, it
removed two layers of wrappers from ruby, so it's a pretty nice code
cleanup.
It won't compile on Windows due to a few issues I didn't see until
uploading the WIP, too lazy to upload another. But I fixed all the
compilation issues locally, so it'll work on Windows again with the next
WIP (unless I break something else.)
(Kind of annoying that Linux defines glActiveTexture but Windows
doesn't.)
byuu says:
Added AWJ's fixes for alt/cpu (Tetris Attack framelines issue) and
alt/dsp (Thread::clock reset)
Added fix so that the taskbar entry appears when the application first
starts on Windows.
Fixed checkbox toggling inside of list views on Windows.
Updated nall/image to properly protect variables that should not be
written externally.
New Object syntax for hiro is in.
Fixed the backwards-typing on Windows with the state manager.
NOTE: the list view isn't redrawing when you change the description
text. It does so on the cheat editor because of the resizeColumns call;
but that shouldn't be necessary. I'll try and fix this for the next WIP.
byuu says:
Obviously, this is a fairly major WIP. It's the first public release in
17 months. The entire UI has been rewritten (for the 74th time), and is
now internally called tomoko. The official releases will be named higan
(both the binaries and title bar.)
Missing features from v094:
- ananke is missing (this means you will need v094 to create game
folders to be loaded)
- key assignments are limited to one physical button = one mapping (no
multi-mapping)
- shader support is missing
- audio/video profiling is missing
- DIP switch window is missing (used by NSS Actraiser with a special
manifest; that's about it)
- alternate paths for game system folders and configuration BML files
There's some new stuff, but not much. This isn't going to be an exciting
WIP in terms of features. It's more about being a brand new release with
the brand new hiro port and its shared memory model. The goal is to get
these WIPs stable, get v095 out, and then finally start improving the
actual emulation again after that.
byuu says:
Windows port should run mostly well now, although exiting fullscreen
breaks the application in a really bizarre way. (clicking on the window
makes it sink to background rather than come to the foreground o_O)
I also need to add the doModalChange => audio.clear() thing for the
accursed menu stuttering with DirectSound.
I also finished porting all of the ruby drivers over to the newer API
changes from nall.
Since I can't compile the Linux or OS X drivers, I have no idea if there
are any typos that will result in compilation errors. If so, please let
me know where they're at and I'll try and fix them. If they're simple,
please try and fix them on your end to test further if you can.
I'm hopeful the udev crash will be gone now that nall::string checks for
null char* values passed to its stringify function. Of course, it's
a problem it's getting a null value in the first place, so it may not
work at all.
If you can compile on Linux (or by some miracle, OS X), please test each
video/audio/input driver if you don't mind, to make sure there's no
"compiles okay but still typos exist" bugs.
byuu says:
Finally!! Compilation works once again on Windows.
However, it's pretty buggy. Modality isn't really working right, you can
still poke at other windows, but when you select ListView items, they
redraw as empty boxes (need to process WM_DRAWITEM before checking
modality.)
The program crashes when you close it (probably a ruby driver's term()
function, that's what it usually is.)
The Layout::setEnabled(false) call isn't working right, so you get that
annoying chiming sound and cursor movement when mapping keyboard keys to
game inputs.
The column sizing seems off a bit on first display for the Hotkeys tab.
And probably lots more.
byuu says:
The library window is gone, and replaced with
hiro::BrowserWindow::openFolder(). This gives navigation capabilities to
game loading, and it also completes our slotted cart selection code. As
an added bonus, it's less code this way, too.
I also set the window size to consistent sizes between all emulated
systems, so that switching between SFC and GB don't cause the window
size to keep changing, and so that the scaling size is consistent (eg at
normal scale, GB @ 3x is closer to SNES @ 2x.) This means black borders
in GB/GBA mode, but it doesn't look that bad, and it's not like many
people ever use these modes anyway.
Finally, added the placeholder tabs for video, audio and timing. I don't
intend to add the timing calculator code to v095 (it might be better as
a separate tool), but I'll add the ability to set video/audio rates, at
least.
Glitch 1: despite selecting the first item in the BrowserDialog list, if
you press enter when the window appears, it doesn't activate the item
until you press an arrow key first.
Glitch 2: in Game Boy mode, if you set the 4x window size, it's not
honoring the full requested height because the viewport is smaller than
the window. 8+ years of trying to get GTK+ and Qt to simply set the god
damned window size I ask for, and I still can't get them to do it
reliably.
Remaining issues:
- finish configuration panels (video, audio, timing)
- fix ruby driver compilation on Windows
- add DIP switch selection window (NSS) [I may end up punting this one
to v096]
byuu says:
I fixed the hiro layout enable bug, so when you go to assign joypad
input, the window disables itself so your input doesn't mess with the
controls.
I added "reset" to the hotkeys, in case you feel like clearing all of
them at once.
I added device selection support and the ability to disable audio
synchronization (run > 60fps) to the ruby/OSS driver. This is exposed in
tomoko's configuration file.
I added checks to stringify so that assigning null char* strings to
nall::string won't cause crashes anymore (technically the crash was in
strlen(), which doesn't check for null strings, but whatever ... I'll do
the check myself.)
I hooked up BrowserDialog::folderSelect() to loading slotted media for
now. Tested it by loading a Game Boy game successfully through the Super
Game Boy. Definitely want to write a custom window for this though, that
looks more like the library dialog.
Remaining issues:
- finish slotted cart loader (SGB, BSX, ST)
- add DIP switch selection window (NSS) [I may end up punting this one
to v096]
- add more configuration panels (video, audio, timing)
byuu says:
This updates ruby to return shared_pointer<HID::Device> objects instead
of HID::Device* objects. It also fixes an ID bug where joypads were
starting at ID# 2+, but mice were also set to ID# 2. I also revised
nall/hid a lot, with getters and setters instead of stabbing at internal
state. I didn't yet patch nall::string to safely consume nullptr const
char* values, though.
byuu says:
Main reason for this WIP was because of all the added lines to hiro for
selective component disabling. May as well get all the diff-noise apart
from code changes.
It also merges something I've been talking to Cydrak about ... making
nall::string::(integer,decimal) do built-in binary,octal,hex decoding
instead of just failing on those. This will have fun little side effects
all over the place, like being able to view a topic on my forum via
"forum.byuu.org/topic/0b10010110", heh.
There are two small changes to higan itself, though. First up, I fixed
the resampler ratio when loading non-SNES games. Tested and I can play
Game Boy games fine now. Second, I hooked up menu option hiding for
reset and controller selection. Right now, this works like higan v094,
but I'm thinking I might want to show the "Device -> Controller" even if
that's all that's there. It kind of jives nicer with the input settings
window to see the labels there, I think. And if we ever do add more
stuff, it'll be nice that people already always expect that menu there.
Remaining issues:
* add slotted cart loader (SGB, BSX, ST)
* add DIP switch selection window (NSS)
* add timing configuration (video/audio sync)
byuu says:
The input port menu was hooked up.
Alternate input support was added, although I wasn't able to test rumble
support because SDL doesn't support that, and I don't have XInput or
udev drivers on FreeBSD. This one's going to be tricky. Maybe I can test
via cross-compiling on Windows/GTK.
Added mouse capture hotkey, and auto capture/release on toggling
fullscreen (as a bonus it hides the mouse cursor.)
Added all possible video and input drivers to ruby for BSD systems.
Remaining issues before we can release v095:
- add slotted cart loader (SGB, BSX, ST)
- add DIP switch selection window (NSS)
- add timing configuration (video/audio sync)
- hide inapplicable options from system menu (eg controller ports and
reset button from handheld systems)
byuu says:
Okay yeah, lots of SNES coprocessor games were horribly broken. They
should be fixed now with the below changes:
Old syntax:
auto programROM = root["rom[0]/name"].text();
auto dataROM = root["rom[1]/name"].text();
load_memory(root["ram[0]"]);
New syntax:
auto rom = root.find("rom");
auto ram = root.find("ram");
auto programROM = rom(0)["name"].text();
auto dataROM = rom(1)["name"].text();
load_memory(ram(0));
Since I'm now relying on the XShm driver, which is multi-threaded, I'm
now compiling higan with -fopenmp. On FreeBSD, this requires linking
with -Wl,-rpath=/usr/local/lib -Wl,-rpath=/usr/local/lib/gcc49 to get
the right version of GOMP.
This gives a pretty nice speed boost for XShm, I go from around 101fps
to 111fps at 4x scale on the accuracy profile. The combination of
inlining the accuracy-PPU and parallelizing the XShm renderer about
evenly compensates now for the ~20% CPU overclock I gave up a while ago.
The WIP also has some other niceties from the newer version of nall.
Most noticeably, cheat code database searching is now instantaneous. No
more 3-second stall.
byuu says:
This updates higan to use the new Markup::Node changes. This is a really
big change, and one slight typo anywhere could break certain classes of
games from playing.
I don't have ananke hooked up again yet, so I don't have the ability to
test this much. If anyone with some v094 game folders wouldn't mind
testing, I'd help out a great deal.
I'm most concerned about testing one of each SNES special chip game.
Most notably, systems like the SA-1, HitachiDSP and NEC-DSP were using
the fancier lookups, eg node["rom[0]/name"], which I had to convert to
a rather ugly node["rom"].at(0)["name"], which I'm fairly confident
won't work. I'm going to blame that on the fumes from the shelves I just
stained >.> Might work with node.find("rom[0]/name")(0) though ...? But
so ugly ... ugh.
That aside, this WIP adds the accuracy-PPU inlining, so the accuracy
profile should run around 7.5% faster than before.
byuu says:
Finished the cheat code system, it'll now load and save cheats.bml to
disk.
Also hooked up overscan masking. But for now you can only configure the
amount it clips via the configuration file, since I don't have a video
settings dialog anymore.
And that's the last of the low-hanging fruit. The remaining items are
all going to be a pain in the ass for one reason or another.
Short-term:
- add input port changing support
- add other input types (mouse-based, etc)
Long-term:
- add slotted cart loader (SGB, BSX, ST)
- add DIP switch selection window (NSS)
- add timing configuration (video/audio sync)
Not planned:
- video color adjustments (will allow emulated color vs raw color; but
no more sliders)
- pixel shaders
- ananke integration (will need to make a command-line version to get my
games in)
- fancy audio adjustment controls (resampler, latency, volume)
- input focus settings
- localization support (not enough users)
- window geometry memory
- anything else not in higan v094
byuu says:
Implemented the cheat database dialog, and most of the cheat editor
dialog. I still have to handle loading and saving the cheats.bml file
for each game. I wanted to finish it today, but I burned out. It's a ton
of really annoying work to support cheat codes. There's also some issue
with the width calculation for the "code(s)" column in hiro/GTK.
Short-term:
- add input port changing support
- add other input types (mouse-based, etc)
- finish cheat codes
Long-term:
- add slotted cart loader (SGB, BSX, ST)
- add DIP switch selection window (NSS)
- add overscan masking
- add timing configuration (video/audio sync)
Not planned:
- video color adjustments (will allow emulated color vs raw color; but
no more sliders)
- pixel shaders
- ananke integration (will need to make a command-line version to get my
games in)
- fancy audio adjustment controls (resampler, latency, volume)
- input focus settings
- localization support (not enough users)
- window geometry memory
- anything else not in higan v094
byuu says:
Man, over five weeks have passed without so much as touching the
codebase ... time is advancing so fast it's positively frightening. Oh
well, little by little, and we'll get there eventually.
Changelog:
- added save state slots (1-5 in the menu)
- added hotkeys settings dialog + mapping system
- added fullscreen toggle (with a cute aspect correction trick)
About three hours of work here.
Short-term:
- add input port changing support
- add other input types (mouse-based, etc)
- add cheat codes
- add timing configuration (video/audio sync)
Long-term:
- add slotted cart loader (SGB, BSX, ST)
- add DIP switch selection window (NSS)
- add cheat code database
- add state manager
- add overscan masking
Not planned:
- video color adjustments (will allow emulated color vs raw color; but
no more sliders)
- pixel shaders
- ananke integration (will need to make a command-line version to get my
games in)
- fancy audio adjustment controls (resampler, latency, volume)
- input focus settings
- relocating game library (not hard, just don't feel like it)
- localization support (not enough users)
- window geometry memory
- anything else not in higan v094
byuu says:
This version polishes up the input dialogue (reset, erase, disable
button when item not focused, split device ID from mapping name), adds
color emulation toggle, and add dummy menu items for remaining features
(to be filled in later.)
Also, it now compiles cleanly on Windows with GTK.
I didn't test with TDM-GCC-32, because for god knows what reason, the
32-bit version ships with headers from Windows 95 OSR2 only. So I built
with TDM-GCC-64 with arch=x86.
And uh, apparently, moving or resizing a window causes a Visual C++
runtime exception in the GTK+ DLLs. This doesn't happen with trance or
renshuu built with TDM-GCC-32. So, yeah, like I said, don't use -m32.
byuu says:
Changelog:
* added driver selection
* added video scale + aspect correction settings
* added A/V sync + audio mute settings
* added configuration file
* fixed compilation bugs under Windows and Linux
* fixed window sizing
* removed HSU1
* the system menu stays as "System", because "Game Boy Advance" was too
long a string for the smallest scale size
* some more stuff
You guys probably won't be ecstatic about the video sizing options, but
it's basically your choice of 1x, 2x or 4x scale with optional aspect
correction. 3x was intentionally skipped because it looks horrible on
hires SNES games. The window is resized and recentered upon loading
games. The window doesn't resize otherwise. I never really liked the way
v094 always left you with black screen areas and left you with
off-centered window positions.
I might go ahead and add the pseudo-fullscreen toggle that will jump
into 4x mode (respecting your aspect setting.)
Short-term:
* add input port changing support
* add other input types (mouse-based, etc)
* add save states
* add cheat codes
* add timing configuration (video/audio sync)
* add hotkeys (single state)
We can probably do a new release once the short-term items are
completed.
Long-term:
* add slotted cart loader (SGB, BSX, ST)
* add DIP switch selection window (NSS)
* add cheat code database
* add state manager
* add overscan masking
Not planned:
* video color adjustments (will allow emulated color vs raw color; but
no more sliders)
* pixel shaders
* ananke integration (will need to make a command-line version to get my
games in)
* fancy audio adjustment controls (resampler, latency, volume)
* input focus settings
* relocating game library (not hard, just don't feel like it)
* localization support (not enough users)
* window geometry memory
* anything else not in higan v094
byuu says:
I've hooked up the input subsystem, and the input manager to assign
hotkeys.
So far I only have digital buttons working (keyboard only), and I'm not
planning on supporting input groups again (mapping multiple physical
buttons to one emulated button), but it's progress. As with the rest of
tomoko, the code's a lot more compact. The nice thing about redoing code
so many times is that each time you get a little bit better at it.
The input configuration is saved to ~/.config/tomoko/settings.bml (just
realized that I'm an idiot and need to rename it to input.bml)
Also hooked up game saves and cartridge unloading. Active controller
changing isn't hooked up yet, and I'll probably do it differently.
Oh, and I declared the ruby lines for other platforms.
Still need to add Cydrak's Windows compilation fixes. I am nothing if
not lazy :P
byuu says:
This starts the tomoko UI. So far I have basic library loading and
video+audio output. Basically just enough to take the below screenshot.
(aside from Library, the menus are empty stubs.)
The .sys (system) game folders are now going under ~/Emulation/System,
to avoid needing root privileges to stick them into /usr/share. The game
library now shows all bootable media types, and the drop-down subtype is
gone. I'm going to display a separate modal dialog for loading slotted
games this time around. Much cleaner this way, less clutter.
tomoko's starting off a lot cleaner than ethos was, and I'm scaling back
the number of abstracted classes. What was Utility, Interface, etc are
now being merged all into Program. Of course, the real hell is the input
system. That has so many layers of bullshit that there's really no sane
way to write it.
byuu says:
This will easily be the biggest diff in the history of higan. And not in
a good way.
* target-higan and target-loki have been blown away completely
* nall and ruby massively updated
* phoenix replaced with hiro (pretty near a total rewrite)
* target-higan restarted using hiro (just a window for now)
* all emulation cores updated to compile again
* installation changed to not require root privileges (installs locally)
For the foreseeable future (maybe even permanently?), the new higan UI
will only build under Linux/BSD with GTK+ 2.20+. Probably the most
likely route for Windows/OS X will be to try and figure out how to build
hiro/GTK on those platforms, as awful as that would be. The other
alternative would be to produce new UIs for those platforms ... which
would actually be a good opportunity to make something much more user
friendly.
Being that I just started on this a few hours ago, that means that for
at least a few weeks, don't expect to be able to actually play any
games. Right now, you can pretty much just compile the binary and that's
it. It's quite possible that some nall changes didn't produce
compilation errors, but will produce runtime errors. So until the UI can
actually load games, we won't know if anything is broken. But we should
mostly be okay. It was mostly just trim<1> -> trim changes, moving to
Hash::SHA256 (much cleaner), and patching some reckless memory copy
functions enough to compile.
Progress isn't going to be like it was before: I'm now dividing my time
much thinner between studying and other hobbies.
My aim this time is not to produce a binary for everyone to play games
on. Rather, it's to keep the emulator alive. I want to be able to apply
critical patches again. And I would also like the base of the emulator
to live on, for use in other emulator frontends that utilize higan.
byuu says:
Lots of changes this time around. FreeBSD stability and compilation is
still a work in progress.
FreeBSD 10 + Clang 3.3 = 108fps
FreeBSD 10 + GCC 4.7 = 130fps
Errata 1: I've been fighting that god-damned endian.h header for the
past nine WIPs now. The above WIP isn't building now because FreeBSD
isn't including headers before using certain types, and you end up with
a trillion error messages. So just delete all the endian.h includes from
nall/intrinsics.hpp to build.
Errata 2: I was trying to match g++ and g++47, so I used $(findstring
g++,$(compiler)), which ends up also matching clang++. Oops. Easy fix,
put Clang first and then else if g++ next. Not ideal, but oh well. All
it's doing for now is declaring -fwrapv twice, so you don't have to fix
it just yet. Probably just going to alias g++="g++47" and do exact
matching instead.
Errata 3: both OpenGL::term and VideoGLX::term are causing a core dump
on BSD. No idea why. The resources are initialized and valid, but
releasing them crashes the application.
Changelog:
- nall/Makefile is more flexible with overriding $(compiler), so you can
build with GCC or Clang on BSD (defaults to GCC now)
- PLATFORM_X was renamed to PLATFORM_XORG, and it's also declared with
PLATFORM_LINUX or PLATFORM_BSD
- PLATFORM_XORG probably isn't the best name ... still thinking about
what best to call LINUX|BSD|SOLARIS or ^(WINDOWS|MACOSX)
- fixed a few legitimate Clang warning messages in nall
- Compiler::VisualCPP is ugly as hell, renamed to Compiler::CL
- nall/platform includes nall/intrinsics first. Trying to move away from
testing for _WIN32, etc directly in all files. Work in progress.
- nall turns off Clang warnings that I won't "fix", because they aren't
broken. It's much less noisy to compile with warnings on now.
- phoenix gains the ability to set background and foreground colors on
various text container widgets (GTK only for now.)
- rewrote a lot of the MSU1 code to try and simplify it. Really hope
I didn't break anything ... I don't have any MSU1 test ROMs handy
- SNES coprocessor audio is now mixed as sclamp<16>(system_sample
+ coprocessor_sample) instead of sclamp<16>((sys + cop) / 2)
- allows for greater chance of aliasing (still low, SNES audio is
quiet), but doesn't cut base system volume in half anymore
- fixed Super Scope and Justifier cursor colors
- use input.xlib instead of input.x ... allows Xlib input driver to be
visible on Linux and BSD once again
- make install and make uninstall must be run as root again; no longer
using install but cp instead for BSD compatibility
- killed $(DESTDIR) ... use make prefix=$DESTDIR$prefix instead
- you can now set text/background colors for the loki console via (eg):
- settings.terminal.background-color 0x000000
- settings.terminal.foreground-color 0xffffff
byuu says:
Changelog for loki:
- added command aliases (match with * [sorry, regex lib isn't available
everywhere yet], replace with {1}+)
- added command hotkeys
- added window geometry saving
- added save state support
- added power/reset commands
- added an input manager, so you can remap keys (limiting it to the
keyboard for now though)
The combination of aliases and hotkeys really makes things shine. Save
states will temporarily disable your breakpoints (run/step are
technically temporary breakpoints) so as to ensure the state is captured
at a good time. In practice, this should pose about as much of a problem
as higan desyncing and breaking when capturing states ... should be
exceedingly rare to ever even notice this behavior at all, with 99.9% of
state captures happening in half an instruction boundary. But still,
keep it in mind, as you might see the CPU step one instruction ahead.
Tracing and usage map functionality is still enabled during state
synchronization.
So at this point, I have 100% of the essential stuff in. All that's left
now is to add polish / wishlist features like bass and mosaic
integration.
byuu says:
New terminal is in. Much nicer to use now. Command history makes a major
difference in usability.
The SMP is now fully traceable and debuggable. Basically they act as
separate entities, you can trace both at the same time, but for the most
part running and stepping is performed on the chip you select.
I'm going to put off CPU+SMP interleave support for a while. I don't
actually think it'll be too hard. Will get trickier if/when we support
coprocessor debugging.
Remaining tasks:
- aliases
- hotkeys
- save states
- window geometry
Basically, the debugger's done. Just have to add the UI fluff.
I also removed tracing/memory export from higan. It was always meant to
be temporary until the debugger was remade.
byuu says:
Commands can be prefixed with: (cpu|smp|ppu|dsp|apu|vram|oam|cgram)/ to
set their source. Eg "vram/hex 0800" or "smp/breakpoints.append execute
ffc0"; default is cpu.
These overlap a little bit in odd ways, but that's just the way the SNES
works: it's not a very orthogonal system. CPU is both a processor and
the main bus (ROM, RAM, WRAM, etc), APU is the shared memory by the
SMP+DSP (eg use it to catch writes from either chip); PPU probably won't
ever be used since it's broken down into three separate buses (VRAM,
OAM, CGRAM), but DSP could be useful for tracking bugs like we found in
Koushien 2 with the DSP echo buffer corrupting SMP opcodes. Technically
the PPU memory pools are only ever tripped by the CPU poking at them, as
the PPU doesn't ever write.
I now have run.for, run.to, step.for, step.to. The difference is that
run only prints the next instruction after running, whereas step prints
all of the instructions along the way as well. run.to acts the same as
"step over" here. Although it's not quite as nice, since you have to
specify the address of the next instruction.
Logging the Field/Vcounter/Hcounter on instruction listings now, good
for timing information.
Added in the tracer mask, as well as memory export, as well as
VRAM/OAM/CGRAM/SMP read/write/execute breakpoints, as well as an APU
usage map (it tracks DSP reads/writes separately, although I don't
currently have debugger callbacks on DSP accesses just yet.)
Have not hooked up actual SMP debugging just yet, but I plan to soon.
Still thinking about how I want to allow / block interleaving of
instructions (terminal output and tracing.)
So ... remaining tasks at this point:
- full SMP debugging
- CPU+SMP interleave support
- aliases
- hotkeys
- save states (will be kind of tricky ... will have to suppress
breakpoints during synchronization, or abort a save in a break event.)
- keep track of window geometry between runs
byuu says:
Changelog:
- target-ethos/ is now target-higan/ (will unfortunately screw up diffs
pretty badly at this point.)
- had a serious bug in nall::optional<T>::operator=, which is now fixed.
- added tracer (no masking just yet, I need to write a nall::bitvector
class because I don't want to hard-code those anymore.)
- added usage logging (keep track of RWX/EP states for all bus
addresses.)
- added read/write to poke at memory (hex also works for reading, but
this one can poke at MMIO regs and is for one address only.)
- added both run.for (# of instructions) and run.to (program counter
address.)
- added read/write/execute breakpoints with counters for a given
address, and with an optional compare byte (for read/write modes.)
About the only major things left now for loki is support for trace
masking, memory export, and VRAM/OAM/CGRAM access.
For phoenix/Console, I really need to add a history to up+down arrows,
and I should support left/right insert-at.
byuu says:
Changelog:
- ethos: use nall::programpath() instead of realpath(argv[0]) to get
executable path
- loki: add presentation window
- loki: add terminal window
- loki: add interface to emulation core
- loki: add ruby
- loki: add enough support to run games and save data on exit
- load game folders via command-line (or drop folder onto binary),
use "r" to start, "p" to pause ... temporary command names
I'll probably have to say this several times, but for now, loki is only
available on Linux/GTK+, due to the use of the Console widget. Support
for other platforms can come later easily enough.
byuu says:
Changelog:
- port: various compilation fixes for OS X [kode54]
- nall: added programpath() function to return path to process binary
[todo: need to have ethos use this function]
- ruby: XAudio2 will select default game sound device instead of first
sound device
- ruby: DirectInput device IDs are no longer ambiguous when VID+PID are
identical
- ruby: OpenGL won't try and terminate if it hasn't been initialized
- gb: D-pad up+down/left+right not masked in SGB mode
- sfc: rewrote ICD2 video rendering to output in real-time, work with
cycle-based Game Boy renderer
- sfc: rewrote Bus::reduce(), reduces game loading time by about 500ms
- ethos: store save states in {game}/higan/* instead of {game}/bsnes/*
- loki: added target-loki/ (blank stub for now)
- Makefile: purge out/* on make clean
byuu says:
This release adds support for game libraries, and substantially improves
Game Boy and Game Boy Color emulation with cycle-based renderers. Many
other changes are also present.
It's very important to note that this release now defaults to optimal
drivers rather than safe drivers. This is particularly important if you
do not have strong OpenGL 3.2 drivers. If performance is bad, go to
Settings -> Configuration -> Advanced, change the video driver, and
restart higan. In the rare case that you have trouble opening higan, you
can edit settings.bml directly and change the setting there. The Windows
safe driver is Direct3D, and the Linux safe driver is XShm.
Also note that although display emulation shaders are now supported,
they have not been included in this release as they are not ready yet.
The support has been built-in anyway, so that they can be tested by
everyone. Once refined, future releases of higan will come with built-in
shaders for each emulated system that simulates the unique display
characteristics of each.
Changelog (since v093):
- sfc: added SA-1 MDR support (fixes SD Gundam G-Next bug)
- sfc: remove random/ and config/, merge to system/ with better
randomization
- gb: improved color emulation palette contrast
- gbc: do not sort sprites by X-priority
- gbc: allow transparency on BG priority pixels
- gbc: VRAM DMA timing and register fixes
- gbc: block invalid VRAM DMA transfer source and target addresses
- gba: added LCD color emulation (without it, colors are grossly
over-saturated)
- gba: removed internal frame blending (use shaders to simulate motion
blur if desired)
- gba: added Game Boy Player support (adds joypad rumble support to
supported games)
- gba: SOUND_CTL_H is readable
- gb/gbc: PPU renderer is now cycle-based (major accuracy improvement)
- gb/gbc: OAM DMA runs in parallel with the CPU
- gb/gbc: only HRAM can be accessed during OAM DMA
- gb/gbc: fixed serialization of games with SRAM
- gb/gbc: disallow up+down or left+right at the same time
- gb/gbc: added weak hipass filter to remove DC bias
- gb/gbc: STAT OAM+Hblank IRQs only trigger during active display
- gb/gbc: fixed underflow in window clamping
- gb/gbc/gba: audio mixes internally at 2MHz now instead of 4MHz (does
not affect accuracy)
- gb/gbc/gba: audio volume reduced for consistency with other systems
- fc/sfc/gb/gbc/gba: cheat codes are now stored in universal, decrypted
format
- ethos: replaced file loader with a proper game library
- ethos: added display emulation shader support
- ethos: added color emulation option to video settings
- ethos: program icon upgraded from 48x48 to 512x512
- ethos: settings and tools windows now use tab frames (less wasted
screen space)
- ethos: default to optimal (video, audio, input) drivers instead of
safest drivers
- ethos: input mapping system completely rewritten to support
hotplugging and unique device mappings
- ruby: added fixes for OpenGL 3.2 on AMD graphics cards
- ruby: quark shaders now support user settings inside of manifest
- ruby: quark shaders can use integral textures (allows display
emulation shaders to work with raw colors)
- ruby: add joypad rumble support
- ruby: XInput (Xbox 360) controllers now support hotplugging
- ruby: added Linux udev joypad driver with hotplug support
- phoenix: fixed a rare null pointer dereference issue on Windows
- port: target -std=c++11 instead of -std=gnu++11 (do not rely on GNU
C++ extensions)
- port: added out-of-the-box compilation support for BSD/Clang 3.3+
- port: applied a few Debian upstream patches
- cheats: updated to mightymo's 2014-01-02 release; decrypted all Game
Genie codes
byuu says:
This WIP removes nall/input.hpp entirely, and implements the new
universal cheat format for FC/SFC/GB/GBC/SGB.
GBA is going to be tricky since there's some consternation around
byte/word/dword overrides.
It's also not immediately obvious to me how to implement the code search
in logarithmic time, due to the optional compare value.
Lastly, the cheat values inside cheats.bml seem to be broken for the
SFC. Likely there's a bug somewhere in the conversion process. Obviously
I'll have to fix that before v094.
I received no feedback on the universal cheat format. If nobody adds
anything before v094, then I don't want to hear any complaining about
the formatting :P
byuu says:
Not an official WIP (a WIP WIP? A meta-WIP?), just throwing in the new
fullscreen code, and I noticed that OpenGL colors in 30-bit mode are all
fucked up now for some strange reason. So I'm just using this snapshot
to debug the issue.
byuu says:
I've completely redone the ethos InputManager and ruby to work on
HID::Device objects instead of one giant scancode pool.
Currently only the udev driver supports the changes to ruby, so only
Linux users will be able to compile and run this WIP build.
The nice thing about the new system is that it's now possible to
uniquely identify controllers, so if you swap out gamepads, you won't
end up with it working but with all the mappings all screwed up. Since
higan lets you map multiple physical inputs to one emulated input, you
can now configure your keyboard and multiple gamepads to the same
emulated input, and then just use whatever controller you want.
Because USB gamepad makers failed to provide unique serial#s with each
controller, we have to limit the mapping to specific USB ports.
Otherwise, we couldn't distinguish two otherwise identical gamepads. So
basically your computer USB ports act like real game console input port
numbers. Which is kind of neat, I guess.
And the really nice thing about the new system is that we now have the
capability to support hotplugging input devices. I haven't yet added
this to any drivers, but I'm definitely going to add it to udev for v094
official.
Finally, with the device ID (vendor ID + product ID) exposed, we gain
one last really cool feature that we may be able to develop more in the
future. Say we created a joypad.bml file to include with higan. In it,
we'd store the Xbox 360 controller, and pre-defined button mappings for
each emulated system. So if higan detects you have an Xbox 360
controller, you can just plug it in and use it. Even better, we can
clearly specify the difference between triggers and analog axes, and
name each individual input. So you'd see "Xbox 360 Gamepad #1: Left
Trigger" instead of higan v093's "JP0::Axis2.Hi"
Note: for right now, ethos' input manager isn't filtering the device IDs
to look pretty. So you're going to see a 64-bit hex value for a device
ID right now instead of something like Joypad#N for now.
byuu says:
Changelog:
- GBA: SOUND_CTL_H is readable, fixes sound effects in Mario&Luigi
Superstar Saga [Cydrak] (note: game is still unplayable due to other
bugs)
- phoenix/Windows: workaround for Win32 API ListView bug, fixes slot
loading behavior
- ruby: added udev driver for Linux with rumble support, and added
rumble support to existing RawInput driver for XInput and DirectInput
- ethos: added new "Rumble" mapping to GBA input assignment, use it to
tell higan which controller to rumble (clear it to disable rumble)
- GBA: Game Boy Player rumble is now fully emulated
- core: added new normalized raw-color palette mode for Display
Emulation shaders
The way rumble was added to ethos was somewhat hackish. The support
doesn't really exist in nall.
I need to redesign the entire input system, but that's not a change
I want to make so close to a release.
byuu says:
Changelog:
- Game Boy (Color): STAT OAM+HBlank IRQs only trigger during LY=0-143
with display enabled
- fixes backgrounds and text in Wacky Races
- Game Boy (Color): fixed underflow in window clamping
- fixes Wacky Races, Prehistorik Man, Alleyway, etc
- Game Boy (Color): LCD OAM DMA was running too slow
- fixes Shin Megami Tensei - Devichil - Kuro no Sho
- Game Boy Advance: removed built-in frame blending; display emulation
shaders will handle this going forward
- Game Boy Advance: added Game Boy Player emulation
- currently the screen is tinted red during rumble, no actual gamepad
rumble support yet
- this is going to be slow, as we have to hash the frame to detect the
GBP logo, it'll be optional later on
- Emulator::Interface::Palette can now output a raw palette (for Display
Emulation shaders only)
- color channels are not yet split up, it's just the raw packed value
byuu says:
Changelog:
- GB/C OAM DMA now runs in parallel with the CPU
- CPU can only access HRAM during OAM DMA
- fixed SGB mode again
- brand new config files will default to the optimal drivers now
(OpenGL, etc) instead of the safest
- hopefully fixed remaining Windows UI issues
byuu says:
Changelog:
- Game Boy and Game Boy Color now have a weak hipass filter to remove DC
bias (or whatever)
- Game Boy and Game Boy Color now have cycle-based PPU renderers instead
of scanline-based renderers
- improved Game Boy color emulation palette contrast
- fixed GTK+ ListView selection bug
- fixed a typo when saving states (should say "Saved to slot N", not
"Save to slot N")
byuu says:
Changelog:
- importing a game won't show message box on success
- importing a game will select the game that was imported in the list
- caveat: GTK+ port doesn't seem to be removing focus from item 0 even
though the selection is on item 2
- Game Boy audio reduced in volume by 50%
- Game Boy Advance audio reduced in volume by 50%
- Game Boy internally mixes audio at 2MHz now
- Game Boy Advance's Game Boy audio hardware internally mixes audio at
2MHz now
- Game Boy Color doesn't sort sprites by X-coordinate
- Game Boy Color allows transparency on BGpriority pixels
- caveat: this seems to allow sprites to appear on top of windows
- Game Boy Color VRAM DMA transfers 16 bytes in 8 clocks (or 16 clocks
in double speed mode)
- Game Boy Color VRAM DMA masks low 4-bits of source and destination
address
- Game Boy Color VRAM DMA only allows reads from ROM or RAM
- Game Boy Color VRAM DMA only allows writes to VRAM
- fixed a bug in dereferencing a nullptr from pObject::find(), should
fix crash when pressing enter key on blank windows
- fixed Windows RadioItem selection
- Game Boy Advance color emulation code added
byuu says:
Changelog:
- Windows port should compile out-of-the-box
- InputManager::scancode[] initialized at startup
- Library menu shows item for each bootable media type (notably Game Boy
Color)
- Display Emulation menu selection fix
- LibraryManager load button works now
- Added hotkey to show library manager (defaults to L)
- Added color emulation to video settings (missing on GBA for now)
- SFC loading SGB without GB cartridge no longer segfaults
- GB/GBC system.load() after cartridge.load()
- GB/GBC BG-over-OAM fix
- GB/GBC disallow up+down and left+right
byuu says:
Updated to support latest phoenix changes.
Converted Settings and Tools to TabFrame views.
Errata:
- phoenix/Windows ComboButton wasn't calling parent
pWidget::setGeometry() [fixed locally]
- TRACKBAR_CLASS draws COLOR_3DFACE for the background even when its
parent is a WC_TABCONTROL
byuu says:
Changelog:
- nall: fixed major memory leak in string class
- ruby: video shaders support #define-based settings now
- phoenix/GTK+: support > 256x256 icons for window / task bar / alt-tab
- sfc: remove random/ and config/, merge into system/
- ethos: delete higan.png (48x48), replace with higan512.png (512x512)
as new higan.png
- ethos: default gamma to 100% (no color adjustment)
- ethos: use "Video Shaders/Display Emulation/" instead of "Video
Shaders/Emulation/"
- use g++ instead of g++-4.7 (g++ -v must be >= 4.7)
- use -std=c++11 instead of -std=gnu++11
- applied a few patches from Debian upstream to make their packaging job
easier
So because colors are normalized in GLSL, I won't be able to offer video
shaders absolute color literals. We will have to perform basic color
conversion inside the core.
As such, the current plan is to create some sort of Emulator::Settings
interface. With that, I'll connect an option for color correction, which
will be on by default. For FC/SFC, that will mean gamma correction
(darker / stronger colors), and for GB/GBC/GBA, it will mean simulating
the weird brightness levels of the displays. I am undecided on whether
to use pea soup green for the GB or not. By not doing so, it'll be
easier for the display emulation shader to do it.
byuu says:
Changelog:
- added SA-1 MDR; fixes bug in SD Gundam G-Next where the main
battleship was unable to fire
- added out-of-the-box support for any BSD running Clang 3.3+ (FreeBSD
10+, notably)
- added new video shader, "Display Emulation", which changes the shader
based on the emulated system
- fixed the home button to go to your default library path
- phoenix: Windows port won't send onActivate unless an item is selected
(prevents crashing on pressing enter in file dialog)
- ruby: removed vec4 position from out Vertex {} (helps AMD cards)
- shaders: updated all shaders to use texture() instead of texture2D()
(helps AMD cards)
The "Display Emulation" option works like this: when selected, it tries
to load "<path>/Video Shaders/Emulation/<systemName>.shader/"; otherwise
it falls back to the blur shader. <path> is the usual (next to binary,
then in <config>/higan, then in /usr/share/higan, etc); and <systemName>
is "Famicom", "Super Famicom", "Game Boy", "Game Boy Color", "Game Boy
Advance"
To support BSD, I had to modify the $(platform) variable to
differentiate between Linux and BSD.
As such, the new $(platform) values are:
win -> windows
osx -> macosx
x -> linux or bsd
I am also checking uname -s instead of uname -a now. No reason to
potentially match the hostname to the wrong OS type.
byuu says:
Changelog:
- added Cocoa target: higan can now be compiled for OS X Lion
[Cydrak, byuu]
- SNES/accuracy profile hires color blending improvements - fixes
Marvelous text [AWJ]
- fixed a slight bug in SNES/SA-1 VBR support caused by a typo
- added support for multi-pass shaders that can load external textures
(requires OpenGL 3.2+)
- added game library path (used by ananke->Import Game) to
Settings->Advanced
- system profiles, shaders and cheats database can be stored in "all
users" shared folders now (eg /usr/share on Linux)
- all configuration files are in BML format now, instead of XML (much
easier to read and edit this way)
- main window supports drag-and-drop of game folders (but not game files
/ ZIP archives)
- audio buffer clears when entering a modal loop on Windows (prevents
audio repetition with DirectSound driver)
- a substantial amount of code clean-up (probably the biggest
refactoring to date)
One highly desired target for this release was to default to the optimal
drivers instead of the safest drivers, but because AMD drivers don't
seem to like my OpenGL 3.2 driver, I've decided to postpone that. AMD
has too big a market share. Hopefully with v093 officially released, we
can get some public input on what AMD doesn't like.
byuu says:
Changelog:
- you can now drop game folders (not game files, sorry) onto higan's
main window to load them
- audio buffer will clear on Windows when entering modal loop (entering
menu, moving or resizing window)
- this prevents DirectSound driver's audio repetition
- ruby defaults to the optimal driver for each platform, rather than the
safest driver, now
- added Cydrak's gl_Position.zw change to ruby
- added fixes for all the changes to nall, ruby, phoenix over the past
three months
byuu says:
This will be another massive diff from the previous version.
All of higan was updated to use the new foo& bar syntax, and I also
updated switch statements to be consistent as well (but not in the
disassemblers, was starting to get an RSI just from what I already did.)
phoenix/{windows, cocoa, qt} need to be updated to use "string foo"
instead of "const string& foo", and after that, the major diffs should
be finished.
This archive is the first time I'm posting my copy-on-write,
size+capacity nall::string class, so any feedback on that is welcome as
well.
byuu says:
Changelog:
- fixed cartridge load window focus on Windows
- lots of updates to nall, ruby and phoenix
- ethos and Emulator::Interface updated from "foo &bar" to "foo& bar"
syntax (work-in-progress)
Before I had mixed the two ways to declare variables/arguments all over
the place, so the goal is to unify them all for consistency. So the
changelog for this release will be massive (750KB >.>) due to the syntax
change. Yeah, that's what I spent the last three days working on ...
byuu says:
- OpenGL should work on OS X now; it uses VAOs and VBOs, and is fully
OpenGL 3.2 core compliant
- all configuration files are now stored in BML format, instead of CFG
format (half the size, much more readable)
- some old nall libraries that were never used have been removed
- make install works with or without root now (copies core files to
/usr/share/higan [non-configurable])
- make install also works on OS X (copies to /Library/Application
Support/higan)
byuu says:
Changelog:
- added support for ruby shader folders (place in "Video Shaders/")
- higan now also looks in your shared folder for configuration files and
system media folders
- added CFBundleExecutable key to OS X Info.plist
Shared folder locations:
- Windows XP: C:\Documents and Settings\All Users\Application Data\higan
- Windows 7: C:\ProgramData\higan
- OS X: /Library/Application Support/higan
- Linux: /etc/higan
Evaluation order:
- look for item in binary folder: if found, use this folder
- look for item in user folder: if found, use this folder
- look for item in shared folder: if found, use this folder
- create item in user folder
For people repackaging higan for other distros: you should chmod 777
/etc/higan. Failure to do so could result in higan breaking. No, I will
not copy the files from the shared path to the user path.
byuu says:
This release should be polished enough for a general release.
This release should be polished enough for a general release.
Anyone with a real, clean Mac up for posting compiled binaries?
Preferably compile with "make profile=balanced" In fact, I'd like it if
someone were willing to host a "higan for Mac" page, with binaries of
each of the latest releases. Only really needed for major official
releases, but it'd be preferable to have the builds updated as soon as
possible after I post new builds.
Changelog:
- no more keyboard chimes when pressing keys
- status bar added, fully functional
- Label::minimumSize() takes frame into account (but note a few places
hard-code raw Font::size(), so a few text labels are still clipped)
- resizing the main window looks smooth regardless of whether a game is
running or not
- currently, resizing the window pauses the emulation. Allowing it to
run the main loop was lagging out the window resize process too much
to be worth it
Additional OS X integration enhancements:
- closing the main window unloads the current game, but does not quit
the application (quit via the main menu or the dock menu)
- clicking the icon in the dock will (re)display the main menu
byuu says:
This is the first release with full support for OS X, although it's
certainly still very buggy.
Known issues:
- window status bars are still unsupported (they just don't show up)
- you get the bad keypress chime when you use the keyboard
- window geometry and font metrics aren't perfect (bit of clipping here
and there)
- list view headers that aren't auto-sized are sometimes too short (file
browser)
- input assignment is really rough (assigning a key also moves around in
the list or beeps at you)
Custom OS X integration support so far:
- 512x512 ICNS application icon: will look razor-sharp even on a retina
display
- basic Info.plist added to application bundle
- program menu about, preferences, quit all connected
- Settings->Configuration removed (use higan->Preferences instead)
- global menubar
To compile and use this, you'll need:
- Xz Utils (to extract .tar.xz)
- Xcode 4.6
- Lion 10.7.4 or newer
mkdir higan_v092r04
tar -xJf higan_v092r04.tar.xz -C higan_v092r04
cd higan_v092r04
make -j 2
ananke is missing, and I haven't updated purify yet, so you'll have to
move game folders from Windows or Linux over, or make them by hand (a
not so enjoyable experience, to say the least.)
byuu says:
This release adds the phoenix/Cocoa port, and rewrites a lot of the
higan user interface to work with all of the new changes (like blocking
in the main run loop and in modal windows.)
It doesn't yet modify the compilation flags to actually build on OS
X yet, and even then, we don't really have ruby drivers, so there'd be
no video, audio or input.
Two months between a single WIP point release ... for the first six
years, I never went more than a month without a full official release.
I guess I should be happy that it's become so refined, but I sure do
miss those halcyon days of exciting progress.
byuu says:
Changelog:
- merged AWJ's hires color blending improvements (most notably: fixes
Marvelous' text)
- created sfc/base/ to store base unit (expansion port device) emulation
- synchronized the markup of Satellaview and Sufami Turbo cartridge
slots in the board markup
- fixed "Initializing ..." typo in timing settings
If at all possible, I'd really like to have heavy testing of games that
use hires graphics to check for any regressions.
I trust AWJ's code, and all of the test ROMs I have thrown at it all
appear to work great. But better safe than sorry. Same deal for any core
changes, it's a lot better to catch it now than after v093 is released.
byuu says:
higan changelog:
- compiler is set to g++-4.7, subst(cc,++) rule is gone, C files compile
with $(compiler) -x c
- make throws an error when you specify an invalid profile or compile on
an unsupported platform (instead of hanging forever)
- added unverified.png to resources (causes too big of a speed hit to
actually check for folder/unverified file ... so disabled for now)
- fixed default browser paths for Game Boy, Sufami Turbo and BS-X
Satellaview (have to delete paths.cfg to see this)
- browser home button seeks to configpath()/higan/library.cfg
- settings->driver is now settings->advanced, and it adds game library
path setting and profile information
- emulation cores now load manifest files internally, manifest.bml is
not required for a game folder to be recognized by higan as such
- BS-X Satellaview and Sufami Turbo slot cartridge handling moved out of
sfc/chip and into sfc/slot
- Video::StartFullScreen only sets fullscreen when a game is specified
on the command-line
purify and ananke changelog:
- library output path shown in purify window
- added button to change library path
- squelch firmware warning windows to prevent multi-threading crash, but
only via purify (they show up in higan still)
byuu says:
This release has an updated version of ananke. If you replace the higan
v092 ananke.dll with this new one, it will fix the SGB+TG3000+ToP+DKJM2
loading issues.
This version fixes a problem where ananke would leave out the
'information' section (that is, the game name) when converting a game to
a game folder, resulting in a folder named " (!)".
It also includes the latest version of nall.
Because byuu's Win32 compiler does not yet support the C++11 std::thread
API, he wrote his own portable wrapper library, so now the new purify
works on Windows too.
byuu says:
purify has been rewritten. It now resembles the older snespurify, and
lets you import multiple game files+archives and regenerate manifests
for multiple game folders. It is also recursive.
So you can now import all of your games for all systems at once, or you
can update all of your bsnes v091 game folders to the new higan v092
format at once.
Caveats:
First, I am now using std::thread, so that the GUI doesn't freeze.
Instead, you get a nice progress bar. Unfortunately, I was mislead and
TDM/GCC 4.7 still does not have std::thread support. So ... sorry, but
I can't compile purify for Windows. I am sick and tired of not being
able to write multi-threaded code, so fuck it. If anyone can get it to
build on Windows, whether that be by using Windows threads, hacking in
std::thread support, skipping threading all together, whatever ...
that'll be great. Otherwise, sorry, purify is Linux only until MinGW can
get its god damned shit together and offers threading support.
Second, there's no way to regenerate Famicom (NES) manifests, because we
discard the iNES header. We are going to need a database for that. So,
all I can suggest is that if you use bsnes/higan, keep all your iNES
images around to re-import as new releases come out.
Third, when you purify game folders, it will back up the ROM and RAM
files only. Your save states, cheat codes, debug logs, etc will be wiped
out. There's a whole lot of reasons for this, the most pertinent is that
it's meant to clean up the folder to a pristine state. It also fixes the
game folder name, etc. So ... sorry, but this is how it works. New
releases rarely if ever allow old save states to work anyway.
Lastly, I am not going to have purify contain infinite backward
compatibility for updating manifests. You will want to keep up with
purifying the collection, otherwise you'll have to grab older purify
copies and convert your way along. Although hopefully the format won't
be so volatile and this won't be necessary very often.
byuu says:
For higan:
- I fixed the data ROM/RAM initialization for the Cx4, which would
periodically cause a crash.
- I also moved the Satellaview MaskROM vs FlashROM detection into the
Satellaview manifests, so Same Game - Character Data works now.
- I also re-added the driver filter to the video shaders, so the D3D
driver won't show OGL shaders and vice versa.
For ananke:
- You can now generate the other SGB images by putting sgb.rom in the
same folder as the BIOS images.
- I fixed the markup in the database and via heuristics for 5MB+ games
(DKJM2, ToP)
- Sufami Turbo and BS-X Satellaview generate BML now instead of XML when
using heuristics.
In the release thread, byuu says:
The first official release of higan has been posted. higan is the
new name for bsnes, and it continues with the latter's version
numbering.
Note that as of now, bsnes still exists. It's a module distributed
inside of higan. bsnes is now specific to my SNES emulator.
Due to last minute changes to the emulator interface, and missing
support in ananke, I wasn't able to include Cydrak's Nintendo DS
emulator dasShiny in this build, but I hope to do so in the next
release.
http://code.google.com/p/higan/downloads/list
For both new and experienced users, please read the higan user guide
first:
http://byuu.org/higan/user-guide
In the v091 WIP thread, byuu says:
r15->r16:
- BS-X MaskROM handling (partial ... need to split bsx/flash away
from sfc/chip, restructure code - it requires tagging the base
cart markup for now, but it needs to parse the slotted cart
markup)
- phoenixflags / phoenixlink += -m32
- nall/sort stability
- if(input.poll(scancode[activeScancode]) == false) return;
- MSU1 / USART need to use interface->path(1)
- MSU1 needs to use Markup::Document, not XML::Document
- case-insensitive folder listings
- remove nall/emulation/system.hpp files (move to ananke)
- remove rom/ram id= checks with indexing
X have cores ask for manifest.bml (skipped for v092's release, too
big a change)
- rename compatibility profile to balanced (so people don't assume
it has better compatibility than accuracy)
byuu says:
Changelog:
- all media types always show base name in the title now (eg Super Game
Boy + Mega Man II)
- Game Boy loading via ananke has been fixed
- phoenix is dynamically linked on Windows now (needed for ananke)
- Linux port shows the higan program icon (once you install the program
to get the bitmap into /usr/local/share/pixmaps)
- paths.cfg defaults to "userpath()/Emulation/System Name/" when it is
created from scratch
[Later, after the v092 release, byuu posted this additional changelog:
- new compilation rules for win32
- OS::setName
- default to ~/Emulation/media.name for paths.cfg
]
byuu says:
higan changelog:
- generates title displayed in emulator window by asking the core
- core builds title solely from "information/title" ... if it's not
there, you don't get a title at all
- sub-system load menu is gone ... since there are multiple revisions of
the SGB, this never really worked well anyway
- to load an SGB, BS-X or ST cartridge, load the base cartridge first
- "File->Load Game" moved to "Load->Import Game" ... may cause a bit of
confusion to new users, but I don't like having a single-item menu,
we'll just have to explain it to new users
- browser window redone to look like ananke
- home button here goes to ~/Emulation rather than just ~ like ananke,
since this is the home of game folders
- game folder icon is now the executable icon for the Tango theme
(orange diamond), meant to represent a complete game rather than
a game file or archive
ananke changelog:
- outputs GBC games to "Game Boy Color/" instead of "Game Boy/"
- adds the file basename to "information/title"
Known issues:
- using ananke to load a GB game trips the Super Famicom SGB mode and
fails (need to make the full-path auto-detection ignore non-bootable
systems)
- need to dump and test some BS-X media before releasing
- ananke lacks BS-X Satellaview cartridge support
- v092 isn't going to let you retarget the ananke/higan game folder path
of ~/Emulation, you will have to wait for a future version if that
bothers you so greatly
[Later, after the v092 release, byuu posted this additional changelog:
- kill laevateinn
- add title()
- add bootable, remove load
- combine file, library
- combine [][][] paths
- fix SFC subtype handling XML->BML
- update file browser to use buttons
- update file browser keyboard handling
- update system XML->BML
- fix sufami turbo hashing
- remove Cartridge::manifest
]
byuu says:
This should be basically final now.
Works with all media types (nes, sfc, gb, gbc, gba, bs, st), strips
headers, can use internal or external firmware, imports saves on first
run.
Added a custom file dialog. It seems both GTK+ and Windows XP have
(un)intelligent file sorting, which puts eg "ActRaiser 2 (NA)" before
"ActRaiser (NA)". So, screw 'em.
byuu says (about higan):
- dropped release/ root node for individual games (still there in
ananke's database.)
- Memory export uses smarter names (vram.rwm -> video.ram, etc.)
- cheat database moved from XML to BML (3.1MB to 1.9MB file size.)
- cheat codes moved from XML to BML
- resource manifest moved from XML to BML
What can I say, I like consistency. But I'll leave the shaders alone
until I get around to shader folders.
byuu says (about ananke):
Works with higan v091r13. Only does SNES stuff so far.
byuu says:
This release refines HSU1 support as a bidirectional protocol, nests SFC
manifests as "release/cartridge" and "release/information" (but release/
is not guaranteed to be finalized just yet), removes the database
integration, and adds support for ananke.
ananke represents inevitability. It's a library that, when installed,
higan can use to load files from the command-line, and also from a new
File -> Load Game menu option.
I need to change the build rules a bit for it to work on Windows (need
to make phoenix a DLL, basically), but it works now on Linux.
Right now, it only takes *.sfc file names, looks them up in the included
database, converts them to game folders, and returns the game folder
path for higan to load.
The idea is to continue expanding it to support everything we can that
I don't want in the higan core:
- load *.sfc, *.smc, *.swc, *.fig files
- remove SNES copier headers
- split apart merged firmware files
- pull in external firmware files (eg dsp1b.rom - these are staying
merged, just as SPC7110 prg+dat are merged)
- load *.zip and *.7z archives
- prompt for selection on multi-file archives
- generate manifest files based on heuristics
- apply BPS patches
The "Load" menu option has been renamed to "Library", to represent games
in your library. I'm going to add some sort of suffix to indicate
unverified games, and use a different folder icon for those (eg
manifests built on heuristics rather than from the database.)
So basically, to future end users:
File -> Load Game will be how they play games.
Library -> (specific system) can be thought of as an infinitely-sized
recent games list.
purify will likely become a simple stub that invokes ananke's functions.
No reason to duplicate all that code.
[r07 and r08 were not posted to the WIP thread. -Ed.]
byuu says:
I'd appreciate it if you guys wouldn't mind testing out the database
functionality.
Save this file as database.bml (remove the date) inside
~/.config/higan/Super Famicom.sfc/ or %APPDATA%/higan/Super Famicom.sfc/
http://byuu.org/snes/database/database_2012-10-21.bml
Now load any of the 20 games in the database from the file dialog. They
need to be named *.sfc, have no copier header, and have firmware
appended (for Mario Kart only so far.)
If anyone actually does test it, please let me know how it goes for you
and what you think. Note that future versions of higan will have the
database.bml file included with the release.
byuu says:
This release adds initial database support.
The way it works is you can now load game folders as you always have, or
you can load a game file. If you load a game file, it tries to create
a game folder for you by looking up the file's sha256 in a database. If
it can't find it, sorry, the game won't play. I'm not hooking up the
oldschool "make up a manifest" code here. The easiest way to handle this
is to get me every game so I can dump it and add it to the database :D
The database entries are complete entries that can be copied directly.
So it describes the board, the information, file layout, etc. That'll be
what comes with higan releases in the future.
Internally, I'm separating the information and board descriptions, and
will use a tool to merge the two together.
Here's a current database copy, with one game in it. Still hammering out
some details, but it's mostly how it's going to look.
cartridge region=NTSC
board type=1CB5B-20
superfx revision=2
rom name=program.rom size=0x200000
ram name=save.rwm size=0x8000
map id=io address=00-3f,80-bf:3000-32ff
map id=rom address=00-3f:8000-ffff mask=0x8000
map id=rom address=40-5f:0000-ffff
map id=ram address=00-3f,80-bf:6000-7fff size=0x2000
map id=ram address=70-71:0000-ffff
information
name: Super Mario World 2 - Yoshi's Island (SNS) (1.1)
title: Super Mario World 2: Yoshi's Island
sha256: bd763c1a56365c244be92e6cffefd318780a2a19eda7d5baf1c6d5bd6c1b3e06
board: SHVC-1CB5B-20
rom: 0x200000
ram: 0x8000
layout
file name=program.rom size=0x200000
[No prior releases were posted to the WIP thread. -Ed.]
byuu says:
Super Famicom mapping system has been reworked as discussed with the
mask= changes. offset becomes base, mode is gone. Also added support for
comma-separated fields in the address fields, to reduce the number of
map lines needed.
<?xml version="1.0" encoding="UTF-8"?>
<cartridge region="NTSC">
<superfx revision="2">
<rom name="program.rom" size="0x200000"/>
<ram name="save.rwm" size="0x8000"/>
<map id="io" address="00-3f,80-bf:3000-32ff"/>
<map id="rom" address="00-3f:8000-ffff" mask="0x8000"/>
<map id="rom" address="40-5f:0000-ffff"/>
<map id="ram" address="00-3f,80-bf:6000-7fff" size="0x2000"/>
<map id="ram" address="70-71:0000-ffff"/>
</superfx>
</cartridge>
Or in BML:
cartridge region=NTSC
superfx revision=2
rom name=program.rom size=0x200000
ram name=save.rwm size=0x8000
map id=io address=00-3f,80-bf:3000-32ff
map id=rom address=00-3f:8000-ffff mask=0x8000
map id=rom address=40-5f:0000-ffff
map id=ram address=00-3f,80-bf:6000-7fff size=0x2000
map id=ram address=70-71:0000-ffff
As a result of the changes, old mappings will no longer work. The above
XML example will run Super Mario World 2: Yoshi's Island. Otherwise,
you'll have to write your own.
All that's left now is to work some sort of database mapping system in,
so I can start dumping carts en masse.
The NES changes that FitzRoy asked for are mostly in as well.
Also, part of the reason I haven't released a WIP ... but fuck it, I'm
not going to wait forever to post a new WIP.
I've added a skeleton driver to emulate Campus Challenge '92 and
Powerfest '94. There's no actual emulation, except for the stuff I can
glean from looking at the pictures of the board. It has a DSP-1 (so
SR/DR registers), four ROMs that map in and out, RAM, etc.
I've also added preliminary mapping to upload high scores to a website,
but obviously I need the ROMs first.
byuu says:
Basically just a project rename, with s/bsnes/higan and the new icon
from lowkee added in.
It won't compile on Windows because I forgot to update the resource.rc
file, and a path transform command isn't working on Windows.
It was really just meant as a starting point, so that v091 WIPs can flow
starting from .00 with the new name (it overshadows bsnes v091, so
publicly speaking this "shouldn't exist" and will probably be deleted
from Google Code when v092 is ready.)
byuu says:
A few issues crept up in the last release, this should take care of
them.
First, it seems that the 32-bit runtime on 64-bit versions of Windows
have 64-bit time functions; whereas true 32-bit Windows does not. This
was causing a DLL error when attempting to load bsnes v090.
Second, when there were more than 2,000 files in the same folder on
Windows, it was lagging the file browser. With OV2's help, I've fixed
that and it'll now load the list instantly.
Lastly, I've included the missing video shaders this time.
byuu says:
Most notably, this release adds Nintendo DS emulation. The Nintendo DS
module was written entirely by Cydrak, so please give him all of the
credit for it. I for one am extremely grateful to be allowed to use his
module in bsnes.
The Nintendo DS emulator's standalone name is dasShiny. You will need
the Nintendo DS firmware, which I cannot provide, in order to use it. It
also cannot (currently?) detect the save type used by NDS games. As
such, manifest.xml files must be created manually for this purpose. The
long-term plan is to create a database of save types for each game.
Also, you will need an analog input device for the touch screen for now
(joypad axes work well.)
There have also been a lot of changes from my end: a unified
manifest.xml format across all systems, major improvements to SPC7110
emulation, enhancements to RTC emulation, MSU1 enhancements, icons in
the file browser list, improvements to SNES coprocessor memory mapping,
cleanups and improvements in the libraries used to build bsnes, etc.
I've also included kaijuu (which allows launching game folders directly
with bsnes) and purify (which allows opening images that are compressed,
have copier headers, and have wrong extensions); both of which are fully
GUI-based.
This release only loads game folders, not files. Use purify to load ROM
files in bsnes.
Note that this will likely be the last release for a long time, and that
I will probably rename the emulator for the next release, due to how
many additional systems it now supports.
byuu says:
Changelog:
- fixed bsnes to let config files and system folders to be in the same
folder as the executable
- fixed RawInput driver to compile again without linear_vector
- fixed phoenix/Windows to compile again without linear_vector
- fixed old vs new name warnings on MinGW w64 (technically the warnings
were erroneous, but I worked around them anyway)
- added memory export hotkey (SNES driver only; mainly for FEoEZ
translation)
- restored WRAM randomization for v090 stability (we can discuss that
idea for v091+)
- fixed SuperFX / SA-1 "0x" prefix in the header generation (drop it
into the latest purify if you want)
- added nall/Makefile uname support for UnxUtils (was breaking
compilation with full UnxUtils in your path otherwise)
byuu says:
This update uses the latest manifest.xml mappings. It also adds a new
"Update Manifests" button that can be used to quickly regenerate all
manifests (sans Famicom games ... since I strip the iNES header, that
information is gone. We can't support Famicom manifest.xml updates until
we have a database.) This is different than the before wrapping of the
functionality on the convert games button. You can also trigger this on
the command-line with "purify synchronize"
g6672D, great catch. This was fixed, thank you.
[g6672D's bug was: "SA-1 and SuperFX are missing the "0x" for
program.rom/save.rwm size." - Ed.]
byuu says:
This implements the spec from the XML part 3 thread:
http://board.byuu.org/viewtopic.php?f=16&t=2998
It's also propagated the changes to nall and purify, so you can test
this one.
This is basically it, after years of effort I feel I finally have
a fully consistent and logical XML board format.
The only things left to change will be: modifications if emulation turns
out to be incorrect (eg we missed some MMIO mirrors, or mirrored too
much), and new additions.
And of course, I'm giving it a bit of time for good arguments against
the format.
Other than that, this release removes linear_vector and pointer_vector,
as vector is better than linear_vector and I've never used
pointer_vector.
vector also gets move(), which is a way to use move-semantics across
types. It lets you steal the underlying memory pool, effectively
destroying the vector without a copy.
This works really nicely with the move for read() functions to return
vector<uint8> instead of taking (uint8_t*&, unsigned&) parameters.
byuu says:
Changelog:
- eliminated <mmio>, <mcu> tags [they are merged to their parent nodes
now]
- added <ram name= size=> tag to EpsonRTC, SharpRTC
- added <firmware> tag to DSP-n, ST-01n, ST-018, Cx4
- interface->path(0) now returns the system folder, which can be used
for storage now
- as a fun proof-of-concept, I've simulated SNES warm power cycles by
saving and loading work RAM (same effect if you instantly swapped
carts)
- long-term, I'm not sure how I want to do this. The power menu option
makes no sense with warm RAM
- I like the idea of decaying RAM based on timestamp from last play;
and power can just force the timestamp to 0 (which will corrupt all
RAM)
- Interface::firmware is gone. The cores now load firmware inside their
boot up routines
- you now get a message on the screen if the emulator can't find
firmware, should help with "I just get a black screen" messages
I'd like to start preparing for a v090 release. I think we're almost
there now. Have to update nall/cartridge and purify to handle XML
changes first.
byuu says:
Changelog:
- SuperFX has its own ROM and RAM
- Cx4 has its own ROM
- SPC7110 has its own ProgramROM, DataROM and RAM
- OBC1 has its own RAM
- BsxCartridge has its own ROM, RAM and PSRAM
- mapping changes to accommodate the above
byuu says:
Changelog:
- NSS emulation improvement (DIP is 8-bits, not 16-bits; can be remapped
via XML now like all the other chips)
- SA-1 memory map improvements (IRAM and BWRAM can be saved; ROM, IRAM
and BWRAM are separate from Cartridge::ROM, RAM; no MCU)
- S-DD1 memory map improvements (ROM, RAM inside mapping; no MCU)
- SPC7110 memory map improvements (ROM, RAM inside mapping; no MCU; not
finished yet [have to handle 8mbit expansion somehow now)
I have tried multiple times now to get the SuperFX core to use internal
ROM and RAM (separate from Cartridge::ROM, RAM) to no avail.
Not sure what the hell is going on there. Trace logs of 430MB are not
enticing ...
So right now: SuperFX, SPC7110 and BS-X cheat by mapping stuff to
Cartridge::ROM, RAM still. They need to not do that.
[also, replace the old purify tool with the new tool by the same name.
There were some previous releases outside the WIP thread, but this is
the first one that actually works with a WIP release. -Ed.]
byuu says:
Fixes up loading issues with recent purify changes, and purify also
works on BS/ST file types now and should be a bit more crash-resistant.
byuu says:
Changelog:
- Game Boy XML uses <cartridge><board type="MBC3"/> instead of
<cartridge mapper="MBC3">
- if you run bsnes with a filename argument, it will invoke "purify
filename" and exit immediately
- this chains: purify will turn the file into a game folder, and then
invoke bsnes with the game folder name
- net result: you can drag a ZIP file onto bsnes or associate SMC
headered ROMs with bsnes and they'll just work
- new nall: unified usage of - vs _ vs nothing on filenames; fancier
lstring; fancier image (constructor for creating from filename or from
memory); etc
- new phoenix: images in ListView, GTK+ merges the check box into the
first column like the other targets do, etc
- browser list now uses icons to differentiate system folders from game
folders (the game folder icon sucks, I'm open to suggestions though,
as long as it's available on Debian Squeeze in /usr/share/icons, no
custom stuff please)
byuu says:
Changelog:
- SPC7110 $480b (and its settings in $4805-6 + $4807) is now fully
emulated
- decompressor restructured and commented accordingly
The final parts remaining for the SPC7110 core, all within the
decompression engine:
- need to detect when 15+ input bytes are read for one output byte and
simulate a crash somehow (don't have to perfectly simulate corrupted
data stream)
- need to emulate time required to decompress data (doesn't have to be
perfect, just something other than instantaneous)
- need to determine what $480c status flags d6-d0 are for, as best we
can anyway
byuu says:
Changelog:
- Cydrak merged all three SPC7110 decompression routines into one, cuts
the size in half
- fixed masking of $4803.d7 and $4813.d7
- data port out of bounds accesses emulated correctly for app SPC7110
boards
- all(?) data port $4810 reload cases now supported
- basic timing for $4805-6 seeking; reworked delay timing to work better
as well
- fixed $480c.d7 flag (1 = ready, not busy)
- AbsoluteInput returns -32768 if presentation window lacks focus and
you don't always allow input
byuu says:
Changelog:
- SPC7110 data port emulation greatly improved
- SPC7110 $480b.d1 emulated (but $4805-4806 does not work right for mode
2 decompression yet)
- MSU1 audio output will be muted when the S-DSP FLG ($6c).d6 (mute)
flag is set
- MSU1 will read filenames from manifest now (defaults to msu1.rom and
track-#.pcm if missing ... for now)
- bugfixes with MSU1 load state and track seek (and $4804 was wrapping
into $4805 to change the track#)
- Link coprocessor removed (it was meant for ST018 HLE, which never
happened)
Notes for things I forgot but need to address:
- $4813 needs to be uint7 for the set_data_offset() to not allow reading
A23 as set ever (or we can mask)
- AbsoluteInput when window doesn't have focus should return -32768, not
0
- need to support input ID lists that aren't linear (0-7), but arbitrary
(0,1,6,7 or whatever)
byuu says:
Changelog:
- Super Game Boy, BS-X Satellaview and Sufami Turbo cartridges all load
manifests that specify their file names, and they all work
- Sufami Turbo can now properly handle carts without RAM, or empty slots
entirely
- Emulator::Interface structures no longer specify any file names, ever
- exposed "capability.(cheats,states)" now. So far, this just means the
GBA doesn't show the cheat editor, since it doesn't support cheat
codes yet
- as such, state manager and cheat editor windows auto-hide (may be
a tiny bit inconvenient, but it makes not having to sync them or deal
with input when no cart is loaded easier)
- added "AbsoluteInput" type, which returns mouse coordinates from
-32767,-32767 (top left) to +32767,+32767 (bottom right) or
-32768,-32768 (offscreen)
AbsoluteInput is just something I'm toying with. Idea is to support eg
Super Scope or Justifier, or possibly some future Famicom controllers
that are absolute-indexed. The coordinates are scaled, so the bigger
your window, the more precise they are. But obviously you can't get more
precise than the emulated system, so 1x scale will behave the same
anyway. I haven't hooked it up yet, need to mess with the idea of custom
cursors via phoenix for that first. Also not sure if it will feel
smoother or not ... if you resize the window, your mouse will seem to
move slower. Still, not having to capture the mouse for SS/JS may be
nicer yet. But we'll see ... just experimenting for now.
byuu says:
Not even purify makes compatible images for this WIP.
Unless you want to figure it out yourself, I'd suggest waiting for an
updated tool before using subsequent WIPs.
Changelog:
- MSU1 initializes data port + audio track to 0
- MSU1 implements audio track error flag on $2000.d3
- manifest.xml now controls file names for cartridge folders ... mostly
Regressions:
- Super Game Boy support is broken
- Sufami Turbo support is broken
So, basically Emulator::Interface() now has:
void load(const string &manifest);
void save();
The first one will analyze the manifest, and call all the ROM + RAM
loadRequest() commands necessary to run the game.
The second one will call saveRequest() commands on all writable and
non-volatile storage (basically if it's a RAM type and has a filename
specified, it gets saved to disk.)
save() shrinks the size of Emulator::Interface() by hiding information
one is unlikely to care about. It also makes it much easier to save.
The core auto-calls this when you unload a game as well. So the only
time you ever have to worry about it is if you want to save RAM files
mid-game (in case you want to do periodic backups in case of a crash.)
[Yes, the release number is re-used. -Ed.]
byuu says:
I had some bugs in r07 that I couldn't track down, DKJM2's clock was
getting all out of sync.
So I just reverted to r05, blew away both RTCs entirely, and wrote them
cleanly from scratch (obviously looking off the old code.) A bit
extreme, but it worked.
I believe I found the error in the process, day and month were resetting
the counter to 0 instead of 1, it wasn't handling leap year, etc.
While I was at it, I fixed the day-of-week calculation. The SharpRTC
epoch is actually 1000-01-01, and not 1900-01-01.
I'm sure you guys will be really happy that if it ever becomes 1000AD
again and you're playing a ROM hack that uses the SharpRTC and relies on
its weekday value that it will show the correct day now ...
Kind of a pain to compute, but nothing compared to the seventh circle of
hell that was my IBM dBase III Julian<>Gregorian conversion functions :/
Also found a few bugs in the Epson code this way. And I moved the round
seconds actions and flag clear to +125us after flag set.
So, if you had the old r06 or r07, please delete those.
Unfortunately, this took all of my energy today, so the file names
inside manifest changes will have to be in the next WIP.
EDIT: ran a diff against old r07 and new r06.
- added if(days == 31) case twice in EpsonRTC::tick_day()
- forgot weekday = 0; in SharpRTC::load()
- need to move the cartridge+cheat objects up in sfc/Makefile again
- System::init() needs assert(interface != nullptr /* not 0 */)
byuu says:
Changelog:
- EpsonRTC emulation improved further (stop/pause blocks IRQs, verified
secondhi >= 3 triggers 30-second adjust (even on invalid BCD),
second-changed flag is mirrored to minute+hour+day+month+weekday,
improved busy timing, etc.)
- SharpRTC rewritten, works like EpsonRTC now in that it has its own
timing thread and ticks with the emulation
- won't attempt to read from an unopen file stream now (I think this is
what was crashing Sufami Turbo without SRAM?)
- added Tools -> Synchronize Time option below load/save state options.
Only appears when you play a game with an emulated RTC chip
Just realized that I used 125ms for the 30-second adjust instead of
125us, so I'll fix that in the next WIP.
Aside from that, this is as good as the emulation is going to get.
There's still a couple of absolutely psychopathic edge cases that are
just too damn difficult to simulate.
So that leaves us with data port control + decompression status
registers to investigate before SPC7110 will be finished.
byuu says:
Changelog:
- renamed SRTC -> SharpRTC
- renamed RTC4513 -> EpsonRTC (consistent with DSP naming schema)
- full emulation of invalid BCD values for EpsonRTC
- fixed EpsonRTC IRQ mask
Remaining SPC7110 tasks:
- RTC: test 30-second adjust with all values from 00-7f
- RTC: hold is supposed to tick the clock one second after being
released?
- RTC: wait times are too long (need to use >32KHz oscillation to
simulate it properly)
- Data Port: test $4818 more thoroughly (not too important)
- Decompression: test $480c more thoroughly (very important)
- Decompression: perform some tests on DMA transferring data, especially
with $4807 set
Write-offs, at least for now:
- Decompression: emulation of the crash/glitch behavior seen on the real
chip when fed invalid data
- Decompression: I can find no use of $4808
- ALU: Booth cycles for MUL/DIV (this could actually be rather important
if the game reads simpler values quickly [some shoddy games did this
with the CPU ALU])
- RTC: delay after hold release for $4841 accesses
- RTC: 125uS delay after 30-second adjust that will screw with registers
in odd ways if your read or write too soon
- RTC: psychotic behavior of reading too early returning port address
- 1
byuu says:
I split the RTC-4513 code from the SPC7110 code (and obviously in the
XML mapping as well), since they are separate chips on the FEoEZ PCB.
In this way, you can use just the RTC-4513 in homebrew now if you want.
It's a bit nicer than the Sharp RTC from Dai Kaijuu Monogatari II.
This was needed anyway, it has an internal oscillator that's not
divisible by the SNES clock used by the SPC7110; and both the RTC and
decompression code need to be running their own threads anyway.
In the process, I rewrote the way variables are stored to use named
integers rather than a block of memory. Makes the code a lot easier on
the eyes, and more importantly, will make emulating bad BCD values
a whole lot easier.
byuu says:
Changelog: (SPC7110)
- emulated $480b.d0 + $4807 deinterleave mode
- cleaned up decompression core (I'd still like to wipe out those static
variables, those are bad for save states.)
- improved emulation of data port ($481a only increments, never reads)
- improved emulation of RTC (block appropriate bits in the hour register
based on 12/24h mode select; $4840 modes != 1 all disable the chip;
added MDR; etc.)
byuu says:
Substantial improvements to SPC7110 emulation. Added all of the findings
from http://byuu.org/temp/spc7110-mmio.txt that I understood.
I also completely rewrote the RTC. We only had about ~40% of the chip
emulated before. Turns out there's cool stuff like spare RAM, calendar
disable, 12-hour mode, IRQs, IRQ masking, duty cycles, etc. So I went
ahead and emulated all of it. The upper bits on hour+ don't work as
nocash described though, not sure what doc he was reading. The Epson
RTC-4513 manual I have doesn't explain any of the registers.
The new RTC core also ticks seconds based on the emulated clock, and not
on the system clock. This is going to suck for people wanting to keep
the in-game clock synced with their computer, who also abuse fast
forward and save states. Fast forward makes the clock run faster, and
save states will jump the clock to the time it was at when you took the
save state. (It will keep track of the number of seconds between
unloading the game and loading it again, so time passes normally there.)
This is required, however, and how I'm going to rearrange all of the
RTCs for all systems. Any other method can be detected by the game, and
is thus not faithful emulation. To help with this, I'll probably make an
RTC time tool so that you can adjust the time when the emulator isn't
running, but I don't intend to bundle that into bsnes.
New state format bit-packs the RTCRAM values, and it also uses a 64-bit
timestamp. So it's 16 bytes now instead of 20 bytes. S-RTC will drop
from 16 to 12 when it's done.
The RTC busy flag timing needs to be refined with more hardware tests,
there's a slim chance of the game hanging on save at the moment.
The SPC7110 ALU delays are emulated now, too. They may not be perfectly
accurate, but they get the basic gist down.
The only hack that needs to be removed now is the decompression busy
flag. That's ... not going to be fun.
I also redid the mouse emulation. I was polling the mouse position
multiple times per latch. So it should be a bit more precise now,
I hope.
I read it regardless of latch state, dunno if that's good or not.
(r01 was not posted to the WIP thread)
byuu says:
r01 changelog:
- major improvements to SPC7110 MCU (memory controller unit)
- revised SPC7110 memory map to reflect aforementioned improvements
- added "Toggle Tracer" hotkey to target-ethos (only works for SFC so
far, I plan to use this as a lightweight laevateinn for FEoEZ)
r02 changelog:
- quick fix: SRAM is mapped to 00-3f|80-bf:6000-7fff
- quick fix: $4830.d7 is SRAM chip enable, not SRAM write enable. Reads
return 0x00 when this bit is clear
byuu says:
Changelog to v089:
- fix SA-1 Mini Yonku Shining Scorpion
- load from command-line
- remove SNES::Cartridge::NVRAM
- fix SGB save RAM
- update cheats.xml
- already mapped inputs cancel input assign
BS-X wasn't broken after all. I forgot that I ran purify on my BS-X
images, and that the BS Zelda ZIP I have has the disable ROM bit set.
Whoops.
byuu says:
Changelog:
- fixed BGnxOFS to not cache when MOSAIC is not in effect [fixes Air
Strike Patrol "Good Luck" text]
- added GameBoy::Interface::Hook for SGB bindings [SGB works again]
- do not create bsnes/ folder unless it is absolutely needed (eg you
create a save state or state manager archive)
- SuperFX works [needed to call system.init() in Interface::Interface()]
Last chance for any bug reports, at this point I pretty much consider
ethos to be finished. It's shipping without BS-X BIOS game loading
support. Sorry, I can't figure that one out.
byuu says:
Changelog:
- default placement of presentation window optimized for 1024x768
displays or larger (sorry if yours is smaller, move the window
yourself.)
- Direct3D waits until a previous Vblank ends before waiting for the
next Vblank to begin (fixes video timing analysis, and ---really---
fast computers.)
- Window::setVisible(false) clears modality, but also fixed in Browser
code as well (fixes loading images on Windows hanging)
- Browser won't consume full CPU resources (but timing analysis will,
I don't want stalls to affect the results.)
- closing settings window while analyzing stops analysis
- you can load the SGB BIOS without a game (why the hell you would want
to ...)
- escape closes the Browser window (it won't close other dialogs, it has
to be hooked up per-window)
- just for fun, joypad hat up/down moves in Browser file list, any
joypad button loads selected game [not very useful, lacks repeat, and
there aren't GUI load file open buttons]
- Super Scope and Justifier crosshairs render correctly (probably
doesn't belong in the core, but it's not something I suspect people
want to do themselves ...)
- you can load GB, SGB, GB, SGB ... without problems (not happy with how
I did this, but I don't want to add an Interface::setInterface()
function yet)
- PAL timing works as I want now (if you want 50fps on a 60hz monitor,
you must not use sync video) [needed to update the DSP frequency when
toggling video/audio sync]
- not going to save input port selection for now (lot of work), but it
will properly keep your port setting across cartridge loads at least
[just goes to controller on emulator restart]
- SFC overscan on and off both work as expected now (off centers image,
on shows entire image)
- laevateinn compiles properly now
- ethos goes to ~/.config/bsnes now that target-ui is dead [honestly,
I recommend deleting the old folder and starting over]
- Emulator::Interface callbacks converted to virtual binding structure
that GUI inherits from (simplifies binding callbacks)
- this breaks Super Game Boy for a bit, I need to rethink
system-specific bindings without direct inheritance
Timing analysis works spectacularly well on Windows, too. You won't get
your 100% perfect rate (unless maybe you leave the analysis running
overnight?), but it'll get really freaking close this way.
byuu says:
Changelog:
- added NSS DIP switch settings window (when loading NSS carts with
appropriate manifest.xml file)
- added video shader selection (they go in ~/.config/bsnes/Video
Shaders/ now)
- added driver selection
- added timing settings (not only allows video/audio settings, also has
code to dynamically compute the values for you ... and it actually
works pretty good!)
- moved "None" controller device to bottom of list (it is the least
likely to be used, after all)
- added Interface::path() to support MSU1, USART, Link
- input and hotkey mappings remember list position after assignment
- and more!
target-ethos now has all of the functionality of target-ui, and more.
Final code size for the port is 101.2KB (ethos) vs 167.6KB (ui).
A ~67% reduction in code size, yet it does even more! And you can add or
remove an entire system with only three lines of code (Makefile include,
header include, interface append.)
The only problem left is that the BS-X BIOS won't load the BS Zelda no
Densetsu file.
I can't figure out why it's not working, would appreciate any
assistance, but otherwise I'm probably just going to leave it broken for
v089, sorry.
So the show stoppers for a new release at this point are:
- fix laevateinn to compile with the new interface changes (shouldn't be
too hard, it'll still use the old, direct interface.)
- clean up Emulator::Interface as much as possible (trim down
Information, mediaRequest should use an alternate struct designed to
load firmware / slots separately)
- enhance purify to strip SNES ROM headers, and it really needs a GUI
interface
- it would be highly desirable to make a launcher that can create
a cartridge folder from an existing ROM set (* ethos will need to
accept command-line arguments for this.)
- probably need to remember which controller was selected in each port
for each system across runs
- need to fix the cursor for Super Scope / Justifier games (move from
19-bit to 32-bit colors broke it)
- have to refactor that cache.(hv)offset thing to fix ASP
byuu says:
Changelog:
- fixed Super Game Boy input
- Sufami Turbo prompts to load second slot now (you can cancel to leave
it empty)
- NEC/Hitachi/ARM DSP firmware is loaded; NEC RAM is saved
- folders are grouped properly: Sufami Turbo save RAM saves to its slot
folder, etc.
- title shows properly (SGB shows GB game name only, BS-X slotted shows
game name and optional slot name, etc.)
- above extends to saving cheats and such in their correct folders
as well
- added cheat editor and cheat database
- and hooked up the requisite SGB mode loads and can use GB cheats,
because that's kinda cool
- added state manager
- input settings, cheat editor and state manager all have erase (one)
and reset (all) buttons now
- lots of cleanup and restructuring on Emulator::Interface; *almost*
finished with it now
Remaining:
- BS-X BIOS won't show the data pack
- need XML mapping information window
- need NSS DIP switch settings window
- need video shaders
- need driver selection
- need to hide controllers that have no inputs from the input mapping
list (tempted to just remove "None" as a controller option ...)
ethos is currently 88KB of code, ui is 167KB. We're missing about 5-10KB
of code in ethos to complete it, so the rewrite nearly cut the GUI code
size in half, while support all of the same functionality and allowing
the easy addition and removal of entire systems.
byuu says:
Changelog:
- all hotkeys from target-ui now exist in target-ethos
- controller port menus now show up when you load a system (hidden if
there are no options to choose from)
- tools menu auto-hides with no game open ... not much point to it then
- since we aren't using RawInput's multi-KB/MS support anyway, input and
hotkey mappings remove KB0:: and turn MS0:: into Mouse::, makes it
a lot easier to read
- added mute audio, sync video, sync audio, mask overscan
- added video settings: saturation, gamma, luminance, overscan
horizontal, overscan vertical
- added audio settings: frequency, latency, resampler, volume
- added input settings: when focus is lost [ ] pause emulator [ ] allow
input
- pausing and autopausing works
- status messages hooked up (show a message in status bar for a few
seconds, then revert to normal status text)
- sub systems (SGB, BSX, ST) sorted below primary systems list
- added geometry settings cache
- Emulator::Interface cleanups and simplifications
- save states go into (cart foldername.extension/bsnes/state-#.bsa) now.
Idea is to put emulator-specific data in their own subfolders
Caveats / Missing:
- SGB input does not work
- Sufami Turbo second slot doesn't work yet
- BS-X BIOS won't show the data pack
- need XML mapping information window
- need cheat editor and cheat database
- need state manager
- need video shaders
- need driver selection
- need NSS DIP switch settings
- need to hide controllers that have no inputs from the input mapping
list
So for video settings, I used to have contrast/brightness/gamma.
Contrast was just a multiplier on intensity of each channel, and
brightness was an addition or subtraction against each channel. They
kind of overlapped and weren't that effective. The new setup has
saturation, gamma and luminance.
Saturation of 100% is normal. If you lower it, color information goes
away. 0% = grayscale. If you raise it, color intensity increases (and
clamps.) This is wonderful for GBA games, since they are oversaturated
to fucking death. Of course we'll want to normalize that inside the
core, so the same sat. value works on all systems, but for now it's
nice. If you raise saturation above 100%, it basically acts like
contrast used to. It's just that lowering it fades to grayscale rather
than black.
Adding doesn't really work well for brightness, it throws off the
relative distance between channels and looks like shit. So now we have
luminance, which takes over the old contrast <100% role, and just fades
the pixels toward black. Obviously, luminance > 100% would be the same
as saturation > 100%, so that isn't allowed, it caps at 100% now.
Gamma's the same old function. Gamma curve on the lower-half of the
color range.
Effects are applied in the order they appear in the GUI: color ->
saturate -> gammify -> luminate -> output.
byuu says:
Changelog:
- phoenix has added Window::setModal(bool modal = true);
- file dialog is now modal. This allows emulation cores to request data
and get it immediately before continuing the loading process
- save data is hooked up for most systems, still need to handle
subsystem slot saves (Sufami Turbo, basically.)
- toggle fullscreen key binding added (Alt+Enter for now. I think F11 is
probably better though, Enter is often mapped to game start button.)
- video scaling is in (center, scale, stretch), works the same in
windowed and fullscreen mode (stretch hides resize window option), all
in the settings menu now
- enough structure to map all saved paths for the browser and to load
BS-X slotted carts, BS-X carts, single Sufami Turbo carts
Caveats / Missing:
- Super Game Boy input doesn't work yet (due to change in callback
binding)
- doesn't load secondary Sufami Turbo slot yet
- BS-X BIOS isn't show the data pack games to load for some reason (ugh,
I hate the shit out of debugging BS-X stuff ...)
- need mute audio, sync audio+video toggle, save/load state menu and
quick keys, XML mapping information window
- need cheat editor and cheat database
- need state manager
- need to sort subsystems below main systems in load menu (basically
just see if media.slot.size() > 0)
- need video shaders (will probably leave off filters for the time being
... due to that 24/30-bit thing)
- need video adjustments (contrast etc, overscan masks)
- need audio adjustments (frequency, latency, resampler, volume,
per-system frequency)
- need driver selection and input focus policy (driver crash detection
would be nice too)
- need NSS DIP switch settings (that one will be really fun)
- need to save and load window geometry settings
- need to hook up controller selection (won't be fun), create a map to
hide controllers with no inputs to reassign
byuu says:
ethos is going to be absolutely amazing. You guys are in for a treat :D
I'm impressing the hell out of myself with how well-structured this code
is, it's allowing me to do amazing new things.
Just a small sampling of what's in store (and already implemented):
The file browser will display folders as "[ folder name ]", and
cartridge folders as "Game Name" (no extension, no /) [icons would be
nicer, but well ... phoenix.]
Folders are sorted above cartridge folders.
Cartridge folders for other systems do not show up in the list.
Not only are unique paths stored for each image type, your position in
the list is saved across runs.
Some voodoo was added to GTK+ so that all targets even scroll directly
to that item when you open the list. Load->System->Enter restarts your
last game.
That sounds really simple and obvious, but it makes an -incredible-
difference. Didn't realize it until I tried an implementation of it,
wow.
The input mapping list now lets you bind as many hotkeys as you want to
any given input.
So SFC::Port1::Joypad::B = Keyboard::Z or Joypad::Button1 ... no need to
remap everything to switch between keyboard and joypad. Either one
activates the key.
There is a separate Hotkeys tab now. This should hopefully end the
confusion about how to remap hotkeys that users experience.
Hotkeys are different, too. Instead of OR logic, they use AND logic.
So Fullscreen = Keyboard::Alt and Keyboard::Enter. Both must be pressed
to enter the key. This lets you easily implement "super" modifier keys.
The actual codebase has new features the old UI never had, and has about
~50% of the old functionality (so far, of course), yet is only ~25% as
much code.
The entire GUI no longer needs to pull in all the headers for each
emulated system. It just needs a small interface header file.
Then bind the entire system with exactly **two** lines of code.
Everything is dynamically generated for you after that.
byuu says:
Lots of work on ethos, nothing more.
Settings window is in, InputManager pulls all the inputs from all cores
and binds them to ruby inputs, main window adds menu and dynamically
maps in all systems and cartridge slots and options and such, file
browser's back in, RAM is loaded and saved, etc. It's barely usable, but
you have to set up your inputs from the config file by hand for now.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
byuu says:
(r05 and r06 were save points between large core modifications)
I would really appreciate extensive regression testing (especially
around SuperFX, Cx4, ST018, DSP-n, ST-01n, NES, GB) at this point.
The most critical core changes should be completed now. And it was an
unbelievable amount of restructuring.
Changelog:
- SuperFX core moved to Processor::GSU
- SNES::CPU core moved to Processor::R65816
- SNES::SMP core moved to Processor::SPC700
- NES::CPU core renamed to Processor::R6502
- use filestream to load RAM files from interface
- save states store SHA256 instead of CRC32 (CRC32 usage removed
entirely from bsnes)
- nes/ -> fc/ and NES -> FC
- snes/ -> sfc/ and SNES -> SFC
- SuperFamicom::MappedRAM::copy uses stream instead of data+size
- Linux port uses gcc-4.7 (still using only gcc-4.6 subset, so you can
make a gcc-4.6 symlink for now if you like.)
- all profiles and all targets compile and work properly
All eight instruction set cores have been moved to processor/ now.
Consistency's a wonderful thing.
The last remnants of NES/SNES are now limited to target-ui code; and the
nall/(system) folder names.
I'm building with gcc-4.7 on my Linux box now because the resultant
binaries are up to 20% faster (seriously) than gcc-4.6.
byuu says:
This will hopefully be a short-lived WIP, I just want to save
a breakpoint before I attempt something else.
NES, GB, GBC and GBA all load via const stream& now.
NES CPU core moved to Processor::RP2A03.
byuu says:
static vector<uint8_t> file::read(const string &filename); replaces:
static bool file::read(const string &filename, uint8_t *&data, unsigned
&size); This allows automatic deletion of the underlying data.
Added vectorstream, which is obviously a vector<uint8_t> wrapper for
a data stream. Plan is for all data accesses inside my emulation cores
to take stream objects, especially MSU1. This lets you feed the core
anything: memorystream, filestream, zipstream, gzipstream, httpstream,
etc. There will still be exceptions for link and serial, those need
actual library files on disk. But those aren't official hardware devices
anyway.
So to help with speed a bit, I'm rethinking the video rendering path.
Previous system:
- core outputs system-native samples (SNES = 19-bit LRGB, NES = 9-bit
emphasis+palette, DMG = 2-bit grayscale, etc.)
- interfaceSystem transforms samples to 30-bit via lookup table inside
the emulation core
- interfaceSystem masks off overscan areas, if enabled
- interfaceUI runs filter to produce new target buffer, if enabled
- interfaceUI transforms 30-bit video to native display depth (24-bit or
30-bit), and applies color-adjustments (gamma, etc) at the same time
New system:
- all cores now generate an internal palette, and call
Interface::videoColor(uint32_t source, uint16_t red, uint16_t green,
uint16_t blue) to get native display color post-adjusted (gamma, etc
applied already.)
- all cores output to uint32_t* buffer now (output video.palette[color]
instead of just color)
- interfaceUI runs filter to produce new target buffer, if enabled
- interfaceUI memcpy()'s buffer to the video card
videoColor() is pretty neat. source is the raw pixel (as per the
old-format, 19-bit SNES, 9-bit NES, etc), and you can create a color
from that if you really want to. Or return that value to get a buffer
just like v088 and below. red, green, blue are 16-bits per channel,
because why the hell not, right? Just lop off all the bits you don't
want. If you have more bits on your display than that, fuck you :P
The last step is extremely difficult to avoid. Video cards can and do
have pitches that differ from the width of the texture. Trying to make
the core account for this would be really awful. And even if we did
that, the emulation routine would need to write directly to a video card
RAM buffer. Some APIs require you to lock the video buffer while
writing, so this would leave the video buffer locked for a long time.
Probably not catastrophic, but still awful. And lastly, if the
emulation core tried writing directly to the display texture, software
filters would no longer be possible (unless you -really- jump through
hooks and divert to a memory buffer when a filter is enabled, but ...
fuck.)
Anyway, the point of all that work was to eliminate an extra video copy,
and the need for a really painful 30-bit to 24-bit conversion (three
shifts, three masks, three array indexes.) So this basically reverts us,
performance-wise, to where we were pre-30 bit support.
[...]
The downside to this is that we're going to need a filter for each
output depth. Since the array type is uint32_t*, and I don't intend to
support higher or lower depths, we really only need 24+30-bit versions
of each filter. Kinda shitty, but oh well.
byuu says:
Basically, the current implementation of nall/array is deprecated now.
The old method was for non-reference types, it acted like a vector for
POD types (raw memory allocation instead of placement new construction.)
And for reference types, it acted like an unordered set. Yeah, not good.
As of right now, nall/array is no longer used. The vector type usage was
replaced with actual vectors.
I've created nall/set, which now contains the specialization for
reference types.
nall/set basically acts much like std::unordered_set. No auto-sort, only
one of each type is allowed, automatic growth.
This will be the same both for reference and non-reference types ...
however, the non-reference type wasn't implemented just yet.
Future plans for nall/array are for it to be a statically allocated
block of memory, ala array<type, size>, which is meant for RAII memory
usage.
Have to work on the specifics, eg the size as a template parameter may
be problematic. I'd like to return allocated chunks of memory (eg
file::read) in this container so that I don't have to manually free the
data anymore.
I also removed nall/moduloarray, and moved that into the SNES DSP class,
since that's the only thing that uses it.
byuu says:
Changes to v088:
- OBJ mosaic Y fix
- Laevateinn compilation
- Remove filebrowser extra code
- Fix -march=native on Windows
- Fix purify mkdir
- GBA sound volume
- Add .gbb
- free firmware memory after file load
- Add GBA game to profile list (Yoshi's Island should work)
byuu says:
Changelog:
- DMA channel masks added (some are 27-bit source/target and some are
14-bit length -- hooray, varuint_t class.)
- No more state.pending flags. Instead, we set dma.pending flag when we
want a transfer (fixes GBA Video - Pokemon audio) [Cydrak]
- fixed OBJ Vmosaic [Cydrak, krom]
- OBJ cannot read <=0x13fff in BG modes 3-5 (fixes the garbled tile at
the top-left of some games)
- DMA timing should be much closer to hardware now, but probably not
perfect
- PPU frame blending uses blargg's bit-perfect, rounded method (slower,
but what can you do?)
- GBA carts really unload now
- added nall/gba/cartridge.hpp: used when there is no manifest. Scans
ROMs for library tags, and selects the first valid one found
- added EEPROM auto-detection when EEPROM size=0. Forces disk/save state
size to 8192 (otherwise states could crash between pre and post
detect.)
- detects first read after a set read address command when the size
is zero, and sets all subsequent bit-lengths to that value, prints
detected size to terminal
- added nall/nes/cartridge.hpp: moves iNES detection out of emulation
core.
Important to note: long-term goal is to remove all
nall/(system)/cartridge.hpp detections from the core and replace with
databases. All in good time.
Anyway, the GBA workarounds should work for ~98.5% of the library, if my
pre-scanning was correct (~40 games with odd tags. I reject ones without
numeric versions now, too.)
I think we're basically at a point where we can release a new version
now. Compatibility should be relatively high (at least for a first
release), and fixes are only going to affect one or two games at a time.
I'd like to start doing some major cleaning house internally (rename
NES->Famicom, SNES->SuperFamicom and such.) Would be much wiser to do
that on a .01 WIP to minimize regressions.
The main problems with a release now:
- speed is pretty bad, haven't really optimized much yet (not sure how
much we can improve it yet, this usually isn't easy)
- sound isn't -great-, but the GBA audio sucks anyway :P
- couple of known bugs (Sonic X video, etc.)
byuu says:
Changelog:
- revised NES XML tag nesting
- program.rom is going to refer to PRG+CHR combined. Split is going to
have to use different file names
- slot loader is gone (good riddance!)
- "Cartridge -> Load Game Boy Advance Cartridge ..." has become "Load ->
Game Boy Advance ..."
- Load Satellaview Slotted Cartridge is gone. If you load an SNES
cartridge and it sees <bsx><slot>, it asks if you want to load a BS-X
data pack
- If you load a Sufami Turbo cartridge with <cartridge linkable="true">,
it asks if you want to link in another Sufami Turbo cartridge
- if you try and load the same exact Sufami Turbo cartridge in both
slots, it yells at you for being an idiot :P
byuu says:
Be sure to run make install, and move required images to their appropriate system profile folders.
I still have no warnings in place if those images aren't present.
Changelog:
- OBJ mosaic should hopefully be emulated correctly now (thanks to krom
and Cydrak for testing the hardware behavior)
- emulated dummy serial registers, fixes Sonic Advance (you may still
need to specify 512KB FlashROM with an appropriate ID, I used
Panaonic's)
- GBA core exits scheduler (PPU thread) and calls
interface->videoRefresh() from main thread (not required, just nice)
- SRAM, FRAM, EEPROM and FlashROM initialized to 0xFF if it does not
exist (probably not needed, but FlashROM likes to reset to 0xFF
anyway)
- GBA manifest.xml for file-mode will now use "gamename.xml" instead of
"gamename.gba.xml"
- started renaming "NES" to "Famicom" and "SNES" to "Super Famicom" in
the GUI (may or may not change source code in the long-term)
- removed target-libsnes/
- added profile/
Profiles are the major new feature. So far we have:
Famicom.sys/{nothing (yet?)}
Super Famicom.sys/{ipl.rom}
Game Boy.sys/{boot.rom}
Game Boy Color.sys/{boot.rom}
Game Boy Advance.sys/{bios.rom[not included]}
Super Game Boy.sfc/{boot.rom,program.rom[not included]}
BS-X Satellaview.sfc/{program.rom,bsx.ram,bsx.pram}
Sufami Turbo.sfc/{program.rom}
The SGB, BSX and ST cartridges ask you to load GB, BS or ST cartridges
directly now. No slot loader for them. So the obvious downsides: you
can't quickly pick between different SGB BIOSes, but why would you want
to? Just use SGB2/JP. It's still possible, so I'll sacrifice a little
complexity for a rare case to make it a lot easier for the more common
case. ST cartridges currently won't let you load the secondary slot.
BS-X Town cart is the only useful game to load with nothing in the slot,
but only barely, since games are all seeded on flash and not on PSRAM
images. We can revisit a way to boot the BIOS directly if and when we
get the satellite uplink emulated and data can be downloaded onto the
PSRAM :P BS-X slotted cartridges still require the secondary slot.
My plan for BS-X slotted cartridges is to require a manifest.xml to
specify that it has the BS-X slot present. Otherwise, we have to load
the ROM into the SNES cartridge class, and parse its header before we
can find out if it has one. Screw that. If it's in the XML, I can tell
before loading the ROM if I need to present you with an optional slot
loading dialog. I will probably do something similar for Sufami Turbo.
Not all games even work with a secondary slot, so why ask you to load
a second slot for them? Let the XML request a second slot. A complete
Sufami Turbo ROM set will be trivial anyway. Not sure how I want to do
the sub dialog yet. We want basic file loading, but we don't want it to
look like the dialog 'didn't do anything' if it pops back open
immediately again. Maybe change the background color of the dialog to
a darker gray? Tacky, but it'd give you the visual cue without the need
for some subtle text changes.
byuu says:
Changelog:
- serialize processor.pc.data, not processor.pc
- call CPU processor.setMode() in ARM serialize
- serialize BIOS.mdr
- support SRAM > 32KB
- EEPROM, FlashROM serialize
- EEPROM lose nall/bitarray.hpp
- noise line feed after envelope
- space out PSR read
- ST018 needs byte reads fixed (don't align) [fixes HNMS2]
- flush sram/eeprom/flashrom to 0 on cartridge load
- APU/PPU dont sync back to CPU if syncing for state
- fixed APU sync problems in GB/GBC core that could possibly wreck save
states as well
Quite a lot of little problems there. I believe GBA save states are
fixed now.
byuu says:
Changelog:
- fixed FIFO[1] reset behavior (fixes audio in Sword of Mana)
- added FlashROM emulation (both sizes)
- GBA parses RAM settings from manifest.xml now
- save RAM is written to disk now
- added save state support (it's currently broken, though)
- fixed ROM/RAM access timings
- open bus should mostly work (we don't do the PC+12 stuff yet)
- emulated the undocumented memory control register (mirror IWRAM,
disable I+EWRAM, EWRAM wait state count)
- emulated keypad interrupts
- emulated STOP (freezes video, audio, DMA and timers; only breaks on
keypad IRQs)
- probably a lot more, it was a long night ...
Show stoppers, missing things, broken things, etc:
- ST018 is still completely broken
- GBC audio sequencer apparently needs work
- GBA audio FIFO buffer seems too quiet
- PHI / ROM prefetch needs to be emulated (no idea on how to do this,
especially PHI)
- SOUNDBIAS 64/128/256khz modes should output at that resolution
(really, we need to simulate PWM properly, no idea on how to do this)
- object mosaic top-left coordinates are wrong (minor, fixing will
actually make the effect look worse)
- need to emulate PPU greenswap and color palette distortion (no idea on
how do this)
- need GBA save type database (I would also LIKE to blacklist
/ patch-out trainers, but that's a discussion for another day.)
- some ARM ops advance the prefetch buffer, so you can read PC+12 in
some cases
byuu says:
(r24 was a point release during merging of changes.)
This release is almost entirely Cydrak's direct work:
- Added ARM::sequential() and some WAITCNT timings
- Added Bus::io(uint32 pc), intended for prefetch timing
- Added ARM::load() with data rotation (fixed Mother 3 graphics)
- Added ARM::store() for data mirroring
- LDM, STM, and instruction fetch still use read/write()
- ARM::vector() no longer unmasks FIQs
- Set THUMB shifter flags via bit(), consistent with ARM
- Replace shifter loops with conditional tests
My changes:
- fixed sprite clipping on left-edge of screen
- added first system folder, GBA.system
- sudo make install is now make install
- make install will create GBA.system for you in your home folder
Windows users, take data/GBA.system and put it in the same folder as
bsnes.exe, and give it a BIOS named bios.rom
Or place it in your home folder (%APPDATA%/bsnes)
Also note that this is highly experimental, I'll probably be changing
things a lot before release.
EDIT: I botched the cartridge timing change. Will fix in r26. It'll
still run a bit too fast for now, unfortunately.
byuu says:
Changelog:
- fixed cascading timers and readouts (speed hit from 320fps to 240fps;
would be 155fps with r20 timers) (fixes Spyro)
- OBJ mode 3 acts like OBJ mode 2 now (may not be correct, but nobody
has info on it)
- added background + object vertical+horizontal mosaic in all modes
(linear+affine+bitmap)
- object mosaic uses sprite (0,0) for start coordinates, not screen
(0,0) (again, nobody seems to have info on it)
- BIOS cannot be read by r(15)>=0x02000000; returns last BIOS read
instead (I can't believe games rely on this to work ... fixes SMA
Mario Bros.)
Mosaic is what concerns me the most, I've no idea if I'm doing it
correctly. But anything is probably better than nothing, so there's
that. I don't really notice the effect in Metroid Fusion. So either it's
broken, or it's really subtle.
byuu says:
Changelog:
- fixed below pixel green channel on color blending
- added semi-transparent objects [Exophase's method]
- added full support for windows (both inputs, OBJ windows, and output, with optional color effect disable)
- EEPROM uses nall::bitarray now to be friendlier to saving memory to disk
- removed incomplete mosaic support for now (too broken, untested)
- improved sprite priority. Hopefully it's right now.
Just about everything should look great now. It took 25 days, but we
finally have the BIOS rendering correctly.
In order to do OBJ windows, I had to drop my above/below buffers
entirely. I went with the nuclear option. There's separate layers for
all BGs and objects. I build the OBJ window table during object
rendering. So as a result, after rendering I go back and apply windows
(and the object window that now exists.) After that, I have to do
a painful Z-buffer select of the top two most important pixels. Since
I now know the layers, the blending enable tests are a lot nicer, at
least. But this obviously has quite a speed hit: 390fps to 325fps for
Mr. Driller 2 title screen.
TONC says that "bad" window coordinates do really insane things. GBAtek
says it's a simple y2 < y1 || y2 > 160 ? 160 : y2; x2 < x1 || x2 > 240
? 240 : x2; I like the GBAtek version more, so I went with that. I sure
hope it's right ... but my guess is the hardware does this with
a counter that wraps around or something. Also, say you have two OBJ
mode 2 sprites that overlap each other, but with different priorities.
The lower (more important) priority sprite has a clear pixel, but the
higher priority sprite has a set pixel. Do we set the "inside OBJ
window" flag to true here? Eg does the value OR, or does it hold the
most important sprite's pixel value? Cydrak suspects it's OR-based,
I concur from what I can see.
Mosaic, I am at a loss. I really need a lot more information in order to
implement it. For backgrounds, does it apply to the Vcounter of the
entire screen? Or does it apply post-scroll? Or does it even apply after
every adjust in affine/bitmap modes? I'm betting the hcounter
background mosaic starts at the leftmost edge of the screen, and repeats
previous pixels to apply the effect. Like SNES, very simple. For
sprites, the SNES didn't have this. Does the mosaic grid start at (0,0)
of the screen, or at (0,0) of each sprite? The latter will look a lot
nicer, but be a lot more complex. Is mosaic on affine objects any
different than mosaic of linear(tiled) objects?
With that out of the way, we still have to fix the CPU memory access
timing, add the rest of the CPU penalty cycles, the memory rotation
/ alignment / extend behavior needs to be fixed, the shifter desperately
needs to be moved from loops to single shift operations, and I need to
add flash memory support.
byuu says:
Timer speedup added. Boosts Mr. Driller 2 title from 170fps to 400fps.
Other games still benefit, but not as amazingly. I don't dip below
160fps ever here.
Reverted the memory speed to 2 for everything for now, to fix
Castlevania slowdown. We obviously need to add the N/S stuff before we
do that.
Added linear BG and linear OBJ mosaic-Y. Did not add mosaic-X, or any
mosaic to the affine/bitmap modes, because I'm not sure when to apply
the compensation.
Rewrote layer stuff. It now has two layers (above and below), and it
performs the four blending modes as needed.
Didn't add semi-transparent sprites because the docs are too confusing.
Added a blur filter directly into the PPU for now. This obviously
violates my interface, but F-Zero needed it for HUD display. We can
remove it when we have an official release with a blur filter available.
The filter still doesn't warp colors like a real GBA, because I don't
know the formula.
byuu says:
Changelog:
- HALT waits 16 cycles before testing IRQs instead of 1 (probably less
precise, but provides a massive speedup) [we will need to work on this
later]
- MMIO regs for CPU/PPU simplified by combining array accesses
- custom VRAM/PRAM/OAM read/write functions that emulate 8->16-bit
writes
- 16-bit PRAM data (decent speedup)
- emulated memory access speed (but don't handle non-sequential
penalties or PPU access penalties yet) [amazingly, doesn't help speed
at all]
- misc. code cleanups
For this WIP, FPS for Mr. Driller 2 went from 88fps to 172fps.
Compatibility should be unchanged. Timers are still an interesting
avenue to increase performance, but will be very tough to handle the
16MHz timers with eg a period of 65535 (overflow every single tick.) And
that's basically the last major speed boost we'll be able to get.
Blending and windowing is going to hurt performance, but it remains to
be seen how much.
byuu says:
Changelog:
- added FIFO buffer emulation (with DMA and all that jazz) [Cydrak]
- fixed timers and vcounter assign [Cydrak]
- emulated EEPROM (you have to change size manually for 14-bit mode, we
need a database badly now) [SMA runs now]
- removed OAM array, now decoding directly to struct Object {} [128] and
ObjectParam {} [32] (faster this way)
- check forceblank (still doesn't remove all garble between transitions,
though??)
- lots of other stuff
Delete your settings.cfg, or manually change frequencyGBA to 32768, or
bad things will happen (this may change back to 256KHz-4MHz later.)
15 of 16 games are fully playable now, and look and sound great.
The major missing detail right now is PPU blending support, and we
really need to optimize the hell out of the code.
byuu says:
Merged Cydrak's r17c changes:
- BG affine mode added
- BG bitmap mode added
- OBJ affine mode added
- fixed IRQ bug in THUMB mode (fixed almost every game)
- timers added (broke almost every game, whee.)
Cydrak is absolutely amazingly awesome and patient. This really wouldn't
be happening without him.
Also fixed some things from my end, including greatly improved sprite
priorities, and a much better priority sorter. Mr. Driller looks a lot
better now.
byuu says:
Emulated GBC sound plus the new extensions to it.
I am kind of surprised by how little developers utilized the GBC audio
portion.
Mr. Driller now has sound effects, and Pinobee no Daibouken has BGM.
I still have yet to emulate the GBA extra sound channels and PWM. Need
to emulate timers and DMA 2 refresh mode before I can do that.
Also, I moved both GBC and GBA audio to use length = data; if(++length
== 0); rather than length = 64 - data; if(--length == 0); so that
I could return literal values for register reads.
I thought there was a good reason we used the latter version, but
I can't hear any audible difference even in GBC games, so oh well.
Lastly, I think the pattern[++offset] in the wave channel was a bug in
the DMG/GBC only. I really, really hope it doesn't apply to the GBA,
because that will make bank selection a serious pain in the ass.
byuu says:
Fixed the r15 mask per Cydrak.
Added DMA support (immediate + Vblank + Hblank + HDMA) with IRQ support.
Basically only missing FIFO reload mode for the APU on channel 2.
Added background linear renderer (tilemap mode.)
Added really inefficient pixel priority selector, so that all BGs+OBJ
could be visible onscreen at the same time.
As a result of the above:
* Mr. Driller is our first fully playable game
* Bakunetsu Dodge Ball Fighters is also fully playable
* Pinobee no Daibouken is also fully playable
Most games (15 of 16 tested) are now showing *something*, many things
look really really good in fact.
Absolutely essential missing components:
- APU
- CPU timers and their interrupts
- DMA FIFO mode
- OBJ affine mode
- BG affine mode
- BG bitmap mode
- PPU windows (BG and OBJ)
- PPU mosaic
- PPU blending modes
- SRAM / EEPROM (going to rely on a database, not heuristics. Homebrew
will require a manifest file.)
byuu says:
Added linear (eg non-affine) sprite rendering, 4bpp and 8bpp with hflip
and vflip. Nothing else.
You can now see the Nintendo logo and Gameboy text at the end of the BIOS.
It's a start =)
byuu says:
Fixed aforementioned issues.
[From a previous post:
- mul was using r(d) instead of r(n) for accumulate.
- mull didn't remove c/v clear.
- APU register mask was broken, so SOUNDBIAS was reading out wrong.
- APU was only mapping 0x088 and not 0x089 as well.
- Halfword reads in CPU+PPU+APU were all reading from the low address
each time.]
All CPU+PPU registers are now hooked up (not that they do anything.)
SOUNDBIAS for APU was hooked up, got tired of working on it for the rest :P
I recall from the GB APU that you can't just assign values for the APU
MMIO regs. They do odd reload things as well.
Also, was using MMIO read code like this:
return (
(flaga << 0)
|| (flagb << 1)
|| (flagc << 2)
);
Logical or doesn't work so well with building flags :P
Bad habit from how I split multiple conditionals across several lines.
So ... r14 is basically what r13 should have been yesterday, delaying my
schedule by yet another day :(
byuu says:
Contains all of Cydrak's fixes, sans PPU.
On the PPU front, I've hooked up 100% of read and write registers.
All three DISPSTAT IRQs (Vblank, Hblank, Vcoincidence) are connected now
as well.
Super Mario Advance now runs without *appearing* to crash, although it's
hard to tell since I have no video or sound :P
ARM Wrestler is known to run, as is the BIOS.
byuu says:
Enough to get through the BIOS and into cartridge ROM.
I am a bit annoyed that I was basically told that the GBA PPU wasn't
that bad. Sprites are a clusterfuck, easily worse than Mode7, docs don't
even begin to explain them in enough detail.
This is going to be fun.
byuu says:
Added all of the above fixes and changes. [A lot of individual fixes for
the ARM core from Cydrak - Ed.] Also new is pipeline_decode() to fetch
data, and IME/IE/IF support, and an ARM::processor.irqline flag that
triggers IRQs at 0x18. Only Vblank is hooked up, which is what SWI 4 was
waiting on previously.
I'm sure my interrupt support is horribly broken and wrong. I was never
able to really figure out IE/IF on the Game Boy, so there's no question
this is even worse.
It's now going crazy and writing 0 to IE forever now after the Vblank
IRQ triggers.
byuu says:
Changelog:
- fixed THUMB hi immediate reads (immediate * 4)
- cartridge is properly mirrored to 32MB (eg 12mbit repeats as
lo8+hi4+hi4+lo8+hi4+hi4) [so it's a bit slower than a standard memcpy
fill]
- added ARM - load/store halfword register offset
- added ARM - load/store halfword immediate offset
- added ARM - load signed halfword/byte register offset
- added ARM - load signed halfword/byte immediate offset
- added decode() function to make opcode bit testing a lot clearer
(didn't apply it to the debugger yet)
All ARMv4M and all THUMBv4 instructions should now be implemented.
Although I'm not sure if my implementations of the new instructions are
correct.
byuu says:
Split apart necdsp: core is now in processor/upd96050 (wish I had
a better name for it, but there's no family name that is maskable.)
I would like to support the uPD7720 in the core as well, just for
completeness' sake, but I'll have to modify the decoder to drop one bit
from each mode.
So ... I'll do that later. Worst part is even if I do, I won't be able
to test it :(
Added all of Cydrak's changes. I also simplified LDMIA/STMIA and
PUSH/POP by merging the outer loops.
Probably infinitesimally slower, but less code is nicer. Maybe GCC
optimization will expand it, who knows.
byuu says:
Added some more ARM opcodes, hooked up MMIO. Bind it with mmio[(addr
000-3ff)] = this; inside CPU/PPU/APU, goes to read(), write().
Also moved the Hitachi HG51B core to processor/, and split it apart from
the snes/chip/hitachidsp implementation.
This one actually worked really well. Very clean split between MMIO/DMA
and the processor core. I may move a more generic DMA function inside
the core, not sure yet.
I still believe the HG51B169 to be a variant of the HG51BS family, but
given they're meant to be incredibly flexible microcontrollers, it's
possible that each variant gets its own instruction set.
So, who knows. We'll worry about it if we ever find another HG51B DSP,
I guess.
GBA BIOS is constantly reading from 04000300, but it never writes. If
I return prng()&1, I can get it to proceed until it hits a bad opcode
(stc opcode, which the GBA lacks a coprocessor so ... bad codepath.)
Without it, it just reads that register forever and keeps resetting the
system, or something ...
I guess we're going to have to try and get ARMwrestler working, because
the BIOS seems to need too much emulation code to do anything at all.
There was a "v087r07pre" release that I unfortunately missed.
byuu says (about v087r07pre):
Creates the bsnes/processor folder. This has a shared ARM core there
which both the GBA and ST018 inherit.
There are going to be separate decoders, and revision-specific checks,
to support the differences between v3+.
In the future, I also want to move the other processor cores here:
- GBZ80 (GB, GBC)
- 65816 (SNES CPU, SA-1)
- NEC uPD (7725, 96050, maybe 7720 just for fun)
- Hitachi HG51B169
- SuperFX
- SPC700
- 65(C?)02
Basically, the GBA/ST018 forces my hand to start coding a bit more like
a multi-system emulator.
Right now, the ST018 is broken. Hence the pre. Apparently the GBA core
being used now has some bugs. So this'll be a nice way to stress-test
the GBA core a bit before we make it to ARMwrestler.
byuu says (about v087r07):
Both snes/chip/armdsp and gba/cpu use processor/arm now.
Fixed THUMB to execute the BL prefix and suffix separately. I can now
get the GBA BIOS stuck in some kind of infinite loop. Hooray ...
I guess?
byuu says:
I believe I've implemented every THUMB instruction now, although I'm
sure there are dozens of bugs in the implementation.
It seems that the last jump taken is ending up being off-by-two. It's
probably due to not masking/adjusting PC correctly at certain points.
I don't know if any other bugs are being hit prior to this or not.
I don't implement any I/O registers yet, and the BIOS seems to be poking
at a few of them along the way, so ... who knows.
I could also be reading the log wrong, but it looks to me like there's
some PSR setting the mode flag register to 0, which is supposed to be an
undefined behavior mode ... perhaps mrs has no effect on the m/t bits,
and it just affects the i/f bits?
byuu says:
Implemented all of the ARMv3 instructions, and the bx rm instruction as
well. Already hit THUMB mode right at the start of the BIOS, sigh.
Implemented the first THUMB instruction to get that rolling. Also tried
to support the S flag to LDM/STM, but not sure how successful I was.
byuu says:
GBA stuff re-added. Only thing missing that was there before is the ARM
branch opcode.
Since we're going to be staring at it for a very long time, I added
a more interesting test video pattern.
Went from 6fps to 912fps. Amazing what being able to divide can do for
a frame rate.
byuu says:
Fixing the PPU stepping increased FPS to 250. Promising, at least, since
the ARM core is still severely overclocked.
However, I reverted back to r02. This one patches gameboy/ and GameBoy::
to gb/ and GB:: and that's it.
Sorry, I just couldn't shake this bad feeling about the code. There were
some poorly hacked-together constructs. I'd rather just redo two days of
work than feel bad about the codebase for the next several years. Going
to attempt the GBA bridge again. Third time's a charm, I suppose (there
was a pre-r03 WIP I abandoned as well.)
This isn't unprecedented, GB core took a few attempts like this as well.
byuu says:
Changelog:
- gameboy/ -> gb/
- GameBoy -> GB
- basic memory map for GBA
- enough code to execute the first BIOS instruction (b 0x68)
I have the code resetting r(15) to 0 on an exception just as a test.
Since that flushes the pipeline, that means we're basically executing "b
0x68" at 8MHz, and nothing else.
... and I am getting __6 motherfucking FPS__ at 4.4GHz on an i7.
Something is seriously, horribly, unfuckingbelievably wrong here, and
I can't figure out what it is.
My *fully complete* ARM core on the ST018 is even less efficient and
runs at 21.47MHz, and yet I get 60fps even after emulating the SNES
CPU+PPU @ 10+MHz each as well.
... I'm stuck. I can't proceed until we figure out what in the holy fuck
is going on here. So ... if anyone can help, please do. If we can't fix
this, the GBA emulation is dead.
I was able to profile on Windows, and I've included that in this WIP
under out/log.txt.
But it looks normal to me. But yeah, there's NO. FUCKING. WAY. This code
should be running this slowly.
byuu says:
I wanted to keep this a secret, but unlike other recent additions, this
will easily take several weeks, maybe months, to show anything.
Assuming I can even pull it off. Nothing technically overwhelming here,
I'm more worried about the near-impossibility of debugging the CPU.
byuu says:
Changelog:
- extended USART with quit(), readable(), writable() [both emulation and
hardware]
- quit() returns true on hardware when Ctrl+C (SIGINT) is generated
(breaks main loop); no effect under emulation yet (hard to
simulate)
- readable() returns true when data is ready to be read
(non-blocking support for read())
- writable() returns true when data can be written (non-blocking
support for write()) [always true under emulation, since we have
no buffer size limit]
byuu says:
Changelog:
- fixes ARM core unaligned memory reads (fixes HNMS2 AI, hopefully completely,
we'll see though) [Cydrak]
- ARM 40000010 writes are now connected to d2 rather than the timer
- ARM bus_readbyte() removed (would love to do the same for writebyte if
we can ... then we can drop back to bus_read + bus_write only)
- USART with IObit set acts as a regular gamepad now (don't have this
hooked up with real hardware, but oh well, it's technically possible
so there's that)
- OpenGL/GLX will use 30-bit when you have a 30-bit display; no need for
config file video.depth anymore
2012-03-10 23:37:36 +11:00
2802 changed files with 235486 additions and 249081 deletions
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.