Compare commits

...

530 Commits
v090 ... v106

Author SHA1 Message Date
Tim Allen
b55783c322 Update to v106 release.
byuu says:

Changelog (since v105tr1):

Changelog:

  - added Emulation/AutoSaveMemory/Interval setting to specify number of
    seconds between auto-saves
  - added Game Notes tool
  - added 64 new SNES PAL games to the icarus preservation database

The Games Notes tool is a new feature that gives you a blank text box to
enter notes about a game that you're playing: so you can write down
things like level select codes for games with save RAM, combo moves, or
whatever other information you'd like quick and easy access to.

This is kind of an experiment. Ideally, we'd wanna allow more
personalized information, drawings, etc. But hey, let's try it out and
see what people think.
2017-11-19 23:05:02 +11:00
Tim Allen
3ec08cebbe Add credits from Talarubi's README.TXT to the docs. 2017-11-12 17:10:37 +11:00
Tim Allen
8d7d452534 We don't need to override compiler when building.
It seems on Windows, `compiler` has defaulted to `g++` for a while now,
so we didn't need to override it in the `make` invocation.

Since v105r01, `compiler` defaults to `g++` on Linux too, so we don't
need to override it there either.
2017-11-11 22:21:31 +11:00
Tim Allen
56cb9c01a5 Hack around some code-block formatting errors.
By default, mkdocs uses "highlight.js" to apply syntax-highlighting
to code blocks. Left to its own devices, highlight.js will guess the
language being used in the code block, apply the "hljs" CSS class
(so the code block will be given a nice border, a sensible font-size,
etc.) and apply the appropriate formatting markup. If it guesses wrongly,
you can give a language hint on the opening line of the block.

If you use a language that highlight.js does not recognise, or
the special name "nohighlight", highlight.js will leave the block
alone. Unfortunately, in mkdocs' default theme, that means it will be
formatted like *inline* code, with a border and background that wraps
behind each line of the block.

In order to make a code-block that looks like a code-block, you have
to carefully pick a language that highlight.js has heard of, but whose
syntax is sufficiently different from whatever's in the block that no
unwanted highlighting will occur.

This seems to be fixed in the readthedocs theme that comes with mkdocs
0.16.1, but ReadTheDocs doesn't actually seem to be using that version. :/
2017-11-11 18:22:08 +11:00
Tim Allen
e9d2d56df9 Update to v105r1 release.
byuu says:

Changelog:

  - higan: readded support for soft-reset to Famicom, Super Famicom,
    Mega Drive cores (work in progress)
      - handhelds lack soft reset obviously
      - the PC Engine also lacks a physical reset button
      - the Master System's reset button acts like a gamepad button, so
        can't show up in the menu
  - Mega Drive: power cycle wasn't initializing CPU (M68K) or APU (Z80)
    RAM
  - Super Famicom: fix SPC700 opcode 0x3b regression; fixes Majuu Ou
    [Jonas Quinn]
  - Super Famicom: fix SharpRTC save regression; fixes Dai Kaijuu
    Monogatari II's real-time clock [Talarubi]
  - Super Famicom: fix EpsonRTC save regression; fixes Tengai Makyou
    Zero's real-time clock [Talarubi]
  - Super Famicom: removed `*::init()` functions, as they were never used
  - Super Famicom: removed all but two `*::load()` functions, as they
    were not used
  - higan: added option to auto-save backup RAM every five seconds
    (enabled by default)
      - this is in case the emulator crashes, or there's a power outage;
        turn it off under advanced settings if you want
  - libco: updated license from public domain to ISC, for consistency
    with nall, ruby, hiro
  - nall: Linux compiler defaults to g++; override with g++-version if
    g++ is <= 4.8
      - FreeBSD compiler default is going to remain g++49 until my dev
        box OS ships with g++ >= 4.9

Errata: I have weird RAM initialization constants, thanks to hex_usr
and onethirdxcubed for both finding this:
http://wiki.nesdev.com/w/index.php?title=CPU_power_up_state&diff=11711&oldid=11184

I'll remove this in the next WIP.
2017-11-07 09:05:54 +11:00
Tim Allen
6d487925d0 Build documentation in a UTF-8 locale. 2017-10-27 17:16:29 +11:00
Tim Allen
7aad868adb Fix copy/pasto for libretro build. 2017-10-27 17:04:46 +11:00
Tim Allen
dd06dd0fed Include the licence and documentation with each WIP build. 2017-10-27 16:58:41 +11:00
Tim Allen
3c26736d4b Fix mojibake in README.txt 2017-10-27 14:45:52 +11:00
Talarubi
f53cb33eb9 Add icarus to LICENSE.txt 2017-10-25 18:22:10 -04:00
Talarubi
426de198b7 Initial attempt at a README.txt for release archives 2017-10-25 18:02:54 -04:00
Talarubi
9e06857e4d Update version and license
Added LICENSE.txt and GPLv3.txt. Also updated libco documentation.

After discussion with byuu, libco gets a more specific ISC license
to match nall, ruby and hiro. higan, as clarified in LICENSE.txt,
continues to be GPL version 3 only (no "or later" clause).
2017-10-24 23:37:22 -04:00
Talarubi
e28aa32324 Fixed: Typo in SPC700 instruction table
https://board.byuu.org/viewtopic.php?p=48325#p48325

Per Screwtape and Jonas Quinn, this fixes 魔獣王 (Majuu Ou)
hanging at the title.
2017-10-24 23:37:21 -04:00
Talarubi
a9571ff5b8 Fixed: Restore SPC7110 and S-RTC time properly
Loading and unloading the RTC is a little odd, since it's normally
always powered in the first place. What we want, and what the load()
functions really do, is to resync using the saved timestamps or
reset it. unload() proper doesn't do anything.

However, an interface refactoring after v098 reordered the above
operations, and this (along with a typo, shh!) was causing the already
synced time to be cleared.

I've added checks so that whenever rtc.ram can't be found, load() gets
called with empty arguments to initialise the defaults (like putting
in a fresh battery).
2017-10-24 23:16:22 -04:00
Tim Allen
3d21e9afe0 Mention that higan does not yet emulate the timing of the SGB2. 2017-10-23 13:24:14 +11:00
Tim Allen
1cb37fc974 Fix another stupid typo. :( 2017-10-08 18:51:47 +11:00
Tim Allen
f92fc276af Fix typo in libretro path. 2017-10-08 18:44:25 +11:00
Tim Allen
18afd41a80 Using "--no-commit" didn't work, let's try something else. 2017-10-08 18:17:48 +11:00
Tim Allen
3507c522f4 Don't commit the libretro test merge.
git requires a name and email to be configured before it can commit a change. We're not going to push the merge result anywhere, so we don't strictly speaking need it to commit.
2017-10-08 17:54:49 +11:00
Tim Allen
7a4bfca106 Fix git merge command 2017-10-08 17:29:14 +11:00
Tim Allen
0db886f91d Building the libretro core doesn't need UI libraries, but needs git.
The git dependency is only because we want to do some merge shenanigans for testing purposes.
2017-10-08 14:33:16 +11:00
Tim Allen
904d11a3f7 Next release, we need to update the libretro branch too. 2017-10-08 14:33:11 +11:00
Tim Allen
214b921388 Test that the libretro core builds with each change to higan. 2017-10-08 14:25:42 +11:00
Tim Allen
b8b5aef165 Update the release instructions after their first use. 2017-10-07 20:00:17 +11:00
Tim Allen
f8e71b50d0 Update to v105 release.
byuu says:

This release provides several major improvements to Mega Drive emulation
which enhances compatibility a good deal. It also includes important
Super Famicom mosaic emulation improvements, plus a much-needed SuperFX
save state issue fix.

Changelog (since v104):

  - higan: many improvements to Emulator::Interface to support
    forks/frontends
  - higan: refreshed program icon
  - icarus: new program icon
  - Game Boy Advance: slight emulation speedup over v104
  - Game Boy Advance: synchronize APU FIFO updates better
  - Mega Drive: added automatic region detection [hex_usr]
  - Mega Drive: support 8-bit SRAM
  - Game Boy Advance: fixed bug when changing to THUMB mode via MSR
    [MerryMage]
  - Master System: fix bug in backdrop color and background 0 priority
    [hex_usr]
  - Mega Drive: backgrounds always update output priority bit [Cydrak]
  - Mega Drive: emulated interlaced video output
  - Mega Drive: emulated shadow/highlight mode [Cydrak]
  - Super Famicom: auto joypad polling clears the shift register when
    starting
  - Super Famicom: added new low-entropy RAM initialization mode to more
    closely match hardware
  - Game Boy Advance: rumble will now time out after being left on for
    500ms
  - ruby: improved rumble support in udev input driver [ma_rysia]
  - M68K: `move.b (a7)[+/-]` adjust a7 by two
  - M68K: illegal/lineA/lineF opcodes do not modify the stack register
  - Mega Drive: emulate VIP status bit
  - uPD7725: improved emulation of OV1/S1 flags [byuu, AWJ, Lord
    Nightmare]
  - uPD7725: improved handling of DP, RP updates [Jonas Quinn]
  - Super Famicom: improved emulation of mosaic effects in hires,
    interlace, and offset-per-tile modes [byuu, Cydrak]
  - ruby: improved Direct3D exclusive mode monitor selection [Cydrak]
  - Super Famicom: fixed save state bug affecting SuperFX games
    [Cydrak]
  - Mega Drive: added workaround for Clang compiler bug; allowing this
    core to work on macOS [Cydrak, Sintendo]
  - higan: hotkeys now also trigger when the main window lacks focus yet
    higan is set to allow input on focus loss
  - higan: fixed an edge case where `int16_t` ↔ `double` audio
    conversion could possibly result in overflows
  - higan: fixed a crash on macOS when choosing quit from the
    application menu [ncbncb]

Changelog (since the previous WIP):

  - higan: restored `make console=true`
  - tomoko: if you allow input when main window focus is lost, hotkeys
    can now be triggered without focus as well
  - hiro/cocoa: fix crash on exit from menu [ncbncb]
  - ruby: smarter `double` → `int16_t` conversion to prevent
    underflow/overflow
2017-10-07 19:49:07 +11:00
Tim Allen
9a13863adb Update to v104r17 release.
byuu says:

Changelog:

  - processor/m68k: fix error in disassembler [Sintendo]
  - processor/m68k: work around Clang compiler bug [Cydrak, Sintendo]

This is one of the shortest WIPs I've done, but I'm trying not to change
anything before v105.
2017-10-05 17:13:03 +11:00
Tim Allen
5dbaec85a7 Update to v104r16 release.
byuu says:

Changelog:

  - processor/upd96050: always potentially update S1 on ALU ops, sans NOP
      - theory by Lord Nightmare. I'm impartial on this one, but may as
        well match his design
  - sfc: fixed save state hang [reported by FitzRoy; fixed by Cydrak]
  - icarus: do not save settings.bml file when in library mode
2017-10-02 19:04:28 +11:00
Tim Allen
92d86aef16 Remind myself what I need to do for a higan release. 2017-09-29 21:27:55 +10:00
Tim Allen
6524a7181d Update to v104r15 release.
byuu says:

Changelog:

  - processor/huc6280,mos6502,wdc65816: replaced abbreviated opcode
    names with descriptive names
  - nall: replaced `PLATFORM_MACOSX` define with `PLATFORM_MACOS`
  - icarus: added `Icarus::missing() -> string_vector` to list missing
    appended firmware files by name
  - ruby, hiro: fix macosx→macos references

The processor instruction renaming was really about consistency with the
other processor cores. I may still need to do this for one or two more
processors.

The icarus change should allow a future release of the icarus
application to import games with external SNES coprocessor firmware once
again. It will also allow this to be possible when used in library mode.
2017-09-29 20:36:35 +10:00
Tim Allen
fbc58c70ae Update to v104r14 release.
byuu says:

Changelog:

  - Emulator::Interface::videoResolution() -\> VideoResolution renamed
    to videoInformation() -\> VideoInformation
  - added double VideoInformation::refreshRate
  - higan: added `binary := (application|library)` — set this to
    `library` to produce a dynamic link library
  - higan: removed `-march=native` for macOS application builds; and for
    all library builds
  - higan: removed `console` build flag; uncomment  `link += -mwindows`
    instead
  - nall/GNUmakefile: `macosx` platform renamed `macos`
      - still need to do this for nall/intrinsics.hpp
  - Game Gear: return region=NTSC as the only option, so that the system
    frequency is always set correctly
  - hiro/cocoa: fixed typo [Sintendo]
  - hiro/Windows: removed GetDpiForMonitor, as it's Windows 8+ only; DPI
    is no longer per-monitor aware
  - icarus: core Icarus class now has virtual functions for
    directory::create, <file::exists>, <file::copy>, <file::write>
  - icarus: Sufami Turbo can import save RAM files now
  - icarus: setting `ICARUS_LIBRARY` define will compile icarus without
    main(), GUI components
  - ruby/video/Direct3D: choose the current monitor instead of top-left
    monitor for fullscreen exclusive [Cydrak]
  - ruby/video/Direct3D: do not set `WS_EX_TOPMOST` on fullscreen
    exclusive window [Cydrak]
      - this isn't necessary for exclusive mode, and it just makes
        getting out of the application more difficult
2017-09-24 11:01:48 +10:00
Tim Allen
c63e6f2953 Apparently icarus requires dashes in PF94 game ROM names. 2017-09-12 10:45:15 +10:00
Tim Allen
b899ee9a9c Document the command-line interface for games with cartridge slots. 2017-09-09 18:32:11 +10:00
Tim Allen
28fc75737e Add directions for manually importing PowerFest '94.
Special thanks to hex_usr for figuring out the details:
https://board.byuu.org/viewtopic.php?p=46289#p46289
2017-09-09 16:50:33 +10:00
Tim Allen
1ff315838e Update to v104r13 release.
byuu says:

Changelog:

  - nall/GNUmakefile: build=release changed to -O2, build=optimize is
    now -O3
  - hiro: added Monitor::dpi(uint index) → Position [returns logical
    DPI for x, y]
      - Position is a bad name, but dpi(monitor).(x,y)() make more sense
        than .(width,height)()
  - hiro: Position, Size, Geometry, Font changed from using signed int
    to float
  - hiro: Alignment changed from using double to float
  - hiro: added skeleton (unused) Application::scale(), setScale()
    functions

Errata:

  - hiro/cocoa's Monitor::dpi() is untested. Probably will cause issues
    with macOS' automatic scaling.
  - hiro/gtk lacks a way to get both per-monitor and per-axis (x,y) DPI
    scaling
  - hiro/qt lacks a way to get per-monitor DPI scaling (Qt 5.x has this,
    but I still use Qt 4.x)
      - and just to get global DPI, hiro/qt's DPI retrieval has to use
        undocumented functions ... fun

The goal with this WIP was basically to prepare hiro for potential
automatic scaling. It'll be extremely difficult, but I'm convinced that
it must be possible if macOS can do it.

By moving from signed integers to floats for coordinates, we can now
scale and unscale without losing precision. That of course isn't the
hard part, though. The hard part is where and how to do the scaling. In
the ideal application, hiro/core and hiro/extension will handle 100% of
this, and the per-platform hiro/(cocoa,gtk,qt,windows) will not be aware
of what's going on, but ... to even make that possible, things will need
to change in every per-platform core, eg the per-platform code will have
to call a core function to change geometry, which will know about the
scaling and unscale the values back down again.

Gonna be a lot of work, but ... it's a start.
2017-09-08 16:06:21 +10:00
Tim Allen
2e4cd09800 Document the new Credits menu item. 2017-09-06 12:41:32 +10:00
Tim Allen
4fb8ce2821 Update to v104r12 release.
byuu says:

Changelog:

  - higan: URLs updated to HTTPS
  - sfc/ppu/background: use hires/interlace/mosaic-adjusted X/Y
    coordinates for offset-per-tile mode
  - sfc/ppu/background: hires mosaic seems to advance pixel counter on
    subscreen pixels
  - tomoko: added “Help→Credits” menu option (currently the page does
    not exist; should before v105)
  - tomoko: reduced volume slider from {0% - 500%} to {0% - 200%}.
    Distortion is too intense above 200%.
      - technically, I've encountered distortion at 200% as well in
        Prince of Persia for the SNES
  - nall/run/invoke: use program path for working directory
      - allows you to choose “Library→Import ROMs” from a different
        directory on the command-line

I don't know how to assign credit for the mosaic stuff. It's been a
work-in-progress with me, Cydrak, and hex_usr.

The current design should be correct, but very unpleasant. The code
desperately needs to be refactored, but my recent attempt at doing so
ended in spectacular failure.
2017-09-06 12:38:00 +10:00
Tim Allen
3dce3aa3c8 Update to v104r11 release.
byuu says:

Changelog:

  - sfc/ppu/background: minor code cleanup and simplification
  - sfc/ppu/background: $2106 MOSAIC register was implemented
    incorrectly
  - sfc/ppu/background: fixed mosaic effects in hires mode (temporary
    fix)
  - sfc/ppu/background: fixed mosaic effects in interlace mode [Cydrak]

Errata:

  - sfc/ppu/background/background.cpp:48: should be
    `if(!mosaic.enable) {`

Turns out there is only one mosaic size, and the other four bits are
per-BG mosaic enable. This matters a lot for hires/interlace, as
mosaicSize=0 (2x2) is not the same thing as mosaicEnable=false (1x1).

Although I've now implemented this, I really don't like how my mosaic
implementation works right now. I tried to redesign the entire system,
and completely failed. So I started over from v104r10 again and instead
went with a more evolutionary improvement for now. I'll keep trying.

Also, the combination of mosaic + offset-per-tile is still sketchy, as
is mode 6 offset-per-tile. I'll get to those in the future as well.
2017-09-05 10:56:52 +10:00
Tim Allen
28060d3a69 Update to v104r10 release.
byuu says:

Changelog:

  - processor/upd96050: per manual errata note, SGN always uses SA1;
    never SB1 [fixes v104r09 regression]
  - processor/upd96050: new OV1/S1 calculation that doesn't require OV0
    history buffer [AWJ]
  - processor/upd96050: do not update DP in OP if DST=4 [Jonas Quinn]
  - processor/upd96050: do not update RP in OP if DST=5 [Jonas Quinn]
  - resource: recreated higan+icarus icons, higan logo as 32-bit PNGs

So higan v104r08 and earlier were 930KiB for the source tarball. After
creating new higan and icarus icons, the size jumped to 1090KiB, which
was insane for only adding one additional icon.

After digging into why, I discovered that ImageMagick defaults to
64-bit!! (16-bits per channel) PNG images when converting from SVG.
You know, for all those 16-bit per channel monitors that don't exist.
Sigh. Amazingly, nobody ever noticed this.

The logo went from 78.8KiB to 24.5KiB, which in turn also means the
generated resource.cpp shrank dramatically.

The old higan icon was 32-bit PNG, because it was created before I
installed FreeBSD and switched to ImageMagick. But the new higan icon,
plus the new icarus icon, were both 64-bit as well. And they're now
32-bit.

So the new tarball size, thanks to the logo optimization, dropped to
830KiB.

Cydrak had some really interesting results in converting higan's
resources to 8-bit palletized PNGs with the tRNS extension for alpha
transparency. It reduces the file sizes even more without much visual
fidelity loss. Eg the higan logo uses 778 colors currently, and 256
represents nearly all of it very well to the human eye. It's based off
of only two colors, the rest are all anti-aliasing. Unfortunately,
nall/image doesn't support this yet, and I didn't want to flatten the
higan logo to not have transparency, in case I ever want to change the
about screen background color.
2017-09-01 21:21:06 +10:00
Tim Allen
9dcbd12159 Don't let gitlab cache .o files.
higan's makefiles don't always model dependencies properly, so caching
.o files just invites stale .o files.
2017-09-01 16:05:14 +10:00
Tim Allen
5352c5ab27 Update to v104r09 release.
byuu says:

Changelog:

  - processor/upd96050: SGN should select between (A,B).S1 flag using
    ASL opcode bit
  - processor/upd96050: use a temporary to cache new S1, then compute
    OV1 using old S1, then assign new S1
  - processor/upd96050: add SR.(siack,soack) and connect to relevant
    jump instructions (serial not implemented)
  - processor/upd96050: initialize SR properly in power() [r08
    regression]
  - icarus: improve Makefile rules [Screwtape]
  - higan: new program icon
  - icarus: new program icon
2017-08-31 23:58:54 +10:00
Tim Allen
b47488ab09 As of higan v104r07, higan no longer imports separate firmware files.
icarus now requires games and firmware to be combined into a single file,
so we must describe how to achieve that.
2017-08-31 17:05:47 +10:00
Tim Allen
96c45420d1 Use the en_AU spelling of "synchronise".
I've generally tried to keep to en_AU spellings rather than en_US spellings
for the sake of my own sanity, but it's difficult when documenting a program
that exclusively uses en_US spellings since I'm quoting the text on
menu-items and in config files.
2017-08-31 15:50:34 +10:00
Tim Allen
fd9194e4c2 On Linux, install higan before icarus.
Strictly speaking, there's no dependency between them, but higan's
install target happens to create the destination bin directory if it
doesn't already exist, so we want to run that install script first.
2017-08-31 15:34:57 +10:00
Tim Allen
593d32b885 Many typos and grammar fixes from dan1982 on the higan forums. 2017-08-31 15:19:43 +10:00
Tim Allen
fb31df6eb8 Windows changed their not-found error message apparently. 2017-08-31 15:12:36 +10:00
Tim Allen
a81802422f No-Intro changed their naming conventions.
Sufami Turbo games are in a separate set now, they don't have the "(ST)"
marker in the filename.

Satellaview memory paks may have "(BS)", "(BS SoundLink)" or "(BSROM)"
for various reasons that aren't important to higan, so let's just not mention
them at all.
2017-08-31 14:57:24 +10:00
Tim Allen
a1eaec493a Italicise more game names.
Also, it turns out the canonical spelling is "Mega Man", not "Megaman".
2017-08-31 14:56:46 +10:00
Tim Allen
2956930d1c Standardise on "SHA256". 2017-08-31 14:51:48 +10:00
Tim Allen
c557d68ec4 Spell-check the documentation.
Changes include a few typos, a few capitalization changes, and a lot of hyphenation of compound words that were not as widely used as I thought.
2017-08-31 14:48:52 +10:00
Tim Allen
6b8c003ff8 Sufami Turbo carts are not memory paks! 2017-08-30 14:12:44 +10:00
Tim Allen
25bda4f159 Update to v104r08 release.
byuu says:

Changelog:

  - processor/upd96050: code cleanups
  - processor/upd96050: improved emulation of S1/OV1 flags [thanks to
    Cydrak, Lord Nightmare]
  - tomoko/settings/audio: reduced the size of the frequency/latency
    combo boxes to show longer device driver names

Errata: I need to clear regs.sr in uPD96050::power()

Note: the S1/OV1 emulation is likely not 100% correct yet, but it's a
step in the right direction. No SNES games actually use S1/OV1, so this
shouldn't result in any issues, I'd just like to have this part of the
chip emulated correctly.
2017-08-30 13:44:51 +10:00
Tim Allen
d8a8f06c35 Finally finished reviewing and polishing all the text! 2017-08-29 17:22:11 +10:00
Tim Allen
fab830f84b byuu mentioned Ballz 3D requires DSP1B. 2017-08-29 13:50:52 +10:00
Tim Allen
f669c424c4 higan v104r07 changes the expected filenames for the SGB boot ROM. 2017-08-29 13:49:44 +10:00
Tim Allen
9c25f128f9 Update to v104r07 release.
byuu says:

Changelog:

  - md/vdp: added VIP bit to status register; fixes Cliffhanger
  - processor/m68k/disassembler: added modes 7 and 8 to LEA address
    disassembly
  - processor/m68k/disassembler: enhanced ILLEGAL to display LINEA/LINEF
    $xxx variants
  - processor/m68k: ILLEGAL/LINEA/LINEF do not modify the stack
    register; fixes Caeser no Yabou II
  - icarus/sfc: request sgb1.boot.rom and sgb2.boot.rom separately; as
    they are different
  - icarus/sfc: removed support for external firmware when loading ROM
    images

The hack to run Mega Drive Ballz 3D isn't in place, as I don't know if
it's correct, and the graphics were corrupted anyway.

The SGB boot ROM change is going to require updating the icarus database
as well. I will add that in when I start dumping more cartridges here
soon.

Finally ... I explained this already, but I'll do so here as well: I
removed icarus' support for loading SNES coprocessor firmware games with
external firmware files (eg dsp1.program.rom + dsp1.data.rom in the same
path as supermariokart.sfc, for example.)

I realize most are going to see this as an antagonizing/stubborn move
given the recent No-Intro discussion, and I won't deny that said thread
is why this came to the forefront of my mind. But on my word, I honestly
believe this was an ineffective solution for many reasons not related to
our disagreements:

 1. No-Intro distributes SNES coprocessor firmware as a merged file, eg
    "DSP1 (World).zip/DSP1 (World).bin" -- icarus can't possibly know
    about every ROM distribution set's naming conventions for firmware.
    (Right now, it appears GoodSNES and NSRT are mostly dead; but there
    may be more DATs in the future -- including my own.)
 2. Even if the user obtains the firmware and tries to rename it, it
    won't work: icarus parses manifests generated by the heuristics
    module and sees two ROM files: dsp1.program.rom and dsp1.data.rom.
    icarus cannot identify a file named dsp1.rom as containing both
    of these sub-files. Users are going to have to know how to split
    files, which there is no way to do on stock Windows. Merging files,
    however, can be done via `copy /b supermariokart.sfc+dsp1.rom
    supermariokartdsp.sfc`; - and dsp1.rom can be named whatever now.
    I am not saying this will be easy for the average user, but it's
    easier than splitting files.
 3. Separate firmware breaks icarus' database lookup. If you have
    pilotwings.sfc but without firmware, icarus will not find a match
    for it in the database lookup phase. It will then fall back on
    heuristics. The heuristics will pick DSP1B for compatibility with
    Ballz 3D which requires it. And so it will try to pull in the
    wrong firmware, and the game's intro will not work correctly.
    Furthermore, the database information will be unavailable, resulting
    in inaccurate mirroring.

So for these reasons, I have removed said support. You must now load
SNES coprocessor games into higan in one of two ways: 1) game paks with
split files; or 2) SFC images with merged firmware.

If and when No-Intro deploys a method I can actually use, I give you all
my word I will give it a fair shot and if it's reasonable, I'll support
it in icarus.
2017-08-28 22:46:14 +10:00
Tim Allen
c273297577 More cleanups. 2017-08-26 15:17:15 +10:00
Tim Allen
afa8ea61c5 Update to v104r06 release.
byuu says:

Changelog:

  - gba,ws: removed Thread::step() override¹
  - processor/m68k: move.b (a7)+ and move.b (a7)- adjust a7 by two, not
    by one²
  - tomoko: created new initialize(Video,Audio,Input)Driver() functions³
  - ruby/audio: split Audio::information into
    Audio::available(Devices,Frequencies,Latencies,Channels)³
  - ws: added Model::(WonderSwan,WonderSwanColor,SwanCrystal)()
    functions for consistency with other cores

¹: this should hopefully fix GBA Pokemon Pinball. Thanks to
SuperMikeMan for pointing out the underlying cause.

²: this fixes A Ressaha de Ikou, Mega Bomberman, and probably more
games.

³: this is the big change: so there was a problem with WASAPI where
you might change your device under the audio settings panel. And your
new device may not support the frequency that your old device used. This
would end up not updating the frequency, and the pitch would be
distorted.

The old Audio::information() couldn't tell you what frequencies,
latencies, or channels were available for all devices simultaneously, so
I had to split them up. The new initializeAudioDriver() function
validates you have a correct driver, or it defaults to none. Then it
validates a correct device name, or it defaults to the first entry in
the list. Then it validates a correct frequency, or defaults to the
first in the list. Then finally it validates a correct latency, or
defaults to the first in the list.

In this way ... we have a clear path now with no API changes required to
select default devices, frequencies, latencies, channel counts: they
need to be the first items in their respective lists.

So, what we need to do now is go through and for every audio driver that
enumerates devices, we need to make sure the default device gets added
to the top of the list. I'm ... not really sure how to do this with most
drivers, so this is definitely going to take some time.

Also, when you change a device, initializeAudioDriver() is called again,
so if it's a bad device, it will disable the audio driver instead of
continuing to send samples at it and hoping that the driver blocked
those API calls when it failed to initialize properly.

Now then ... since it was a decently-sized API change, it's possible
I've broken compilation of the Linux drivers, so please report any
compilation errors so that I can fix them.
2017-08-26 11:15:49 +10:00
Tim Allen
ea3c2dafda More cleanups. 2017-08-25 18:40:20 +10:00
Tim Allen
b38a657192 Update to v104r05 release.
byuu says:

Changelog:

  - emulator/random: new array function with more realistic RAM
    initializations
  - emulator/random: both low and high entropy register initializations
    now use PCG
  - gba/player: rumble will time out and disable after being left on for
    500ms; fixes Pokemon Pinball issue
  - ruby/input/udev: fixed rumble effects [ma\_rysia]
  - sfc/system: default to low-entropy randomization of memory

The low-entropy memory randomization is modeled after one of my SHVC
2/1/3 systems. It generates striped patterns in memory, using random
inputs (biased to 0x00/0xff), and has a random chance of corrupting 1-2
bits of random values in the pool of memory (to prevent easy emulator
detection and to match observed results on hardware.)

The reasoning for using PCG on register initializations, is that I don't
believe they're going to have repeating patterns like RAM does anyway.
And register initializations are way more vital.

I want to have the new low-entropy RAM mode tested, so at least for the
next few WIPs, I've set the SNES randomization over to low-entropy.
We'll have to have a long discussion and decide whether we want official
releases to use high-entropy or low-entropy.

Also, I figured out the cause of the Prince of Persia distortion ... I
had the volume under the audio settings tab set to 200%. I didn't
realize there were SNES games that clipped so easily, given how
incredibly weak SNES audio is compared to every other sound source on my
PC. So with no entropy or low-entropy, indeed the game now sounds just
fine.

I can't actually test the udev fixes, so I guess we'll see how that goes
for Screwtape and ma\_rysia.
2017-08-25 00:24:34 +10:00
Tim Allen
a8f2bfc533 Another doc cleanup. 2017-08-24 22:13:44 +10:00
Tim Allen
d060904b8d Revert an accidental ruby change.
I made a change to ruby/input/joypad/udev.cpp while diagnosing a problem
with higan's rumble behaviour on Linux, and accidentally committed it
in 15b3dc8b0b as part of a documentation
change.
2017-08-24 22:09:49 +10:00
Tim Allen
56293c585b Clean up the higan Settings docs. 2017-08-24 22:09:03 +10:00
Tim Allen
15b3dc8b0b More cleanups and revision. 2017-08-24 18:34:37 +10:00
Tim Allen
d621136d69 Update to v104r04 release.
byuu says:

Changelog:

  - higan/emulator: added new Random class with three entropy settings:
    none, low, and high
  - md/vdp: corrected Vcounter readout in interlace mode [MoD]
  - sfc: updated core to use the new Random class; defaults to high
    entropy

No entropy essentially returns 0, unless the random.bias(n) function is
called, in which case, it returns n. In this case, n is meant to be the
"logical/ideal" default value that maximizes compatibility with games.

Low entropy is a very simple entropy modeled after RAM initialization
striping patterns (eg 32 0x00s, followed by 32 0xFFs, repeating
throughout.) It doesn't "glitch" like real hardware does on rare
occasions (parts of the pattern being broken from time to time.) It also
only really returns 0 or ~0. So the entropy is indeed extremely low, and
not very useful at all for detecting bugs. Over time, we can try to
improve this, of course.

High entropy is PCG. This replaces the older, lower-entropy and more
predictable, LFSR. PCG should be more than enough for emulator
randomness, while still being quite fast.

Unfortunately, the bad news ... both no entropy and low entropy fix the
Konami logo popping sound in Prince of Persia, but all three entropy
settings still cause the distortion in-game, especially evident at the
title screen. So ... this may be a more serious bug than first
suspected.
2017-08-24 12:45:24 +10:00
Tim Allen
c0934b826c Mention shaders in our install instructions.
If we're going to lug them around, we might as well use them.
2017-08-23 20:55:09 +10:00
Tim Allen
86f3a8e670 Install shaders somewhere that higan will find them. 2017-08-23 20:46:24 +10:00
Tim Allen
b308661fa3 General tidying and tightening of docs. 2017-08-23 17:48:24 +10:00
Tim Allen
a4483339e5 Rename higan-config.md to higan-settings.md
The file was originally named `higan-config.md` because the dialog box
it described was called "higan Configuration", which was because the
menu-item to open it was in a menu called "Settings" and it would have
been weird to have a "Settings" item in a "Settings" menu.

Now there are individual menu-items for each tab in the Settings dialog,
none of which are named Settings, so the dialog has been renamed back to
"Settings", and the filename should match.
2017-08-23 17:05:33 +10:00
Tim Allen
1c13f0ad42 Hint more strongly that Linux distros may already have higan packages 2017-08-23 16:57:17 +10:00
Tim Allen
d416bb7231 *facepalm* 2017-08-23 16:56:51 +10:00
Tim Allen
4ba37e6cbe We're kind of official docs, now. 2017-08-23 16:55:58 +10:00
Tim Allen
6c7a9adaad Consistently use "folder" over "directory", except for Linux documentation.
For Windows documentation, "folder" is the correct term. For generic
documentation, probably either would do but I suspect people are
slightly more likely to be familiar with "folder".
2017-08-23 14:59:16 +10:00
Tim Allen
bafdb09e1b Let's be consistent about quoting console names here. 2017-08-23 14:52:54 +10:00
Tim Allen
53c0002274 Move the link to the Quick Start section as early as practical. 2017-08-23 14:51:38 +10:00
Tim Allen
15c467b482 This documentation is now up to date as of v104. 2017-08-23 14:51:24 +10:00
Tim Allen
bfcd4e376b Remove the mkdocs link to the higan repo.
It shows up as "Edit on Source" in mkdocs, which sounds weird, and it
doesn't show up on readthedocs at all, so let's get rid of it.
2017-08-23 13:43:50 +10:00
Tim Allen
d13f1dd9ea Update to v104r03 release.
byuu says:

Changelog:

  - md/vdp: added full interlace emulation [byuu, Sik, Eke, Mask of
    Destiny]
  - md/vdp: fix an issue with overscan/highlight when setting was
    disabled [hex\_usr]
  - md/vdp: serialize field, and all oam/objects state
  - icarus/md: do not enable RAM unless header 0x1b0-1b1 == "RA"
    [hex\_usr]

I really can't believe how difficult the interlace support was to add. I
must have tried a hundred combinations of adjusting Y, Vscroll, tile
addressing, heights, etc. Many of the changes were a wash that improved
some things, regressed others.

In the end I ended up needing input from three different people to
implement what should have been trivial. I don't know if the Mega Drive
is just that weird, if I've declined that much in skill since the days
when I implemented SNES interlace, or if I've just never been that good.

But either way, I'm disappointed in myself for not being able to figure
either this or shadow/highlight out on my own. Yet I'm extremely
grateful to my friends for helping carry me when I get stuck.

Since it wasn't ever documented before, I'm going to try and document
the changes necessary to implement interlace mode for any future
emudevs.
2017-08-22 19:11:43 +10:00
Tim Allen
8976438118 Fix all the broken links.
Also, some of the text in the higan and icarus settings docs wanted to
link to a discussion of why we ignore manifests by default; now we have
such a thing.
2017-08-22 18:12:17 +10:00
Tim Allen
11357169a5 Update to v104r02 release.
byuu says:

Changelog:

  - md/vdp: backgrounds always update priority bit output [Cydrak]
  - md/vdp: vcounter.d0 becomes vcounter.d8 in interlace mode 3
  - md/vdp: return field number in interlace modes from status register
  - md/vdp: rework scanline/frame counting in main loop so first frame
    won't clock to field 1 instead of field 0
  - md/vdp: add support for shadow/highlight mode; optimize to minimal
    code [Cydrak]
  - md/vdp: update outputPixel() to support interlace modes
  - sfc/cpu: auto joypad polling start should clear the shift registers;
    fixes Nuke (PD)
      - thanks to BMF54123 for this bug report
  - tomoko: if an invalid video/audio/input driver is found in the
    configuration file, it's reset to "None"
      - prevents showing the wrong driver under advanced settings; no
        longer requires possibly two reboots to fix

Note: the Mega Drive interlace mode 1 should be working fully, but I
don't know any games that use it. Interlace mode 3 (Sonic 2's two-player
mode) does not work at all yet, but this is a good start.
2017-08-22 11:09:07 +10:00
Tim Allen
9be4e59a05 Starting to fix broken links in the documentation.
Also, moved the "you should install the GBA BIOS" advice from the
install pages (where I doubt anybody would see it) to the "importing and
playing" guide, which I figure people are more likely to stumble across.
The actually instructions are still in `install/general.md` for lack of
anywhere more appropriate.
2017-08-21 23:29:53 +10:00
Tim Allen
281b22e1c0 Remove leading "What is..." headings from Concepts pages.
It's kind of implicit that an article about the concept of X will start
by describing what X is.
2017-08-21 17:07:49 +10:00
Tim Allen
c9c931ecab Refresh the "game library" documentation. 2017-08-21 17:05:17 +10:00
Tim Allen
366e9cebff Update to v104r01 release.
byuu says:

Changelog:

  - gba/cpu: synchronize to the PPU, not oneself, when the CPU is
    stopped
      - this bug was patched in the official v104 release; but not in
        the .tar.xz archive
  - ms/vdp: backdrop color is on the second 16-entry palette, not the
    first [hex\_usr]
  - ms/vdp: fix background color 0 priority; fixes Alex Kidd in High
    Tech World text boxes [hex\_usr]
  - tomoko: choose first option when loading files via the command-line
    [hex\_usr]
  - icarus: lo/hi RAM addressing was backwards; M68K is big endian;
    fixes save files in Sonic 3

Many thanks to hex\_usr for the Master System / Game Gear VDP fix.
That's a tricky system to get good technical information on. The fix
should be correct, but please report if you spot any regressions just in
case.
2017-08-18 22:48:29 +10:00
Tim Allen
58d70c7c9a Add a link to the bsnes-mercury fork.
Also, sort the list of forks by the version they forked from.
2017-08-18 17:20:21 +10:00
Tim Allen
d0b90d0b5c Break "Manifests and Game Folders" into two articles.
Also, substantially re-work each of them.
2017-08-18 15:18:15 +10:00
Tim Allen
e0512b9100 Mention connecting controllers in the console menu. 2017-08-14 21:43:15 +10:00
Tim Allen
08e1f93f71 Update the rest of the settings docs to match the new Video settings. 2017-08-14 18:12:49 +10:00
Tim Allen
6caad914ad Update the video settings documentation. 2017-08-14 17:51:00 +10:00
Tim Allen
c39ef91307 Fully document the "no audio → too fast" problem. 2017-08-13 00:07:55 +10:00
Tim Allen
f0cf1df4af Document higan's region-selection features. 2017-08-12 23:41:58 +10:00
Tim Allen
0034adab3b Update to v104 public release.
[As mentioned in the v104 internal release notes, byuu fixed a small typo in
the GBA core. -Ed.]

byuu says:

There are lots of improvements in this new release, both to core
emulation and to the user interface. However, some of these changes are
quite substantial, so regressions are a possibility. Please report any
regressions from v103 on the forums if found.

Note that Mega Drive save RAM files will not be compatible with v103,
but will now be compatible with save RAM files from all other Mega Drive
emulators, and the format will be stable going forward.

Also!! Thanks to the tireless work of Screwtape, the
Help->Documentation link in higan now takes you to a very comprehensive
user guide. Please be sure to consult this if you have any questions
about using higan.

Lastly, I've added a link to my Patreon page (https://patreon.com/byuu/)
to the higan downloads page. The money will go exclusively toward
purchasing SNES games for preservation, hardware and flash carts for
reverse engineering, equipment such as backup drives, etc. Donating is
entirely optional and comes with no rewards, but would of course be
greatly appreciated! ^^;

Changelog (since v103):

  - nall/dsp: improved first-order IIR filtering
  - Famicom: improved audio filtering (90hz lowpass + 440hz lowpass +
    14khz highpass)
  - Game Boy Advance: corrected bug in PSG wave channel emulation
    [Cydrak]
  - Mega Drive: added first-order 2.84KHz low-pass filter to match VA6
    model hardware
  - Mega Drive: lowered PSG volume relative to YM2612 to match VA6 model
    hardware
  - Mega Drive: Hblank flag is not always set during Vblank
  - Mega Drive: fix PAL mode reporting from control port reads
  - Famicom: improved phase duty cycle emulation (mode 3 is 25% phase
    inverted; counter decrements)
  - Mega Drive: reset does not cancel 68K bus requests
  - Mega Drive: 68K is not granted bus access on Z80 reset
  - Mega Drive: CTRL port is now read-write, maintains value across
    controller changes
  - Z80: IX, IY override mode can now be serialized in save states
  - 68K: fixed calculations for ABCD, NBCD, SBCD [hex\_usr,
    SuperMikeMan]
  - SPC700: improved all cycle timings to match results observed by
    Overload with a logic anaylzer
  - Super Famicom: SMP uses a separate 4x8-bit buffer for $f4-f7; not
    APU RAM [hex\_usr]
  - Super Famicom: SMP TEST register is now finally 100% fully emulated
    [byuu, AWJ]
  - Game Boy Advance: DMA can run between CPU instruction cycles
  - Game Boy Advance: added 2-cycle delay between DMA activation and
    transfers
  - higan: improved aspect ratio correction accuracy at higher video
    scaling sizes
  - higan: overscan masking will now actually crop the underlying video
    instead of just blanking it
  - Mega Drive: center video when overscan is disabled
  - higan: added increment/decrement quick save slot hotkeys
  - Game Boy Advance: fixed wave RAM nibble ordering (fixes audio in
    Castlevania, Pocket NES)
  - higan: added new adaptive windowed mode: resizes the window to the
    current emulated system's size
  - higan: added new integral scaling mode: resizes the window to fill
    as much of the screen as possible
  - higan: main window is now resizable and will automatically scale
    contents based on user settings
  - higan: fixed one-time blinking of the main window on startup caused
    by focus stealing bug
  - ruby: fixed major memory leak in Direct3D driver
  - ruby: added fullscreen exclusive mode to Direct3D driver
  - Super Famicom: corrected latching behavior of BGnHOFS PPU registers
  - higan: all windows sans the main viewport can be dismissed with the
    escape key now
  - ruby: complete API rewrite; many audio drivers now support device
    selection
  - higan: output frequency can now be modified
  - higan: configuration settings split to individual menu options for
    faster access to individual pages
  - ruby: improved WASAPI driver to event-driven model; more compatible
    in exclusive mode now
  - libco: fix compilation of sjlj and fiber targets [Screwtape]
  - ruby: added YV12 and I420 support to X-Video driver
  - Game Boy: added TAMA emulation (RTC emulation is not working yet)
    [thanks to endrift for notes]
  - Game Boy: correct data ordering of MMM01 ROMs (MMM01 ROMs will need
    to be re-imported into higan)
  - Game Boy: store MBC2 save RAM as 256-bytes instead of 512-bytes (RAM
    is 4-bit; not 8-bit with padding)
  - Game Boy: fixed a bug with RAM serialization in games without a
    battery
  - Mega Drive: fix CRAM reads (fixes Sonic Spinball) [hex\_usr]
  - Game Boy: added rumble support to MBC5 games such as Pokemon Pinball
  - Game Boy: added MBC7 emulation (accelerometer X-axis, EEPROM not
    working yet) [thanks to endrift for notes]
  - hiro: macOS compilation fixes and UI improvements [MerryMage,
    ncbncb]
  - Game Boy: added MBC6 emulation (no phone link or flash support;
    timing bugs in game still)
  - Game Boy: HDMA syncs to other components after each byte transfer
    now
  - Game Boy: disabling the LCD completely halts the PPU (fixes onscreen
    graphical corruption in some games)
  - Mega Drive: added 6-button Fighting Pad emulation [hex\_usr]
  - 68K: TAS sets d7 when EA mode is a direct register (fixes Asterix
    graphical corruption)
  - Game Boy: STAT mode is forced to zero when LCD is disabled (fixes
    Pokemon Pinball)
  - LR35902: complete rewrite
  - icarus: high-DPI is not supported on Windows yet; remove setting for
    consistency with higan window sizes
  - hiro: added full support for high-DPI displays on macOS [ncbncb]
  - ARM7TDMI: complete rewrite
  - Super Famicom: disabled channels during HDMA initialization appear
    to set DoTransfer flag
  - V30MZ: code cleanup
  - Mega Drive: added optional TMSS emulation; disabled by default
    [hex\_usr]
  - ARM7TDMI: pipeline decode stage caches CPSR.T [MerryMage]
  - ARM7TDMI: fixed timing of THUMB stack multiple instruction
    [Cydrak]
  - higan: detect when ruby drivers crash; disable drivers on next
    startup to prevent crash loop
  - Mega Drive: added automatic region detection (favors NTSC-J >
    NTSC-U > PAL) [hex\_usr]
  - Mega Drive: support 8-bit SRAM
  - ARM7TDMI: PC should be incremented by 2 when setting CPSR.T via MSR
    instruction [MerryMage]
  - ruby: add Windows ASIO driver support (does not work on some systems
    due to buggy vendor drivers)
  - higan: default to safe drivers on a new install; due to instability
    with some optimal drivers
2017-08-12 22:40:54 +10:00
Tim Allen
c4425b5fa8 Flesh out the Quick Start documentation. 2017-08-12 22:32:11 +10:00
Tim Allen
722a2d797d Document the rotation feature. 2017-08-12 20:58:02 +10:00
Tim Allen
60345fe8b5 Describe Game Boy rumble support. 2017-08-12 20:58:02 +10:00
Tim Allen
f3af7f177b A brief discussion of GBA save types. 2017-08-12 20:58:02 +10:00
Tim Allen
5f67b2a8fc Finish describing video shader issues. 2017-08-12 20:58:02 +10:00
Tim Allen
1ae228663d GBC save-states don't work in GB mode, quelle surprise. 2017-08-12 20:58:02 +10:00
Tim Allen
59eb05226f Finish the section about Game Boy Color games. 2017-08-12 20:58:02 +10:00
Tim Allen
fe9820481f Start fleshing out the "console-specific notes" section. 2017-08-12 20:58:02 +10:00
Tim Allen
1faa263a4a Address the idea of multithreading. 2017-08-12 20:58:02 +10:00
Tim Allen
45c8f09330 Be more descriptive about higan's overhead. 2017-08-12 20:58:02 +10:00
Tim Allen
09c9a55588 Give some reasons why games might run slow. 2017-08-12 20:58:02 +10:00
Tim Allen
defb1eedd3 Another entry for the FAQ. 2017-08-12 20:58:02 +10:00
Tim Allen
accffa8d1b A tool to check our docs for broken links.
Annoyingly, mkdocs won't validate inter- or intra-document links,
so we'll need to use a third-party tool instead.
2017-08-12 20:58:02 +10:00
Tim Allen
4c4a1dcb67 Fill out the FAQ. 2017-08-12 20:58:02 +10:00
Tim Allen
c52b05a0de More mental notes. 2017-08-12 20:58:02 +10:00
Tim Allen
5af4f45a25 Document higan's video sync/audio sync issues. 2017-08-12 20:58:02 +10:00
Tim Allen
a350195c8c Describe save states. 2017-08-12 20:58:02 +10:00
Tim Allen
55bae99bb6 More notes. 2017-08-12 20:58:02 +10:00
Tim Allen
0ca6aaf6b7 I've been reminded that region-selection is a thing. 2017-08-12 20:58:02 +10:00
Tim Allen
bc9e8c8f4a Document the "no audio → fast forward" behaviour. 2017-08-12 20:58:01 +10:00
Tim Allen
b26db6c9b8 Fix a broken link. 2017-08-12 20:58:01 +10:00
Tim Allen
246887d65c Document which drivers people should use. 2017-08-12 20:58:01 +10:00
Tim Allen
0749009652 Be clearer that some drivers don't support the basic shaders. 2017-08-12 20:58:01 +10:00
Tim Allen
3a967430eb Missing last newline. 2017-08-12 20:58:01 +10:00
Tim Allen
ce8f008894 Document using shaders. 2017-08-12 20:58:01 +10:00
Tim Allen
f6fab1a502 Add higan command-line docs. 2017-08-12 20:58:01 +10:00
Tim Allen
a8363c41ba Fix broken link. 2017-08-12 20:58:01 +10:00
Tim Allen
e888a607c1 Add a "Manifests and Game Folders" document.
I've occasionally wished for a single "what is a manifest" section I
could link to from other places; this is where it will go.
2017-08-12 20:58:01 +10:00
Tim Allen
fb52220b1b Move 'concepts' docs into a concepts folder. 2017-08-12 20:58:01 +10:00
Tim Allen
7760931ffc Link to RTD docs from the README. 2017-08-12 20:58:01 +10:00
Tim Allen
df2492c75e Give the Tools doco an intro, like Settings. 2017-08-12 20:58:01 +10:00
Tim Allen
6e6c29138e Make Settings tabs top-level sections.
Just like the tabs of the Tools window.
2017-08-12 20:58:01 +10:00
Tim Allen
5a44f249a4 Separate "how to import" from "what's the game library".
Changed "Configuration" to "Guides", because we want narrative
documentation for all kinds of things, not just documentation.
2017-08-12 20:58:01 +10:00
Tim Allen
3c3f1de317 Convert README docs to MkDocs format.
The existing documentation was getting *way* too long to be a single
document.

I've just bulk moved the existing content into the new structure, but it
definitely needs another pass to make the prose match, fix hyperlinks,
etc. etc.
2017-08-12 20:58:01 +10:00
Tim Allen
a99e601c87 Describe the rest of the interesting files. 2017-08-12 20:58:01 +10:00
Tim Allen
a62425745b Reminders for the future. 2017-08-12 20:58:01 +10:00
Tim Allen
232bcc0fa7 Fix typos 2017-08-12 20:58:01 +10:00
Tim Allen
926d65cfe0 Describe some files that appear in game folders. 2017-08-12 20:58:01 +10:00
Tim Allen
37a738a1a4 Discuss game patching. 2017-08-12 20:58:01 +10:00
Tim Allen
3e0adb1798 Move the discussion of SD2SNES-optimized MSU-1 patches into a separate paragraph. 2017-08-12 20:58:01 +10:00
Tim Allen
f5333c333c I forgot, higan *does* have some Satellaview emulation.
At least, it lets you choose "Satellaview" from the Expansion Port
menu. I have no idea how complete that is.
2017-08-12 20:58:01 +10:00
Tim Allen
427ffd97b8 Update for v103r17. 2017-08-12 20:58:01 +10:00
Tim Allen
8df735e6e2 Minor typo fixes. 2017-08-12 20:58:01 +10:00
Tim Allen
b7edf2abcf Reflect the menu-structure of 103r16.
Now that we have a Synchronize Video option again, I've added a place
in the FAQ to address why it does not play well with Synchronize Audio.
2017-08-12 20:58:01 +10:00
Tim Allen
50d5beda53 First draft of MSU-1 import docs. 2017-08-12 20:58:01 +10:00
Tim Allen
65dadd1576 Update the "Audio" tab to match 103r15. 2017-08-12 20:58:01 +10:00
Tim Allen
6f9839df62 Begin the MSU-1 section. 2017-08-12 20:58:01 +10:00
Tim Allen
781f1ff4c0 We should talk about patches at some point. 2017-08-12 20:58:01 +10:00
Tim Allen
66ef548781 Link to the BS-X Project page. 2017-08-12 20:58:00 +10:00
Tim Allen
cabb865d5b Fix typo. 2017-08-12 20:58:00 +10:00
Tim Allen
54ffe85479 Document the Super Game Boy. 2017-08-12 20:58:00 +10:00
Tim Allen
362d29c6a7 Make a proper heading for black Game Boy cartridges.
Also, remove the sections for importing and playing Game Boy and GBA
games... the Game Boy section was just going to be about black cartridges
anyway, and I have no idea what the GBA section was going to be for.
2017-08-12 20:58:00 +10:00
Tim Allen
ecbc3f6693 Fix underlining for the Satellaview heading. 2017-08-12 20:58:00 +10:00
Tim Allen
1cdd539115 Document the Sufami Turbo. 2017-08-12 20:58:00 +10:00
Tim Allen
1870788cb8 Reword for clarity. 2017-08-12 20:58:00 +10:00
Tim Allen
1b77a4ec8d Use italics for titles. 2017-08-12 20:58:00 +10:00
Tim Allen
b02c35edae The official name is "Satellaview".
Not "BS-X", and definitely not "Bandai Satellaview".
2017-08-12 20:58:00 +10:00
Tim Allen
e721064fe9 Document how to use BS-X games. 2017-08-12 20:58:00 +10:00
Tim Allen
f1e48b90ff Figured out what happens if you're missing firmware files. 2017-08-12 20:58:00 +10:00
Tim Allen
6099424f0f More table cleanups.
Wrap SHA256 hashes in `<code/>` so they'll all be visually the same length.

Make the references from DSP1 and DSP1B to the notes below more obviously
references, not content.

Reword the DSP1 note so that it makes sense even if you didn't just come
from the DSP1/1A row of the table.
2017-08-12 20:58:00 +10:00
Tim Allen
43c5368a30 Clean up table markup.
Use code, not pre, since we want inline markup, not block-level.

The attribute we want is named "rowspan", not "rows".
2017-08-12 20:58:00 +10:00
Tim Allen
f4bf02ba02 Replace the awkward nested lists of firmware info with a table. 2017-08-12 20:58:00 +10:00
Tim Allen
8c3d076bf4 Link to the official game folder docs. 2017-08-12 20:58:00 +10:00
Tim Allen
788bdb0ae2 Document importing regular and co-processor games. 2017-08-12 20:58:00 +10:00
Tim Allen
39822bc123 A rewording inspired by a forum thread.
Introduce the idea of "the console a game was intended to run on",
so it doesn't come out of left field in the "To play a game" instructions.
2017-08-12 20:58:00 +10:00
Tim Allen
6ba931987b Fix typo. 2017-08-12 20:58:00 +10:00
Tim Allen
4c4339d313 Add pointers to importing hints. 2017-08-12 20:57:59 +10:00
Tim Allen
d166c280c7 Add some TODO markers for completeness. 2017-08-12 20:57:59 +10:00
Tim Allen
73a37beae1 Fix typo. 2017-08-12 20:57:59 +10:00
Tim Allen
b61ca253de Document icarus. 2017-08-12 20:57:59 +10:00
Tim Allen
0ed9737dd4 We should document what goes into a game folder. 2017-08-12 20:57:59 +10:00
Tim Allen
adddc1dc0a We're going to need to document icarus, too. 2017-08-12 20:57:59 +10:00
Tim Allen
b021f5186c Move "Moving the Game Library" into its own section.
Also, move the higher-level questions about the game library
and game folders to the end of the section,
so people can more easily find the bits about importing types of game.
2017-08-12 20:57:59 +10:00
Tim Allen
1a68cb65eb Document higan's custom filesystem browser. 2017-08-12 20:57:59 +10:00
Tim Allen
82a64bb3ab Describe the Manifest Viewer. 2017-08-12 20:57:59 +10:00
Tim Allen
75f842cdb2 At least link to Quick Start near the top of the doc. 2017-08-12 20:57:59 +10:00
Tim Allen
9362726c65 Found some more info about higan and vsync. 2017-08-12 20:57:59 +10:00
Tim Allen
a3e1983d50 Remind myself to update the Video tab docs when it settles. 2017-08-12 20:57:59 +10:00
Tim Allen
20e3fdd1e3 higan 103r11 removed the "Mask Overscan" option. 2017-08-12 20:57:59 +10:00
Tim Allen
0bb6a3b0bc Document the State Manager. 2017-08-12 20:57:59 +10:00
Tim Allen
752139e66c We have a save-state section now, better use it. 2017-08-12 20:57:59 +10:00
Tim Allen
2f08bc3b1c higan v103r10 moved the per-game cheats.bml into the higan folder. 2017-08-12 20:57:59 +10:00
Tim Allen
f4c043ce50 higan v103r10 standardized on "quick state". 2017-08-12 20:57:59 +10:00
Tim Allen
1bbe78f94e higan v103r09 changed the way video scaling works. 2017-08-12 20:57:59 +10:00
Tim Allen
ef5f0e9c21 Correct and expand the Cheat Editor docs. 2017-08-12 20:57:59 +10:00
Tim Allen
83ae1579a0 Add basic info about the cheat editor. 2017-08-12 20:57:59 +10:00
Tim Allen
e0b4fe6419 higan v103r08 updated how quickstates work.
Also, I found some more potential status bar messages.
2017-08-12 20:57:59 +10:00
Tim Allen
efbfe854d2 higan v103r08 changed how Mask Overscan works. 2017-08-12 20:57:59 +10:00
Tim Allen
5f2fbd0d72 Bust "Drivers" into its own section.
Also, add some details about Windows drivers.
2017-08-12 20:57:59 +10:00
Tim Allen
e0c021660a Document the configuration dialog. 2017-08-12 20:57:59 +10:00
Tim Allen
89192cee6c Finish documenting all the menus. 2017-08-12 20:57:59 +10:00
Tim Allen
e8b9b6cd7b The docs are growing large enough we'll need a quickstart at the beginning. 2017-08-12 20:57:59 +10:00
Tim Allen
3efe3cdfbf Make a note to talk about save-states at some point. 2017-08-12 20:57:59 +10:00
Tim Allen
224bbe03f4 Finish documenting the Settings menu. 2017-08-12 20:57:59 +10:00
Tim Allen
aad87da68a Add a warning about installing higan as root. 2017-08-12 20:57:59 +10:00
Tim Allen
444ec756bd "Aspect Correction" doesn't affect full-screen! 2017-08-12 20:57:59 +10:00
Tim Allen
96ebd87db4 Document the Video Shader menu. 2017-08-12 20:57:59 +10:00
Tim Allen
8ef704c16b Standardize on "The X menu allows you to...". 2017-08-12 20:57:58 +10:00
Tim Allen
380130fbd8 Document the $console menu. 2017-08-12 20:57:58 +10:00
Tim Allen
859c5b587b Let's standardise on "The X menu". 2017-08-12 20:57:58 +10:00
Tim Allen
7eceacf78e Remind myself what appears in the status bar. 2017-08-12 20:57:58 +10:00
Tim Allen
b3b3690948 We need to document all the parts of the higan UI. 2017-08-12 20:57:58 +10:00
Tim Allen
331c53c896 Be consistent about console naming like higan is. 2017-08-12 20:57:58 +10:00
Tim Allen
fd2cdc261c Describe how the higan game library works. 2017-08-12 20:57:58 +10:00
Tim Allen
d366c6ff43 Document higan's console naming policy. 2017-08-12 20:57:58 +10:00
Tim Allen
eef90a8f14 How to obtain and install the GBA BIOS. 2017-08-12 20:57:58 +10:00
Tim Allen
00fecd96a4 Remind people to set up the GBA BIOS after installing. 2017-08-12 20:57:58 +10:00
Tim Allen
f23e54f6b1 Refer to directories as "folders" in Windows.
Sure, probably everybody is familiar with either term,
but Windows users are probably more familiar with the term
that shows up all over their UI.
2017-08-12 20:57:58 +10:00
Tim Allen
54e48aabbe Describe how to contribute to higan.
Since higan does not follow the conventional git development model,
we should prominently document how people can contribute.
2017-08-12 20:57:58 +10:00
Tim Allen
0902869032 Fix intra-document links. 2017-08-12 20:57:58 +10:00
Tim Allen
7d1685f7f5 Finish the build, install and uninstall instructions for Linux. 2017-08-12 20:57:58 +10:00
Tim Allen
775be26350 Let's have separate install and uninstall instructions for compiled Windows builds. 2017-08-12 20:57:58 +10:00
Tim Allen
d38893008c Remind me to mention PSG volume for the Mega Drive. 2017-08-12 20:57:58 +10:00
Tim Allen
d250096e48 Fix formatting in the Windows build instructions. 2017-08-12 20:57:58 +10:00
Tim Allen
68d57dc46c Make the Linux build instructions match the Windows ones. 2017-08-12 20:57:58 +10:00
Tim Allen
acbc52ab07 Update the Windows build instructions. 2017-08-12 20:57:58 +10:00
Tim Allen
7406d903e1 Apparently higan writes to %LOCALAPPDATA% in Windows. 2017-08-12 20:57:58 +10:00
Tim Allen
d739e33243 higan requires Windows 7, not XP. 2017-08-12 20:57:58 +10:00
Tim Allen
1b62f18139 first info about building for Linux 2017-08-12 20:57:58 +10:00
Tim Allen
d0d7436d50 Notes about what to cover for control config. 2017-08-12 20:57:58 +10:00
Tim Allen
08fc1f659a Wrote some stuff about installing on Windows.
Let's hope it's vaguely plausible!
2017-08-12 20:57:58 +10:00
Tim Allen
e8b2f22623 WIP 2017-08-12 20:57:58 +10:00
Tim Allen
cec9d91b39 Add internal hyperlinks to other sections 2017-08-12 20:57:58 +10:00
Tim Allen
11a3195e84 Fix typo 2017-08-12 20:57:58 +10:00
Tim Allen
1fb37f087f Record some official and unofficial higan resources. 2017-08-12 20:57:58 +10:00
Tim Allen
8ece9ed16b Remember to talk about GBA saves 2017-08-12 20:57:58 +10:00
Tim Allen
302b369781 Outline of a README file. 2017-08-12 20:57:58 +10:00
Tim Allen
ba384a7c48 Update to v104 release.
byuu says:

Changelog:

  - emulator/interface: removed unused Region struct
  - gba/cpu: optimized CPU::step() as much as I could for a slight
    speedup¹
  - gba/cpu: synchronize the APU better during FIFO updates
  - higan/md, icarus: add automatic region detection; make it the
    default option [hex\_usr]
      - picks NTSC-J if there's more than one match ... eventually, this
        will be a setting
  - higan/md, icarus: support all three combinations of SRAM (8-bit low,
    8-bit high, 16-bit)
  - processor/arm7tdmi: fix bug when changing to THUMB mode via MSR
    [MerryMage]
  - tomoko: redesigned crash detector to only occur once for all three
    ruby drivers
      - this will reduce disk thrashing since the configuration file
        only needs to be written out one extra time
      - technically, it's twice ... but we should've always been writing
        one out on first run in case it crashes then
  - tomoko: defaulted back to the safest ruby drivers, given the optimal
    drivers have some stability concerns

¹: minor errata: spotted a typo saying `synchronize(cpu)` when the CPU
is stopped, instead of `synchronize(ppu)`. This will be fixed in the v104
official 7zip archives.

I'm kind of rushing here but, it's really good timing for me to push out
a new official release. The blocking issues are resolved or close to it,
and we need lots of testing of the new major changes.

I'm going to consider this a semi-stable testing release and leave links
to v103 just in case.
2017-08-12 20:53:13 +10:00
Tim Allen
55f19c3e0d Update to v103r32 release.
byuu says:

Changelog:

  - Master System: merged Bus into CPU
  - Mega Drive: merged BusCPU into CPU; BusAPU into AU
  - Mega Drive: added TMSS emulation; disabled by default [hex\_usr]
      - VDP lockout not yet emulated
  - processor/arm7tdmi: renamed interrupt() to exception()
  - processor/arm7tdmi: CPSR.F (FIQ disable) flag is set on reset
  - processor/arm7tdmi: pipeline decode stage caches CPSR.T (THUMB mode)
    [MerryMage]
      - fixes `msr_tests.gba` test F
  - processor/arm7tdmi/disassembler: add PC address to left of currently
    executing instruction
  - processor/arm7tdmi: stop forcing CPSR.M (mode flags) bit 4 high (I
    don't know what really happens here)
  - processor/arm7tdmi: undefined instructions now generate Undefined
    0x4 exception
  - processor/arm7tdmi: thumbInstructionAddRegister masks PC by &~3
    instead of &~2
      - hopefully this is correct; &~2 felt very wrong
  - processor/arm7tdmi: thumbInstructionStackMultiple can use sequential
    timing for PC/LR PUSH/POP [Cydrak]
  - systems/Mega Drive.sys: added tmss.rom; enable with cpu version=1
  - tomoko: detect when a ruby video/audio/input driver crashes higan;
    disable it on next program startup

v104 blockers:

  - Mega Drive: support 8-bit SRAM (even if we don't support 16-bit;
    don't force 8-bit to 16-bit)
  - Mega Drive: add region detection support to icarus
  - ruby: add default audio device information so certain drivers won't
    default to silence out of the box
2017-08-12 02:02:09 +10:00
Tim Allen
406b6a61a5 Update to v103r31 release.
byuu says:

Changelog:

  - gba/cpu: slight speedup to CPU::step()
  - processor/arm7tdmi: fixed about ten bugs, ST018 and GBA games are
    now playable once again
  - processor/arm: removed core from codebase
  - processor/v30mz: code cleanup (renamed functions; updated
    instruction() for consistency with other cores)

It turns out on my much faster system, the new ARM7TDMI core is very
slightly slower than the old one (by about 2% or so FPS.) But the
CPU::step() improvement basically made it a wash.

So yeah, I'm in really serious trouble with how slow my GBA core is now.
Sigh.

As for higan/processor ... this concludes the first phase of major
cleanups and rewrites.

There will always be work to do, and I have two more phases in mind.

One is that a lot of the instruction disassemblers are very old. One
even uses sprintf still. I'd like to modernize them all. Also, the
ARM7TDMI core (and the ARM core before it) can't really disassemble
because the PC address used for instruction execution is not known prior
to calling instruction(), due to pipeline reload fetches that may occur
inside of said function. I had a nasty hack for debugging the new core,
but I'd like to come up with a clean way to allow tracing the new
ARM7TDMI core.

Another is that I'd still like to rename a lot of instruction function
names in various cores to be more descriptive. I really liked how the
LR35902 core came out there, and would like to get that level of detail
in with the other cores as well.
2017-08-10 21:26:02 +10:00
Tim Allen
1067566834 Update to v103r30 release.
byuu says:

Changelog:

  - processor/arm7tdmi: completed implemented
  - gba/cpu, sfc/coprocessor/armdsp: use arm7tdmi instead of arm
  - sfc/cpu: experimental fix for newly discovered HDMA emulation issue

Notes:

The ARM7TDMI core crashes pretty quickly when trying to run GBA games,
and I'm certain the same will be the case with the ST018. It was never
all that likely I could rewrite 70KiB of code in 20 hours and have it
work perfectly on the first try. So, now it's time for lots and lots of
debugging. Any help would *really* be appreciated, if anyone were up for
comparing the two implementations for regressions =^-^= I often have a
really hard time spotting simple typos that I make.

Also, the SNES HDMA fix is temporary. I would like it if testers could
run through a bunch of games that are known for being tricky with HDMA
(or if these aren't known to said tester, any games are fine then.) If
we can confirm regressions, then we'll know the fix is either incorrect
or incomplete. But if we don't find any, then it's a good sign that
we're on the right path.
2017-08-09 21:11:59 +10:00
Tim Allen
559eeccc89 Update to v103r29 release.
byuu says:

Changelog:

  - processor/arm7tdmi: implementation all nine remaining ARM
    instructions
  - processor/arm7tdmi: implemented five more THUMB instructions
    (sixteen remain)
2017-08-08 21:51:41 +10:00
Tim Allen
a72ff8b7fa Update to v103r28 release.
byuu says:

Changelog:

  - processor/arm7tdmi: implemented 10 of 19 ARM instructions
  - processor/arm7tdmi: implemented 1 of 22 THUMB instructions

Today's WIP was 6 hours of work, and yesterday's was 5 hours.

Half of today was just trying to come up with the design to use a
lambda-based dispatcher to map both instructions and disassembly,
similar to the 68K core. The problem is that the ARM core has 28 unique
bits, which is just far too many bits to have a full lookup table like
the 16-bit 68K core.

The thing I wanted more than anything else was to perform the opcode
bitfield decoding once, and have it decoded for both instructions and
the disassembler. It took three hours to come up with a design that
worked for the ARM half ... relying on #defines being able to pull in
other #defines that were declared and changed later after the first
one. But, I'm happy with it. The decoding is in the table building, as
it is with the 68K core. The decoding does happen at run-time on each
instruction invocation, but it has to be done.

As to the THUMB core, I can create a 64K-entry lambda table to cover all
possible encodings, and ... even though it's a cache killer, I've
decided to go for it, given the outstanding performance it obtained in
the M68K core, as well as considering that THUMB mode is far more common
in GBA games.

As to both cores ... I'm a little torn between two extremes:

On the one hand, I can condense the number of ARM/THUMB instructions
further to eliminate more redundant code. On the other, I can split them
apart to reduce the number of conditional tests needed to execute each
instruction. It's really the disassembler that makes me not want to
split them up further ... as I have to split the disassembler functions
up equally to the instruction functions. But it may be worth it if it's
a speed improvement.
2017-08-07 22:20:35 +10:00
Tim Allen
0b6f1df987 Update to v103r27 release.
byuu says:

Changelog:

  - hiro/windows: set dpiAware=false, fixes icarus window sizes relative
    to higan window sizes
  - higan, icarus, hiro, ruby: add support for high resolution displays
    on macOS [ncbncb]
  - processor/lr35902-legacy: removed
  - processor/arm7tdmi: new processor core started; intended to one day
    be a replacement for processor/arm

It will probably take several WIPs to get the new ARM core up and
running. It's the last processor rewrite. After this, all processor
cores will be up to date with all my current programming conventions.
2017-08-06 23:36:26 +10:00
Tim Allen
020caa546d Update to v103r26 release.
byuu says:

Changelog:

  - processor/lr35902: completed rewrite

I'd appreciate regression testing of the Game Boy and Game Boy Color
emulation between v103r24 and v103r26 (skip r25) if anyone wouldn't
mind.

I fixed up processor/lr35902-legacy to compile and run, so that trace
logs can be created between the two cores to find errors. I'm going to
kill processor/lr35902-legacy with the next WIP release, as well as make
changes to the trace format (add flags externally from AF; much easier
to read them that way), which will make it more difficult to do these
comparisons in the future, hence r26 may prove important later on if we
miss regressions this time.

As for the speed of the new CPU core, not too much to report ... at
least it's not slower :)

    Mega Man II: 212.5 to 214.5fps
    Shiro no Sho: 191.5 to 191.5fps
    Oracle of Ages: 182.5 to 190.5fps
2017-08-06 09:13:26 +10:00
Tim Allen
c2975e6898 Update to v103r25 release.
byuu says:

Changelog:

  - gb/cpu: force STAT mode to 0 when LCD is disabled (fixes Pokemon
    Pinball, etc)
  - gb/ppu: when LCD is disabled, require at least one-frame wait to
    re-enable, display white during this time
      - todo: should step by a scanline at a time: worst-case is an
        extra 99% of a frame to enable again
  - gba/ppu: cache tilemap lookups and attribute parsing
      - it's more accurate because the GBA wouldn't read this for every
        pixel
      - but unfortunately, this didn't provide any speedup at all ...
        sigh
  - ruby/audio/alsa: fixed const issue with free()
  - ruby/video/cgl: removed `glDisable(GL_ALPHA_TEST)` [deprecated]
  - ruby/video/cgl: removed `glEnable(GL_TEXTURE_2D)` [unnecessary as
    we use shaders]
  - processor/lr35902: started rewrite¹

¹: so, the Game Boy and Game Boy Color cores will be completely
broken for at least the next two or three WIPs.

The old LR35902 was complete garbage, written in early 2011. So I'm
rewriting it to provide a massive cleanup and consistency with other
processor cores, especially the Z80 core.

I've got about 85% of the main instructions implemented, and then I have
to do the CB instructions. The CB instructions are easier because
they're mostly just a small number of opcodes in many small variations,
but it'll still be tedious.
2017-08-04 23:05:12 +10:00
Tim Allen
571760c747 Update to v103r24 release.
byuu says:

Changelog:

  - gb/mbc6: mapper is now functional, but Net de Get has some text
    corruption¹
  - gb/mbc7: mapper is now functional²
  - gb/cpu: HDMA syncs other components after each byte transfer now
  - gb/ppu: LY,LX forced to zero when LCDC.d7 is lowered (eg disabled),
    not when it's raised (eg enabled)
  - gb/ppu: the LCD does not run at all when LCDC.d7 is clear³
      - fixes graphical corruption between scene transitions in Legend
        of Zelda - Oracle of Ages
      - thanks to Cydrak, Shonumi, gekkio for their input on the cause
        of this issue
  - md/controller: renamed "Gamepad" to "Control Pad" per official
    terminology
  - md/controller: added "Fighting Pad" (6-button controller) emulation
    [hex\_usr]
  - processor/m68k: fixed TAS to set data.d7 when
    EA.mode==DataRegisterDirect; fixes Asterix
  - hiro/windows: removed carriage returns from mouse.cpp and
    desktop.cpp
  - ruby/audio/alsa: added device driver selection [SuperMikeMan]
  - ruby/audio/ao: set format.matrix=nullptr to prevent a crash on some
    systems [SuperMikeMan]
  - ruby/video/cgl: rename term() to terminate() to fix a crash on macOS
    [Sintendo]

¹: The observation that this mapper split $4000-7fff into two banks
came from MAME's implementation. But their implementation was quite
broken and incomplete, so I didn't actually use any of it. The
observation that this mapper split $a000-bfff into two banks came from
Tauwasser, and I did directly use that information, plus the knowledge
that $0400/$0800 are the RAM bank select registers.

The text corruption is due to a race condition with timing. The game is
transferring font letters via HDMA, but the game code ends up setting
the bank# with the font a bit too late after the HDMA has already
occurred. I'm not sure how to fix this ... as a whole, I assumed my Game
Boy timing was pretty good, but apparently it's not that good.

²: The entire design of this mapper comes from endrift's notes.
endrift gets full credit for higan being able to emulate this mapper.
Note that the accelerometer implementation is still not tested, and
probably won't work right until I tweak the sensitivity a lot.

³: So the fun part of this is ... it breaks the strict 60fps rate of
the Game Boy. This was always inevitable: certain timing conditions can
stretch frames, too. But this is pretty much an absolute deal breaker
for something like Vsync timing. This pretty much requires adaptive sync
to run well without audio stuttering during the transition.

There's currently one very important detail missing: when the LCD is
turned off, presumably the image on the screen fades to white. I do not
know how long this process takes, or how to really go about emulating
it. Right now as an incomplete patch, I'm simply leaving the last
displayed image on the screen until the LCD is turned on again. But I
will have to output white, as well as add code to break out of the
emulation loop periodically when the LCD is left off eg indefinitely, or
bad things would happen. I'll work something out and then implement.

Another detail is I'm not sure how long it takes for the LCD to start
rendering again once enabled. Right now, it's immediate. I've heard it's
as long as 1/60th of a second, but that really seems incredibly
excessive? I'd like to know at least a reasonably well-supported
estimate before I implement that.
2017-08-04 23:05:06 +10:00
Tim Allen
7022d1aa51 Update to v103r23 release.
byuu says:

Changelog:

  - gb: added accelerometer X-axis, Y-Axis inputs¹
  - gb: added rumble input¹
  - gb/mbc5: added rumble support²
  - gb/mbc6: added skeleton driver, but it doesn't boot Net de Get
  - gb/mbc7: added mostly complete driver (only missing EEPROM), but it
    doesn't boot Kirby Tilt 'n' Tumble
  - gb/tama: added leap year assignment
  - tomoko: fixed macOS compilation [MerryMage]
  - hiro/cocoa: fix table cell redrawing on updates and automatic column
    resizing [ncbncb]
  - hiro/cocoa: fix some weird issue with clicking table view checkboxes
    on Retina displays [ncbncb]
  - icarus: enhance Game Boy heuristics³
  - nall: fix three missing return statements [Jonas Quinn]
  - ruby: hopefully fixed all compilation errors reported by Screwtape
    et al⁴

¹: because there's no concept of a controller for cartridge inputs,
I'm attaching to the base platform for now. An idea I had was to make
separate ports for each cartridge type ... but this would duplicate the
rumble input between MBC5 and MBC7. And would also be less discoverable.
But it would be more clean in that users wouldn't think the Game Boy
hardware had this functionality. I'll think about it.

²: it probably won't work yet. Rumble isn't documented anywhere, but
I dug through an emulator named GEST and discovered that it seems to use
bit 3 of the RAM bank select to be rumble. I don't know if it sets the
bit for rumbling, then clears when finished, or if it sets it and then
after a few milliseconds it stops rumbling. I couldn't test on my
FreeBSD box because SDL 1.2 doesn't support rumble, udev doesn't exist
on FreeBSD, and nobody has ever posted any working code for how to use
evdev (or whatever it's called) on FreeBSD.

³: I'm still thinking about specifying the MBC7 RAM as EEPROM, since
it's not really static RAM.

⁴: if possible, please test all drivers if you can. I want to ensure
they're all working. Especially let me know if the following work:
macOS: input.carbon Linux: audio.pulseaudiosimple, audio.ao (libao)

If I can confirm these are working, I'm going to then remove them from
being included with stock higan builds.

I'm also considering dropping SDL video on Linux/BSD. XShm is much
faster and supports blurring. I may also drop SDL input on Linux, since
udev works better. That will free a dependency on SDL 1.2 for building
higan. FreeBSD is still going to need it for joypad support, however.
2017-07-30 23:00:31 +10:00
Tim Allen
e1223366a7 Update to v103r22 release.
byuu says:

Changelog:

  - ruby: ported all remaining drivers to new API¹
  - ruby/wasapi: fix for dropping one sample per period [SuperMikeMan]
  - gb: emulated most of the TAMA RTC; but RTC state is still volatile²

¹: the new ports are:

  - audio/{directsound, alsa, pulseaudio, pulseaudiosimple, ao}
  - input/{udev, quartz, carbon}

It's pretty much guaranteed many of them will have compilation errors.
Please paste the error logs and I'll try to fix them up. It may take a
WIP or two to get there.

It's also possible things broke from the updates. If so, I could use
help comparing the old file to the new file, looking for mistakes, since
I can't test on these platforms apart from audio/directsound.

Please report working drivers in this list, so we can mark them off the
list. I'll need both macOS and Linux testers.

audio/directsound.cpp:112:

    if(DirectSoundCreate(0, &_interface, 0) != DS_OK) return terminate(), false;

²: once I get this working, I'll add load/save support for the RTC
values. For now, the RTC data will be lost when you close the emulator.

Right now, you can set the date/time in real-time mode, and when you
start the game, the time will be correct, and the time will tick
forward. Note that it runs off emulated time instead of actual real
time, so if you fast-forward to 300%, one minute will be 20 seconds.

The really big limitation right now is that when you exit the game, and
restart it, and resume a new game, the hour spot gets corrupted, and
this seems to instantly kill your pet. Fun. This is crazy because the
commands the game sends to the TAMA interface are identical between
starting a new game and getting in-game versus loading a game.

It's likely going to require disassembling the game's code and seeing
what in the hell it's doing, but I am extremely bad at LR35092 assembly.
Hopefully endrift can help here :|
2017-07-28 21:42:24 +10:00
Tim Allen
80841deaa5 Update to v103r21 release.
byuu says:

Changelog:

  - gb: added TAMA emulation [thanks to endrift for the initial notes]
  - gb: save RTC memory to disk (MBC3 doesn't write to said memory yet;
    TAMA doesn't emulate it yet)
  - gb: expect MMM01 boot loader to be at end of ROM instead of start
  - gb: store MBC2 save RAM as 256-bytes (512x4-bit) instead of
    512-bytes (with padding)
  - gb: major cleanups to every cartridge mapper; moved to Mapper class
    instead of MMIO class
  - gb: don't serialize all mapper states with every save state; only
    serialize the active mapper
  - gb: serialize RAM even if a battery isn't present¹
  - gb/cartridge: removed unnecessary code; refactored other code to
    eliminate duplication of functions
  - icarus: improve GB(C) heuristics generation to not include filenames
    for cartridges without battery backup
  - icarus: remove incorrect rearrangement of MMM01 ROM data
  - md/vdp: fix CRAM reads -- fixes Sonic Spinball colors [hex\_usr]
  - tomoko: hide the main higan window when entering fullscreen
    exclusive mode; helps with multi-monitor setups
  - tomoko: destroy ruby drivers before calling Application::quit()
    [Screwtape]
  - libco: add settings.h and defines to fiber, ucontext [Screwtape]

¹: this is one of those crystal clear indications that nobody's
actually playing the higan DMG/CGB cores, or at least not with save
states. This was a major mistake.

Note: I can't find any official documentation that `GL_ALPHA_TEST` was
removed from OpenGL 3.2. Since it's not hurting anything except showing
some warnings in debug mode, I'm just going to leave it there for now.
2017-07-26 22:42:06 +10:00
Tim Allen
d5c09c9ab1 Update to v103r20 release.
byuu says:

Changelog:

  - ruby/audio/xaudio2: ported to new ruby API
  - ruby/video/cgl: ported to new ruby API (untested, won't compile)
  - ruby/video/directdraw: ported to new ruby API
  - ruby/video/gdi: ported to new ruby API
  - ruby/video/glx: ported to new ruby API
  - ruby/video/wgl: ported to new ruby API
  - ruby/video/opengl: code cleanups

The macOS CGL driver is sure to have compilation errors. If someone will
post the compilation error log, I can hopefully fix it in one or two
iterations of WIPs.

I am unable to test the Xorg GLX driver, because my FreeBSD desktop
video card drivers do not support OpenGL 3.2. If the driver doesn't
work, I'm going to need help tracking down what broke from the older
releases.

The real fun is still yet to come ... all the Linux-only drivers, where
I don't have a single Linux machine to test with.

Todo:

  - libco/fiber
  - libco/ucontext (I should really just delete this)
  - tomoko: hide main UI window when in exclusive fullscreen mode
2017-07-24 15:23:40 +10:00
Tim Allen
8be474b0ac Update to v103r19 release.
byuu says:

Changelog:

  - tomoko: Application::onMain assigned at end of Program::Program()
    [Screwtape]¹
  - libco: add `#define _XOPEN_SOURCE 500` to fix compilation of sjlj.c
    [Screwtape]
  - ruby/audio/openal: fixed device driver string list enumeration
  - ruby/audio/wasapi: changing device re-initializes the driver now
  - ruby/audio/wasapi: probably a pointless change, but don't fill the
    buffer beyond the queue size with silence
  - ruby/video/xvideo: renamed from ruby/video/xv
  - ruby/video/xvideo: check to see if `XV_AUTOPAINT_COLORKEY` exists
    before setting it [SuperMikeMan]
  - ruby/video/xvideo: align buffer sizes to be evenly divisible by four
    [SuperMikeMan]
  - ruby/video/xvideo: fail nicely without crashing (hopefully)
  - ruby/video/xvideo: add support for YV12 and I420 12-bit planar YUV
    formats²

¹: prevents crashes when drivers fail to initialize from running the
main loop that polls input drivers before the input driver is
initialized (or fails to initialize itself.) Some drivers still don't
block their main functions when initialization fails, so they will still
crash, but I'll work to fix them.

²: this was a **major** pain in the ass, heh. You only get one chroma
sample for every four luma samples, so the color reproduction is even
worse than UYVY and YUYV (which is two to four chroma to luma.) Further,
the planar format took forever to figure out. Apparently it doesn't care
what portion of the image you specify in XvShmPutImage, it expects you
to use the buffer dimensions to locate the U and V portions of the data.

This is probably the most thorough X-Video driver in existence now.

Notes:

  - forgot to rename the configuration settings dialog window title to
    just "Settings"
2017-07-23 19:18:16 +10:00
Tim Allen
284e4c043e Update to v103r18 release.
byuu says:

Changelog:

  - tomoko: improved handling of changing audio devices on the audio
    settings panel
  - ruby/audio/wasapi: added device enumeration and selection support¹
  - ruby/audio/wasapi: release property store handle from audio device
  - ruby/audio/wasapi: fix exclusive mode buffer filling
  - ruby/video/glx2: ported to new API -- tested and confirmed working
    great²
  - ruby/video/sdl: fixed initialization -- tested and confirmed working
    on FreeBSD now³
  - ruby/video/xv: ported to new API -- tested and mostly working great,
    sans fullscreen mode⁴

Errata:

  - accidentally changed "Driver Settings" label to "Driver" on the
    audio settings tab because I deleted the line and forgot the
    "Settings" part
  - need to use "return initialize();" from setDevice() in the WASAPI
    driver, instead of "return true;", so device selection is currently
    not functioning in this WIP for said driver

¹: for now, this will likely end up selecting the first available
endpoint device, which is probably wrong. I need to come up with a
system to expose good 'default values' when selecting new audio drivers,
or changing audio device settings.

²: glx2 is a fallback driver for system with only OpenGL 2.0 and no
OpenGL 3.2 drivers, such as FreeBSD 10.1 with AMD graphics cards.

³: although I really should track down why InputManager::poll() is
crashing the emulator when Video::ready() returns false ...

⁴: really bizarrely, when entering fullscreen mode, it looks like the
image was a triangle strip, and the bottom right triange is missing, and
the top left triangle skews the entire image into it. I'm suspecting
this is a Radeon driver bug when trying to create a 2560x1600 X-Video
surface. The glitch persists when exiting fullscreen, too.

If anyone can test the X-Video driver on their Linux/BSD system, it'd be
appreciated. If it's just my video card, I'll ignore it. If not,
hopefully someone can find the cause of the issue :|
2017-07-20 21:52:47 +10:00
Tim Allen
0b4e7fb5a5 Update to v103r17 release.
byuu says:

Changelog:

  - tomoko: re-hid the video sync option¹
  - tomoko: removed " Settings" duplication on all the individual
    settings tab options
  - ruby/audio/wasapi: finished port to new syntax; adapted to an
    event-driven model; support 32-bit integral audio²
  - ruby/video/sdl: ported to new syntax; disabled driver on FreeBSD³

¹: still contemplating a synchronize submenu of {none, video, audio},
but ... the fact that video can't work on PAL, WonderSwan games is a
real limitation for it

²: this driver actually received a ton of work. There's also a new
ring-buffer queue, and I added special handling for when exclusive mode
fails because the latency requested is lower than the hardware can
support. It'll pick the closest latency to the minimum that is possible
in this case.

On my Audigy Rx, the results for non-exclusive mode are the same. For
exclusive mode, the framerate drops from 60fps to ~50fps for smaller
buffers, and ~55fps for larger buffers (no matter how big, it never hits
60fps.) This is a lot better than before where it was hitting ~15fps,
but unfortunately it's the best I can do.

The event system used by WASAPI is really stupid. It just uses SetEvent
at some arbitrary time, and you have to query to see how many samples
it's waiting on. This makes it unknowable how many samples we should
buffer before calling `WaitForSingleObject(INFINITE)`, and it's also
unclear how we should handle cases where there's more samples available
than our queue has: either we can fill it with zeroes, or we can write
less samples. The former should prevent audio looping effects when
running too slowly, whereas the latter could potentially be too
ambitious when the audio could've recovered from a minor stall.

It's shocking to me how there's as many ways to send audio to a sound
card as there are sound card APIs, when all that's needed is a simple
double buffer and a callback event from another thread to do it right.
It's also terrifying how unbelievably shitty nearly all sound card
drivers apparently are.

Also, I don't know if cards can output an actual 24-bit mode with three
byte audio samples, or if they always just take 32-bit samples and
ignore the lower 8-bits. Whatever, it's all nonsense for the final
output to be >16-bits anyway (hi, `double[]` input from ruby.)

³: unfortunately, this driver always crashes on FreeBSD (even before
the rewrite), so I'll need someone on Linux to test it and make sure it
actually works. I'll also need testing for a lot of the other drivers as
well, once they're ported over (I don't have X-video, PulseAudio, ALSA,
or udev.)

Note that I forgot to set `_ready=true` at the end of `initialize()`,
and `_ready=false` in `terminate()`, but it shouldn't actually matter
beyond showing you a false warning message on startup about it failing
to initialize.
2017-07-19 23:14:00 +10:00
Tim Allen
f87c6b7ecb Update to v103r16 release.
byuu says:

Changelog:

  - emulator/audio: added the ability to change the output frequency at
    run-time without emulator reset
  - tomoko: display video synchronize option again¹
  - tomoko: Settings→Configuration expanded to Settings→{Video,
    Audio, Input, Hotkey, Advanced} Settings²
  - tomoko: fix default population of audio settings tab
  - ruby: Audio::frequency is a double now (to match both
    Emulator::Audio and ASIO)³
  - tomoko: changing the audio device will repopulate the frequency and
    latency lists
  - tomoko: changing the audio frequency can now be done in real-time
  - ruby/audio/asio: added missing device() information, so devices can
    be changed now
  - ruby/audio/openal: ported to new API; added device selection support
  - ruby/audio/wasapi: ported to new API, but did not test yet (it's
    assuredly still broken)⁴

¹: I'm uneasy about this ... but, I guess if people want to disable
audio and just have smooth scrolling video ... so be it. With
Screwtape's documentation, hopefully that'll help people understand that
video synchronization always breaks audio synchronization. I may change
this to a child menu that lets you pick between {no synchronization,
video synchronization, audio synchronization} as a radio selection.

²: given how much more useful the video and audio tabs are now, I
felt that four extra menu items were worth saving a click and going
right to the tab you want. This also matches the behavior of the Tools
menu displaying all tool options and taking you directly to each tab.
This is kind of a hard change to get used to ... but I think it's for
the better.

³: kind of stupid because I've never seen a hardware sound card where
floor(frequency) != frequency, but whatever. Yay consistency.

⁴: I'm going to move it to be event-driven, and try to support 24-bit
sample formats if possible. Who knows which cards that'll fix and which
cards that'll break. I may end up making multiple WASAPI drivers so
people can find one that actually works for them. We'll see.
2017-07-17 20:32:36 +10:00
Tim Allen
4129630d97 Update to v103r15 release.
byuu says:

Changelog:

  - ruby: rewrote the API interfaces for Video, Audio, Input
  - ruby/audio: can now select the number of output channels (not useful
    to higan, sorry)
  - ruby/asio: various improvements
  - tomoko: audio settings panel can now select separate audio devices
    (for ASIO, OSS so far)
  - tomoko: audio settings panel frequency and latency lists are
    dynamically populated now

Note: due to the ruby API rewrite, most drivers will not compile. Right
now, the following work:

  - video: Direct3D, XShm
  - audio: ASIO, OSS
  - input: Windows, SDL, Xlib

It takes a really long time to rewrite these (six hours to do the
above), so it's going to be a while before we're back at 100%
functionality again.

Errata:

  - ASIO needs device(), setDevice()
  - need to call setDevice() at program startup to populate
    frequency/latency settings properly
  - changing the device and/or frequency needs to update the emulator
    resampler rates

The really hard part is going to be the last one: the only way to change
the emulator frequency is to flush all the audio streams and then
recompute all the coefficients for the resamplers. If this is called
during emulation, all audio streams will be erased and thus no sound
will be output. I'll most likely be forced to simply ignore
device/frequency changes until the user loads another game. It is at
least possible to toggle the latency dynamically.
2017-07-17 15:11:18 +10:00
Tim Allen
17697317d4 Update to v103r14 release.
byuu says:

Changelog:

  - tomoko: by popular choice, default to adaptive mode on new installs
  - hiro/windows: fix bug that was preventing the escape key from
    closing some dialog windows
  - nall/registry: use "\\\\" as separator instead of "/" ... because
    some registry keys contain "/" in them >_>
  - ruby: add ASIO driver stub (so far it can only initialize and grab
    the driver name/version information)
2017-07-15 22:00:20 +10:00
Tim Allen
ed5ec58595 Update to v103r13 release.
byuu says:

Changelog:

  - gb/interface: fix Game Boy Color extension to be "gbc" and not "gb"
    [hex\_usr]
  - ms/interface: move Master System hardware controls below controller
    ports
  - sfc/ppu: improve latching behavior of BGnHOFS registers (not
    hardware verified) [AWJ]
  - tomoko/input: rework port/device mapping to support non-sequential
    ports and devices¹
      - todo: should add move() to inputDevice.mappings.append and
        inputPort.devices.append
      - note: there's a weird GCC 4.9 bug with brace initialization of
        InputEmulator; have to assign each field separately
  - tomoko: all windows sans the main presentation window can be
    dismissed with the escape key
  - icarus: the single file selection dialog ("Load ROM Image...") can
    be dismissed with the escape key
  - tomoko: do not pause emulation when FocusLoss/Pause is set during
    exclusive fullscreen mode
  - hiro/(windows,gtk,qt): implemented Window::setDismissable() function
    (missing from cocoa port, sorry)
  - nall/string: fixed printing of largest possible negative numbers (eg
    `INT_MIN`) [Sintendo]
      - only took eight months! :D

¹: When I tried to move the Master System hardware port below the
controller ports, I ran into a world of pain.

The input settings list expects every item in the
`InputEmulator<InputPort<InputDevice<InputMapping>>>>` arrays to be
populated with valid results. But these would be sparsely populated
based on the port and device IDs from inside higan. And that is done so
that the Interface::inputPoll can have O(1) lookup of ports and devices.
This worked because all the port and device IDs were sequential (they
left no gaps in the maps upon creating the lists.)

Unfortunately by changing the expectation of port ID to how it appears
in the list, inputs would not poll correctly. By leaving them alone and
just moving Hardware to the third position, the Game Gear would be
missing port IDs of 0 and 1 (the controller ports of the Master System).
Even by trying to make separate MasterSystemHardware and
GameGearHardware ports, things still fractured when the devices were no
longer contigious.

I got pretty sick of this and just decided to give up on O(1)
port/device lookup, and moved to O(n) lookup. It only knocked the
framerate down by maybe one frame per second, enough to be in the margin
of error. Inputs aren't polled *that* often for loops that usually
terminate after 1-2 cycles to be too detrimental to performance.

So the new input system now allows non-sequential port and device IDs.

Remember that I killed input IDs a while back. There's never any reason
for those to need IDs ... it was easier to just order the inputs in the
order you want to see them in the user interface. So the input lookup is
still O(1). Only now, everything's safer and I return a
maybe<InputMapping&>, and won't crash out the program trying to use a
mapping that isn't found for some reason.

Errata: the escape key isn't working on the browser/message dialogs on
Windows, because of course nothing can ever just be easy and work for
me. If anyone else wouldn't mind looking into that, I'd greatly
appreciate it.

Having the `WM_KEYDOWN` test inside the main `Application_sharedProc`, it
seems to not respond to the escape key on modal dialogs. If I put the
`WM_KEYDOWN` test in the main window proc, then it doesn't seem to get
called for `VK_ESCAPE` at all, and doesn't get called period for modal
windows. So I'm at a loss and it's past 4AM here >_>
2017-07-12 18:24:27 +10:00
Tim Allen
434e303ffb Update to v103r12 release.
byuu says:

Changelog:

  - ruby/video: cleaned up Direct3D9 driver and fixed catastrophic
    memory leak
  - ruby/video: added fullscreen exclusive mode support to the Direct3D9
    driver¹
  - ruby/video: minor cosmetic code cleanups to various drivers
  - tomoko: added support to always allow input when in fullscreen
    exclusive mode
  - tomoko: fixed window to not remove resizability flag when exiting
    fullscreen mode

¹: I am assuming that exclusive mode will try to capture the primary
monitor. I don't know what will happen in multi-monitor setups, however,
as I don't use such a setup here.

Also, I am using `D3DPRESENT_DISCARD` instead of `D3DPRESENT_FLIP`. I'm
not sure if this will prove better or worse, but I've heard it will
waste less memory, and having a BackBufferCount of 1 should still result
in page flipping anyway. The difference is supposedly just that you
can't rely on the back buffer being a valid copy of the previous frame
like you can with FLIP.

Lastly, if you want Vsync, you can edit the configuration file to enable
that, and then turn off audio sync.

Errata: "pause emulation when focus is lost" is not working with
exclusive mode. I need to add a check to never auto-pause when in
exclusive mode. Thanks to bun for catching that one.
2017-07-09 12:23:17 +10:00
Tim Allen
ee982f098a Update to v103r11 release.
byuu says:

Changelog:

  - tomoko: removed "Settings→Video Emulation→Overscan Mask" setting¹
  - tomoko: remove a few unnecessary calls to resizeViewport on startup
  - tomoko: only resize main window from video settings when in adaptive
    or toggling adaptive mode²
  - hiro/windows: add `SWP_NOACTIVATE` flag to prevent focus stealing on
    resizing invisible windows³
  - hiro/windows: suppress spurious API-generated `onSize()` callback
    when calling `setVisible()`

¹: it just seemed like bad design to default to overscan masking
being disabled with overscan masks of 8 horizontal, 8 vertical out of
the box. Users would adjust the sliders and not see anything happening.
Instead, I've set the default masks to zero. If you want to turn off
overscan masking, simply slide those to zero again.

²: I figure the only way we're going to be able to fairly evaluate
Screwtape's suggestion is to try it both ways. And I will admit, I kind
of like the way this works as well ... a lot more so than I thought I
would, so I think it was a great suggestion. Still, now's the time if
people have strong opinions on this. Be sure to try both r10 and r11 to
compare. Barring no other feedback, I'm going to keep it this way.

³: this fixes the blinking of the main window on startup.

Screwtape, thanks again for the improvement suggestions. At this point
though, I am not using a tiling window manager. If you are able to patch
hiro/gtk and/or hiro/qt (I mostly use GTK) to work with tiling window
managers better, I wouldn't mind applying said patches, so long as they
don't break things on my own Xfce desktop with xfwm4.

Also, I noticed one issue with Xfce ... if the window is maximized and I
try to call `Window::setSize()`, it's not actually removing the maximize
flag. We'll need to look into how to add that to GTK, but I don't think
it's a huge issue. A similar glitch happens on windows where the icon
still reflects being maximized, but it does actually shrink, it just
sticks to the top left corner of the screen. So this isn't really a
critical bug, but would be extra polish.
2017-07-08 11:02:01 +10:00
Tim Allen
cbbf5ec114 Update to v103r10 release.
byuu says:

Changelog:

  - tomoko: video scaling options are now resolutions in the
    configuration file, eg "640x480", "960x720", "1280x960"
  - tomoko: main window is now always resizable instead of fixed width
    (also supports maximizing)
  - tomoko: added support for non-integral scaling in windowed mode
  - tomoko: made the quick/managed state messaging more consistent
  - tomoko: hide "Find Codes ..." button from the cheat editor window if
    the cheat database is not present
  - tomoko: per-game cheats.bml file now goes into the higan/ subfolder
    instead of the root folder

So the way the new video system works is you have the following options
on the video settings panel:

Windowed mode: { Aspect correction, Integral scaling, Adaptive }

Fullscreen mode: { Aspect correction, Integral scaling } (and one day,
hopefully Exclusive will be added here)

Whenever you adjust the overscan masking, or you change any of the
windowed or fullscreen mode settings, or you choose a different video
scale from the main menu, or you load a new game, or you unload a game,
or you rotate the display of an emulated system, the resizeViewport
logic will be invoked. This logic will remember the last option you
chose for video scale, and base the new window size on that value as an
upper limit of the new window size.

If you are in windowed mode and have adaptive enabled, it will shrink
the window to fit the contents of the emulated system's video output.
Otherwise, if you are not in integral scaling mode, it will scale the
video as large as possible to fit into the video scaled size you have
selected. Otherwise, it will perform an integral scale and center the
video inside of the viewport.

If you are in fullscreen mode, it's much the same, only there is no
adaptive mode.

A major problem with Xorg is that it's basically impossible to change
the resizability attribute of a window post-creation. You can do it, but
all kinds of crazy issues start popping up. Like if you toggle
fullscreen, then you'll find that the window won't grow past a certain
fairly small size that it's already at, and cannot be shrunk. And the
multipliers will stop expanding the window as large as they should. And
sometimes the UI elements won't be placed in the correct position, or
the video will draw over them. It's a big mess. So I have to keep the
main window always resizable. Also, note that this is not a limitation
of hiro. It's just totally broken in Xorg itself. No amount of fiddling
has ever allowed this to work reliably for me on either GTK+ 2 or Qt 4.

So what this means is ... the adaptive mode window is also resizable.
What happens here is, whenever you drag the corners of the main window
to resize it, or toggle the maximize window button, higan will bypass
the video scale resizing code and instead act as though the adaptive
scaling mode were disabled. So if integral scaling is checked, it'll
begin scaling in integral mode. Otherwise, it'll begin scaling in
non-integral mode.

And because of this flexibility, it no longer made sense for the video
scale menu to be a radio box. I know, it sucks to not see what the
active selection is anymore, but ... say you set the scale to small,
then you accidentally resized the window a little, but want it snapped
back to the proper small resolution dimensions. If it were a radio item,
you couldn't reselect the same option again, because it's already active
and events don't propagate in said case. By turning them into regular
menu options, the video scale menu can be used to restore window sizing.

Errata:

On Windows, the main window blinks a few times on first load. The fix
for that is a safeguard in the video settings code, roughly like so ...
but note you'd need to make a few other changes for this to work against
v103r10:

    auto VideoSettings::updateViewport(bool firstRun) -> void {
      settings["Video/Overscan/Horizontal"].setValue(horizontalMaskSlider.position());
      settings["Video/Overscan/Vertical"].setValue(verticalMaskSlider.position());
      settings["Video/Windowed/AspectCorrection"].setValue(windowedModeAspectCorrection.checked());
      settings["Video/Windowed/IntegralScaling"].setValue(windowedModeIntegralScaling.checked());
      settings["Video/Windowed/AdaptiveSizing"].setValue(windowedModeAdaptiveSizing.checked());
      settings["Video/Fullscreen/AspectCorrection"].setValue(fullscreenModeAspectCorrection.checked());
      settings["Video/Fullscreen/IntegralScaling"].setValue(fullscreenModeIntegralScaling.checked());
      horizontalMaskValue.setText({horizontalMaskSlider.position()});
      verticalMaskValue.setText({verticalMaskSlider.position()});
      if(!firstRun) presentation->resizeViewport();
    }

That'll get it down to one blink, as with v103 official. Not sure I can
eliminate that one extra blink.

I forgot to remove the setResizable toggle on fullscreen mode exit. On
Windows, the main window will end up unresizable after toggling
fullscreen. I missed that one because like I said, toggling resizability
is totally broken on Xorg. You can fix that with the below change:

    auto Presentation::toggleFullScreen() -> void {
      if(!fullScreen()) {
        menuBar.setVisible(false);
        statusBar.setVisible(false);
      //setResizable(true);
        setFullScreen(true);
        if(!input->acquired()) input->acquire();
      } else {
        if(input->acquired()) input->release();
        setFullScreen(false);
      //setResizable(false);
        menuBar.setVisible(true);
        statusBar.setVisible(settings["UserInterface/ShowStatusBar"].boolean());
      }
      resizeViewport();
    }

Windows is stealing focus on calls to resizeViewport(), so we need to
deal with that somehow ...

I'm not really concerned about the behavior of shrinking the viewport
below the smallest multiplier for a given system. It might make sense to
snap it to the window size and forego all other scaling, but honestly
... meh. I don't really care. Nobody sane is going to play like that.
2017-07-07 13:38:46 +10:00
Tim Allen
7af270aa59 Update to v103r09 release.
byuu says:

Changelog:

  - gba/apu: fixed wave RAM nibble ordering (fixes audio in Castlevania,
    PocketNES)
  - emulator: restructured video information to just a single
    videoResolution() → VideoResolution function
      - returns "projected size" (between 160x144 and 320x240)
      - "internal buffer size" (up to 1280x480)
      - returns aspect correction multiplier that is to be applied to
        the width field
          - the value could be < 1.0 to handle systems with taller
            pixels; although higan doesn't emulate such a system
  - tomoko: all calculations for scaling and overscan masking are done
    by the GUI now
  - tomoko: aspect correction can be enabled in either windowed or
    fullscreen mode separately; moved to Video settings panel
  - tomoko: video scaling multipliers (against 320x240) can now me
    modified from the default (2,3,4) via the configuration file
      - use this as a really barebones way of supporting high DPI
        monitors; although the GUI elements won't scale nicely
      - if you set a value less than two, or greater than your
        resolution divided by 320x240, it's your own fault when things
        blow up. I'm not babysitting anyone with advanced config-file
        only options.
  - tomoko: added new adaptive windowed mode
      - when enabled, the window will shrink to eliminate any black
        borders when loading a game or changing video settings. The
        window will not reposition itself.
  - tomoko: added new adaptive fullscreen mode
      - when enabled, the integral scaling will be disabled for
        fullscreen mode, forcing the video to fill at least one
        direction of the video monitor completely.

I expect we will be bikeshedding for the next month on how to describe
the new video options, where they should appear in the GUI, changes
people want, etc ... but suffice to say, I'm happy with the
functionality, so I don't intend to make changes to -what- things do,
but I will entertain better ways to name things.
2017-07-06 18:29:12 +10:00
Tim Allen
191a71b291 Update to v103r08 release.
byuu says:

Changelog:

  - emulator: improved aspect correction accuracy by using
    floating-point calculations
  - emulator: added videoCrop() function, extended videoSize() to take
    cropping parameters¹
  - tomoko: the overscan masking function will now actually resize the
    viewport²
  - gba/cpu: fixed two-cycle delay on triggering DMAs; not running DMAs
    when the CPU is stopped
  - md/vdp: center video when overscan is disabled
  - pce/vce: resize video output from 1140x240 to 1120x240
  - tomoko: resize window scaling from 326x240 to 320x240
  - tomoko: changed save slot naming and status bar messages to indicate
    quick states vs managed states
  - tomoko: added increment/decrement quick state hotkeys
  - tomoko: save/load quick state hotkeys now save to slots 1-5 instead
    of always to 0
  - tomoko: increased overscan range from 0-16 to 0-24 (in case you want
    to mask the Master System to 240x192)

¹: the idea here was to decouple raw pixels from overscan masking.
Overscan was actually horrifically broken before. The Famicom outputs at
256x240, the Super Famicom at 512x480, and the Mega Drive at 1280x480.
Before, a horizontal overscan mask of 8 would not reduce the Super
Famicom or Mega Drive by nearly as much as the Famicom. WIth the new
videoCrop() function, the internals of pixel size distortions can be
handled by each individual core.

²: furthermore, by taking optional cropping information in
videoSize(), games can scale even larger into the viewport window. So
for example, before the Super Famicom could only scale to 1536x1440. But
by cropping the vertical resolution by 6 (228p effectively, still more
than NTSC can even show), I can now scale to 1792x1596. And wiht aspect
correction, that becomes a perfect 8:7 ratio of 2048x1596, giving me
perfectly crisp pixels without linear interpolation being required.

Errata: for some reason, when I save a new managed state with the SFC
core, the default description is being set to a string of what looks to
be hex numbers. I found the cause ... I'll fix this in the next release.

Note: I'd also like to hide the "find codes..." button if cheats.bml
isn't present, as well as update the SMP TEST register comment from
smp/timing.cpp
2017-07-05 16:39:14 +10:00
Tim Allen
d4876a831f Update to v103r07 release.
byuu says:

Changelog:

  - gba/cpu: massive code cleanup effort
  - gba/cpu: DMA can run in between active instructions¹
  - gba/cpu: added two-cycle startup delay between DMA activation and
    DMA transfers²
  - processor/spc700: BBC, BBC, CBNE cycle 4 is an idle cycle
  - processor/spc700: ADDW, SUBW, MOVW (read) cycle 4 is an idle cycle

¹: unfortunately, this causes yet another performance penalty for the
poor GBA core =( Also, I think I may have missed disabling DMAs while
the CPU is stopped. I'll fix that in the next WIP.

²: I put the waiting counter decrement at the wrong place, so this
doesn't actually work. Needs to be more like
this:

    auto CPU::step(uint clocks) -> void {
      for(auto _ : range(clocks)) {
        for(auto& timer : this->timer) timer.run();
        for(auto& dma : this->dma) if(dma.active && dma.waiting) dma.waiting--;
        context.clock++;
      }
      ...

    auto CPU::DMA::run() -> bool {
      if(cpu.stopped() || !active || waiting) return false;

      transfer();
      if(irq) cpu.irq.flag |= CPU::Interrupt::DMA0 << id;
      if(drq && id == 3) cpu.irq.flag |= CPU::Interrupt::Cartridge;
      return true;
    }

Of course, the real fix will be restructuring how DMA works, so that
it's always running in parallel with the CPU instead of this weird
design where it tries to run all channels in some kind of loop until no
channels are active anymore whenever one channel is activated.

Not really sure how to design that yet, however.
2017-07-05 15:29:27 +10:00
Tim Allen
16f736307e Update to v103r06 release.
byuu says:

Changelog:

  - processor/spc700: restored fetch/load/store/pull/push shorthand
    functions
  - processor/spc700: split functions that tested the algorithm used (`op
    != &SPC700:...`) to separate instructions
      - mostly for code clarity over code size: it was awkward having
        cycle counts change based on a function parameter
  - processor/spc700: implemented Overload's new findings on which
    cycles are truly internal (no bus reads)
  - sfc/smp: TEST register emulation has been vastly improved¹

¹: it turns out that TEST.d4,d5 is the external clock divider (used
when accessing RAM through the DSP), and TEST.d6,d7 is the internal
clock divider (used when accessing IPLROM, IO registers, or during idle
cycles.)

The DSP (24576khz) feeds its clock / 12 through to the SMP (2048khz).
The clock divider setting further divides the clock by 2, 4, 8, or 16.
Since 8 and 16 are not cleanly divislbe by 12, the SMP cycle count
glitches out and seems to take 10 and 2 clocks instead of 8 or 16. This
can on real hardware either cause the SMP to run very slowly, or more
likely, crash the SMP completely until reset.

What's even stranger is the timers aren't affected by this. They still
clock by 2, 4, 8, or 16.

Note that technically I could divide my own clock counters by 24 and
reduce these to {1,2,5,10} and {1,2,4,8}, I instead chose to divide by
12 to better illustrate this hardware issue and better model that the
SMP clock runs at 2048khz and not 1024khz.

Further, note that things aren't 100% perfect yet. This seems to throw
off some tests, such as blargg's `test_timer_speed`. I can't tell how
far off I am because blargg's test tragically doesn't print out fail
values. But you can see the improvements in that higan is now passing
all of Revenant's tests that were obviously completely wrong before.
2017-07-03 17:24:47 +10:00
Tim Allen
40802b0b9f Update to v103r05 release.
byuu says:

Changelog:

  - fc/controller: added ControllerPort class; removed Peripherals class
  - md/controller/gamepad: removed X,Y,Z buttons since this isn't a
    6-button controller
  - ms/controller: added ControllerPort class (not used in Game Gear
    mode); removed Peripherals class
  - pce/controller: added ControllerPort class; removed Peripherals
    class
  - processor/spc700: idle(address) is part of SMP class again, contains
    flag to detect mov (x)+ edge case
  - sfc/controller/super-scope,justifier: use CPU frequency instead of
    hard-coding NTSC frequency
  - sfc/cpu: move 4x8-bit SMP ports to SMP class
  - sfc/smp: move APU RAM to DSP class
  - sfc/smp: improved emulation of TEST registers bits 4-7 [information
    from nocash]
      - d4,d5 is RAM wait states (1,2,5,10)
      - d6,d7 is ROM/IO wait states (1,2,5,10)
  - sfc/smp: code cleanup to new style (order from lowest to highest
    bits; use .bit(s) functions)
  - sfc/smp: $00f8,$00f9 are P4/P5 auxiliary ports; named the registers
    better
2017-07-01 16:15:27 +10:00
Tim Allen
ff3750de4f Update to v103r04 release.
byuu says:

Changelog:

  - fc/apu: $4003,$4007 writes initialize duty counter to 0 instead of 7
  - fc/apu: corrected duty table entries for use with decrementing duty
    counter
  - processor/spc700: emulated the behavior of cycle 3 of (x)+
    instructions to not read I/O registers
      - specifically, this prevents reads from $fd-ff from resetting the
        timers, as observed on real hardware
  - sfc/controller: added ControllerPort class to match Mega Drive
    design
  - sfc/expansion: added ExpansionPort class to match Mega Drive design
  - sfc/system: removed Peripherals class
  - sfc/system: changed `colorburst()` to `cpuFrequency()`; added
    `apuFrequency()`
  - sfc: replaced calls to `system.region == System::Region::*` with
    `Region::*()`
  - sfc/expansion: remove thread from scheduler when device is destroyed
  - sfc/smp: `{read,write}Port` now use a separate 4x8-bit buffer instead
    of underlying APU RAM [hex\_usr]
2017-06-30 14:17:23 +10:00
Tim Allen
78f341489e Update to v103r03 release.
byuu says:

Changelog:

  - md/psg: fixed output frequency rate regression from v103r02
  - processor/m68k: fixed calculations for ABCD, NBCD, SBCD [hex\_usr,
    SuperMikeMan]
  - processor/spc700: renamed abbreviated instructions to functional
    descriptions (eg `XCN` → `ExchangeNibble`)
  - processor/spc700: removed memory.cpp shorthand functions (fetch,
    load, store, pull, push)
  - processor/spc700: updated all instructions to follow cycle behavior
    as documented by Overload with a logic analyzer

Once again, the changes to the SPC700 core are really quite massive. And
this time it's not just cosmetic: the idle cycles have been updated to
pull from various memory addresses. This is why I removed the shorthand
functions -- so that I could handle the at-times very bizarre addresses
the SPC700 has on its address bus during its idle cycles.

There is one behavior Overload mentioned that I don't emulate ... one of
the cycles of the (X) transfer functions seems to not actually access
the $f0-ff internal SMP registers? I don't fully understand what
Overload is getting at, so I haven't tried to support it just yet.

Also, there are limits to logic analyzers. In many cases the same
address is read from twice consecutively. It is unclear which of the two
reads the SPC700 actually utilizes. I tried to choose the most logical
values (usually the first one), but ... I don't know that we'll be able
to figure this one out. It's going to be virtually impossible to test
this through software, because the PC can't really execute out of
registers that have side effects on reads.
2017-06-28 17:24:46 +10:00
Tim Allen
3517d5c4a4 Update to v103r02 release.
byuu says:

Changelog:

  - fc/apu: improved phase duty cycle emulation (mode 3 is 25% phase
    inverted; counter decrements)
  - md/apu: power/reset do not cancel 68K bus requests
  - md/apu: 68K is not granted bus access on Z80 power/reset
  - md/controller: replaced System::Peripherals with ControllerPort
    concept
  - md/controller: CTRL port is now read-write, maintains value across
    controller changes (and soon, soft resets)
  - md/psg: PSG sampling rate unintentionally modified¹
  - processor/spc700: improve cycle timing of (indirect),y instructions
    [Overload]
  - processor/spc700: idle() cycles actually read from the program
    counter; much like the 6502 [Overload]
      - some of the idle() cycles should read from other addresses; this
        still needs to be supported
  - processor/spc700: various cleanups to instruction function naming
  - processor/z80: prefix state (HL→IX,IY override) can now be
    serialized
  - icarus: fix install rule for certain platforms (it wasn't buggy on
    FreeBSD, but was on Linux?)

¹: the clock speed of the PSG is oscillator/15. But I was setting the
sampling rate to oscillator/15/16, which was around 223KHz. I am not
sure whether the PSG should be outputting at 3MHz or 223KHz. Amazingly
... I don't really hear a difference either way `o_O` I didn't actually
mean to make this change; I just noticed it after comparing the diff
between r01 and r02. If this turns out to be wrong, set

    stream = Emulator::audio.createStream(1, frequency() / 16.0);

in md/psg.cpp to revert this change.
2017-06-27 11:18:28 +10:00
Tim Allen
ecc7e899e0 Update to v103r01 release.
byuu says:

Changelog:

  - nall/dsp: improve one pole coefficient calculations [Fatbag]
  - higan/audio: reworked filters to support selection of either one
    pole (first-order) or biquad (second-order) filters
      - note: the design is not stable yet; so forks should not put too
        much effort into synchronizing with this change yet
  - fc: added first-order filters as per NESdev wiki (90hz lowpass +
    440hz lowpass + 14khz highpass)
  - fc: created separate NTSC-J and NTSC-U regions
      - NESdev wiki says the Japanese Famicom uses a separate audio
        filtering strategy, but details are fuzzy
      - there's also cartridge audio output being disabled on NES units;
        and differences with controllers
      - this stuff will be supported in the future, just adding the
        support for it now
  - gba: corrected serious bugs in PSG wave channel emulation [Cydrak]
      - note that if there are still bugs here, it's my fault
  - md/psg,ym2612: added first-order low-pass 2840hz filter to match
    VA3-VA6 Mega Drives
  - md/psg: lowered volume relative to the YM2612
      - using 0x1400; multiple people agreed it was the closest to the
        hardware recordings against a VA6
  - ms,md/psg: don't serialize the volume levels array
  - md/vdp: Hblank bit acts the same during Vblank as outside of it (it
    isn't always set during Vblank)
  - md/vdp: return isPAL in bit 0 of control port reads
  - tomoko: change command-line option separator from : to |
      - [Editor's note: This change was present in the public v103,
        but it's in this changelog because it was made after the v103 WIP]
  - higan/all: change the 20hz high-pass filters from second-order
    three-pass to first-order one-pass
      - these filters are meant to remove DC bias, but I honestly can't
        hear a difference with or without them
      - so there's really no sense wasting CPU power with an extremely
        powerful filter here

Things I did not do:

  - change icarus install rule
  - work on 8-bit Mega Drive SRAM
  - work on Famicom or Mega Drive region detection heuristics in icarus

My long-term dream plan is to devise a special user-configurable
filtering system where you can set relative volumes and create your own
list of filters (any number of them in any order at any frequency), that
way people can make the systems sound however they want.

Right now, the sanest place to put this information is inside the
$system.sys/manifest.bml files. But that's not very user friendly, and
upgrading to new versions will lose these changes if you don't copy them
over manually. Of course, cluttering the GUI with a fancy filter editor
is probably supreme overkill for 99% of users, so maybe that's fine.
2017-06-26 11:41:58 +10:00
Tim Allen
f6d7922e62 Include the official shaders in build artifacts. 2017-06-22 16:28:21 +10:00
Tim Allen
a2baea248f Don't bundle the cheats database in built artifacts.
As of v103, higan no longer includes the cheat database.
2017-06-22 16:27:13 +10:00
Tim Allen
561c6413a4 Update to v103 final release.
byuu says (in the public annoucement):

With this release, PC Engine, Master System, Game Gear, Mega Drive and
the newly added SuperGrafx support are now quite usable! They're far
from the best emulators for these systems, but with many bugfixes, full
sound emulation, and save state support ... many games are now fully
playable with decent accuracy. The Game Boy Advance emulation is also
now substantially improved with vastly improved sound quality and a new
dot-based PPU renderer. With that change, every single component in
higan is now cycle-based. Regrettably, these changes do carry a ~20%
performance penalty compared to GBA emulation in v102.

Changelog (since the previous release):

  - added SuperGrafx emulation
  - improved audio band-pass filtering for all emulated systems
  - screen rotation is now a hotkey; automatically rotates control
    bindings
  - screen rotation now supported on the Game Boy Advance as well (used
    by a small number of games)
  - massive improvements to Mega Drive emulation
  - massive code cleanups and rewrites to many CPU emulation cores
    (MOS6502, WDC65816, SPC700, etc)
  - Famicom, Master System, Mega Drive: added PAL emulation support
  - PC Engine, SuperGrafx, Master System, Game Gear, Mega Drive: added
    save state support
  - PC Engine, SuperGrafx: added PSG sound emulation
  - Master System, Game Gear: added PSG sound emulation
  - Mega Drive: added Z80 APU emulation [with help from Cydrak]
  - Mega Drive: added PSG sound emulation
  - Mega Drive: added YM2612 sound emulation [Cydrak]
  - Super Famicom: fixed Super Game Boy emulation
  - PC Engine: added save RAM support (using per-game PCE-CD backup RAM)
  - Game Boy Advance: substantial improvements to audio emulation
    quality
  - Game Boy Advance: convert scanline-based PPU renderer to a dot-based
    renderer
  - Game Boy Advance: properly initialize CPU state (fixes Classic NES
    Series games)
  - Game Boy Advance: MUL timing corrected [Jonas Quinn]
  - Mega Drive: emulate special mappers for Phantasy Star IV, Super
    Street Fighter II, etc.
  - Super Famicom: use darker luma for INIDISP=0 (large improvement to
    Final Fantasy III opening)
  - Super Famicom: fixed bugs in SMP OR1,AND1 instructions
  - cheat code database regrettably removed from official releases; will
    be made available separately
  - Famicom: PAL emulation improvements [hex\_usr]
2017-06-22 16:11:59 +10:00
Tim Allen
b7006822bf Update to v103 WIP release.
byuu says (in the WIP forum):

Changelog:

  - higan: cheat codes accept = and ? separators now
      - the new preferred code format is: address=value or
        address=if-match?value
      - the old code format of address/value and address/if-match/value
        will continue to work
  - higan: cheats.bml is no longer included with the base distribution
      - mightymo stopped updating it in 2015, and it's not source code;
        it can still be pulled in from older releases
  - fc: improved PAL mode timing; use PAL APU timing tables; fix PAL
    noise period table [hex\_usr]
  - md: support aborting a Z80 bus wait in order to capture save states
    without freezing
      - note that this will violate accuracy; but in practice a slight
        desync is better than an emulator deadlock
  - sfc: revert DSP ENDX randomization for now (want to research it more
    before deploying in an official release)
  - sfc: fix Super Famicom.sys/manifest.bml APU RAM size [hex\_usr]
  - tomoko: cleaned up make install rules
  - hiro/cocoa: use ABGR for pixel data [Sintendo]

Note: I forgot to change the command-line and drag-and-drop separator
from : to | in this WIP. However, it is corrected in the v103 official
binary and source published on download.byuu.org. Sorry about that, I
know it makes the Git repository history more difficult. I'm not
concerned whether the : → | change is part of v103 or v103r01 in the
repository, and will leave this to your discretion, Screwtape.

I also still need to set the VDP bit to indicate PAL mode in the Mega
Drive core. This is what happens when I have 47 things I have to do,
given how lousy my memory is. I miss things.
2017-06-22 16:10:13 +10:00
Tim Allen
8476f35153 Update to v102r28 release.
byuu says:

Changelog:

  - higan: `Emulator::<Platform::load>()` now returns a struct containing
    both a path ID and a string option
  - higan: `Emulator::<Platform::load>()` now takes an optional final
    argument of string options
  - fc: added PAL emulation (finally, only took six years)
  - md: added PAL emulation
  - md: fixed address parameter to `VDP::Sprite::write()`; fixes missing
    sprites in Super Street Fighter II
  - md: emulated HIRQ counter; fixes many games
      - Super Street Fighter II - status bar
      - Altered Beast - status bar
      - Sonic the Hedgehog - Labyrinth Zone - water effect
      - etc.
  - ms: added PAL emulation
  - sfc: added the ability to override the default region auto-detection
  - sfc: removed "system.region" override setting from `Super Famicom.sys`
  - tomoko: added options list to game folder load dialog window
  - tomoko: added the ability to specify game folder load options on the
    command-line

So, basically ... Sega forced a change with the way region detection
works. You end up with games that can run on multiple regions, and the
content changes accordingly. Bare Knuckle in NTSC-J mode will become
Streets of Rage in NTSC-U mode. Some games can even run in both NTSC and
PAL mode.

In my view, there should be a separate ROM for each region a game was
released in, even if the ROM content were identical. But unfortunately
that's not how things were done by anyone else.

So to support this, the higan load dialog now has a drop-down at the
bottom-right, where you can choose the region to load games from. On the
SNES, it defaults to "Auto", which will pull the region setting from the
manifest, or fall back on NTSC. On the Mega Drive ... unfortunately, I
can't auto-detect the region from the ROM header. $1f0 is supposed to
contain a string like "JUE", but instead you get games like Maui Mallard
that put an "A" there, and other such nonsense. Sega was far more lax
than Nintendo with the ROM header validity. So for now at least, you
have to manually select your region every time you play a Mega Drive
game, thus you have "NTSC-J", "NTSC-U", and "PAL". The same goes for the
Master System for the same reason, but there's only "NTSC" and "PAL"
here. I'm not sure if games have a way to detect domestic vs
international consoles.

And for now ... the Famicom is the same as well, with no auto-detection.
I'd sincerely hope iNES has a header bit for the region, but I didn't
bother with updating icarus to support that yet.

The way to pass these parameters on the command-line is to prefix the
game path with "option:", so for example:

    higan "PAL:/path/to/Sonic the Hedgehog (USA, Europe).md"

If you don't provide a prefix, it uses the default (NTSC-J, NTSC, or
Auto.) Obviously, it's not possible to pass parameters with
drag-and-drop, so you will always get the default option in said case.
2017-06-20 22:34:50 +10:00
Tim Allen
e7806dd6e8 Update to v102r27 release.
byuu says:

Changelog:

  - processor/gsu: minor code cleanup
  - processor/hg51b: renamed reg(Read,Write) to register(Read,Write)
  - processor/lr35902: minor code cleanup
  - processor/spc700: completed code cleanup (sans disassembler)
      - no longer uses internal global state inside instructions
  - processor/spc700: will no longer hang the emulator if stuck in a WAI
    (SLEEP) or STP (STOP) instruction
  - processor/spc700: fixed bug in handling of OR1 and AND1 instructions
  - processor/z80: minor code cleanup
  - sfc/dsp: revert to initializing registers to 0x00; save for
    ENDX=random(), FLG=0xe0 [Jonas Quinn]

Major testing of the SNES game library would be appreciated, now that
its CPU cores have all been revised.

We know the DSP registers read back as randomized data ... mostly, but
there are apparently internal latches, which we can't emulate with the
current DSP design. So until we know which registers have separate
internal state that actually *is* initialized, I'm going to play it safe
and not break more games.

Thanks again to Jonas Quinn for the continued research into this issue.

EDIT: that said ... `MD works if((ENDX&0x30) > 0)` is only a 3:4 chance
that the game will work. That seems pretty unlikely that the odds of it
working are that low, given hardware testing by others in the past :/ I
thought if worked if `PITCH != 0` before, which would have been way more
likely.

The two remaining CPU cores that need major cleanup efforts are the
LR35902 and ARM cores. Both are very large, complicated, annoying cores
that will probably be better off as full rewrites from scratch. I don't
think I want to delay v103 in trying to accomplish that, however.

So I think it'll be best to focus on allowing the Mega Drive core to not
lock when processors are frozen waiting on a response from other
processors during a save state operation. Then we should be good for a
new release.
2017-06-19 12:07:54 +10:00
Tim Allen
50411a17d1 Update to v102r26 release.
byuu says:

Changelog:

  - md/ym2612: initialize DAC sample to center volume [Cydrak]
  - processor/arm: add accumulate mode extra cycle to mlal [Jonas
    Quinn]
  - processor/huc6280: split off algorithms, improve naming of functions
  - processor/mos6502: split off algorithms
  - processor/spc700: major revamp of entire core (~50% completed)
  - processor/wdc65816: fixed several bugs introduced by rewrite

For the SPC700, this turns out to be very old code as well, with global
object state variables, those annoying `{Boolean,Natural}BitField` types,
`under_case` naming conventions, heavily abbreviated function names, etc.
I'm working to get the code to be in the same design as the MOS6502,
HuC6280, WDC65816 cores, since they're all extremely similar in terms of
architectural design (the SPC700 is more of an off-label
reimplementation of a 6502 core, but still.)

The main thing left is that about 90% of the actual instructions still
need to be adapted to not use the internal state (`aa`, `rd`, `dp`,
`sp`, `bit` variables.) I wanted to finish this today, but ran out of
time before work.

I wouldn't suggest too much testing just yet. We should wait until the
SPC700 core is finished for that. However, if some does want to and
spots regressions, please let me know.
2017-06-16 10:06:17 +10:00
Tim Allen
b73d918776 Update to v102r25 release.
byuu says:

Changelog:

  - processor/arm: corrected MUL instruction timings [Jonas Quinn]
  - processor/wdc65816: finished phase two of the rewrite

I'm really pleased with the visual results of the wdc65816 core rewrite.
I was able to eliminate all of the weird `{Boolean,Natural}BitRange`
templates, as well as the need to use unions/structs. Registers are now
just simple `uint24` or `uint16` types (technically they're `Natural<T>`
types, but then all of higan uses those), flags are now just bool types.
I also eliminated all of the implicit object state inside of the core
(aa, rd, dp, sp) and instead do all computations on the stack frame with
local variables. Through using macros to reference the registers and
individual parts of them, I was able to reduce the visual tensity of all
of the instructions. And by using normal types without implicit states,
I was able to eliminate about 15% of the instructions necessary, instead
reusing existing ones.

The final third phase of the rewrite will be to recode the disassembler.
That code is probably the oldest code in all of higan right now, still
using sprintf to generate the output. So it is very long overdue for a
cleanup.

And now for the bad news ... as with any large code cleanup, regression
errors have seeped in. Currently, no games are running at all. I've left
the old disassembler in for this reason: we can compare trace logs of
v102r23 against trace logs of v102r25. The second there's any
difference, we've spotted a buggy instruction and can correct it.

With any luck, this will be the last time I ever rewrite the wdc65816
core. My style has changed wildly over the ~10 years since I wrote this
core, but it's really solidifed in recent years.
2017-06-15 01:55:55 +10:00
Tim Allen
6e8406291c Update to v102r24 release.
byuu says

Changelog:

  - FC: fixed three MOS6502 regressions [hex\_usr]
  - GBA: return fetched instruction instead of 0 for unmapped MMIO
    (passes all of endrift's I/O tests)
  - MD: fix VDP control port read Vblank bit to test screen height
    instead of hard-code 240 (fixes Phantasy Star IV)
  - MD: swap USP,SSP when executing an exception (allows Super Street
    Fighter II to run; but no sprites visible yet)
  - MD: grant 68K access to Z80 bus on reset (fixes vdpdoc demo ROM from
    freezing immediately)
  - SFC: reads from $00-3f,80-bf:4000-43ff no longer update MDR
    [p4plus2]
  - SFC: massive, eight-hour cleanup of WDC65816 CPU core ... still not
    complete

The big change this time around is the SFC CPU core. I've renamed
everything from R65816 to WDC65816, and then went through and tried to
clean up the code as much as possible. This core is so much larger than
the 6502 core that I chose cleaning up the code to rewriting it.

First off, I really don't care for the BitRange style functionality. It
was an interesting experiment, but its fatal flaw are that the types are
just bizarre, which makes them hard to pass around generically to other
functions as arguments. So I went back to the list of bools for flags,
and union/struct blocks for the registers.

Next, I renamed all of the functions to be more descriptive: eg
`op_read_idpx_w` becomes `instructionIndexedIndirectRead16`. `op_adc_b`
becomes `algorithmADC8`. And so forth.

I eliminated about ten instructions because they were functionally
identical sans the index, so I just added a uint index=0 parameter to
said functions. I added a few new ones (adjust→INC,DEC;
pflag→REP,SEP) where it seemed appropriate.

I cleaned up the disaster of the instruction switch table into something
a whole lot more elegant without all the weird argument decoding
nonsense (still need M vs X variants to avoid having to have 4-5
separate switch tables, but all the F/I flags are gone now); and made
some things saner, like the flag clear/set and branch conditions, now
that I have normal types for flags and registers once again.

I renamed all of the memory access functions to be more descriptive to
what they're doing: eg writeSP→push, readPC→fetch,
writeDP→writeDirect, etc. Eliminated some of the special read/write
modes that were only used in one single instruction.

I started to clean up some of the actual instructions themselves, but
haven't really accomplished much here. The big thing I want to do is get
rid of the global state (aa, rd, iaddr, etc) and instead use local
variables like I am doing with my other 65xx CPU cores now. But this
will take some time ... the algorithm functions depend on rd to be set
to work on them, rather than taking arguments. So I'll need to rework
that.

And then lastly, the disassembler is still a mess. I want to finish the
CPU cleanups, and then post a new WIP, and then rewrite the disassembler
after that. The reason being ... I want a WIP that can generate
identical trace logs to older versions, in case the CPU cleanup causes
any regressions. That way I can more easily spot the errors.

Oh ... and a bit of good news. v102 was running at ~140fps on the SNES
core. With the new support to suspend/resume WAI/STP, plus the internal
CPU registers not updating the MDR, the framerate dropped to ~132fps.
But with the CPU cleanups, performance went back to ~140fps. So, hooray.
Of course, without those two other improvements, we'd have ended up at
possibly ~146-148fps, but oh well.
2017-06-13 11:42:31 +10:00
Tim Allen
cea64b9991 Update to v102r23 release.
byuu says:

Changelog:
  - rewrote the 6502 CPU core from scratch. Now called MOS6502,
    supported BCD mode
      - Famicom core disables BCD mode via MOS6502::BCD = 0;
  - renamed r65816 folder to wdc65816 (still need to rename the actual
    class, though ...)

Note: need to remove build rules for the now renamed r6502, r65816
objects from processor/GNUmakefile.

So this'll seem like a small WIP, but it was a solid five hours to
rewrite the entire 6502 core. The reason I wanted to do this was because
the old 6502 core was pretty sloppy. My coding style improved a lot, and
I really liked how the HuC6280 CPU core came out, so I wanted the 6502
core to be like that one.

The core can now support BCD mode, so hopefully that will prove useful
to hex\_usr and allow one core to run both the NES and his Atari 2600
cores at some point.

Note that right now, the core doesn't support any illegal instructions.
The old core supported a small number of them, but were mostly the no
operation ones. The goal is support all of the illegal instructions at
some point.

It's very possible the rewrite introduced some regressions, so thorough
testing of the NES core would be appreciated if anyone were up for it.
2017-06-11 11:51:53 +10:00
Tim Allen
8af3e4a6e2 Update to v102r22 release.
byuu says:

Changelog:

  - higan: Emulator::Interface::videoSize() renamed to videoResolution()
  - higan: Emulator::Interface::rtcsync() renamed to rtcSynchronize()
  - higan: added video display rotation support to Video
  - GBA: substantially improved audio mixing
      - fixed bug with FIFO 50%/100% volume setting
      - now properly using SOUNDBIAS amplitude to control output
        frequencies
      - reduced quantization noise
      - corrected relative volumes between PSG and FIFO channels
      - both PSG and FIFO values cached based on amplitude; resulting in
        cleaner PCM samples
      - treating PSG volume=3 as 200% volume instead of 0% volume now
        (unverified: to match mGBA)
  - GBA: properly initialize ALL CPU state; including the vital
    prefetch.wait=1 (fixes Classic NES series games)
  - GBA: added video rotation with automatic key translation support
  - PCE: reduced output resolution scalar from 285x242 to 285x240
      - the extra two scanlines won't be visible on most TVs; and they
        make all other cores look worse
      - this is because all other cores output at 240p or less; so they
        were all receiving black bars in windowed mode
  - tomoko: added "Rotate Display" hotkey setting
  - tomoko: changed hotkey multi-key logic to OR instead of AND
      - left support for flipping it back inside the core; for those so
        inclined; by uncommenting one line in input.hpp
  - tomoko: when choosing Settings→Configuration, it will
    automatically select the currently loaded system
      - for instance, if you're playing a Game Gear game, it'll take you
        to the Game Gear input settings
      - if no games are loaded, it will take you to the hotkeys panel
        instead
  - WS(C): merged "Hardware-Vertical", "Hardware-Horizontal" controls
    into combined "Hardware"
  - WS(C): converted rotation support from being inside the core to
    using Emulator::Video
      - this lets WS(C) video content scale larger now that it's not
        bounded by a 224x224 square box
  - WS(C): added automatic key rotation support
  - WS(C): removed emulator "Rotate" key (use the general hotkey
    instead; I recommend F8 for this)
  - nall: added serializer support for nall::Boolean (boolean) types
      - although I will probably prefer the usage of uint1 in most cases
2017-06-09 00:08:02 +10:00
Tim Allen
a4629e1f64 Update to v102r21 release.
byuu says:

Changelog:

  - GBA: fixed WININ2 reads, BG3PB writes [Jonas Quinn]
  - R65816: added support for yielding/resuming from WAI/STP¹
  - SFC: removed status.dmaCounter functionality (also fixes possible
    TAS desync issue)
  - tomoko: added support for combinatorial inputs [hex\_usr\]²
  - nall: fixed missing return value from Arithmetic::operator--
    [Hendricks266]

Now would be the time to start looking for major regressions with the
new GBA PPU renderer, I suppose ...

¹: this doesn't matter for the master thread (SNES CPU), but is
important for slave threads (SNES SA1). If you try to save a state and
the SA1 is inside of a WAI instruction, it will get stuck there forever.
This was causing attempts to create a save state in Super Bomberman
- Panic Bomber W to deadlock the emulator and crash it. This is now
finally fixed.

Note that I still need to implement similar functionality into the Mega
Drive 68K and Z80 cores. They still have the possibility of deadlocking.
The SNES implementation was more a dry-run test for this new
functionality. This possible crashing bug in the Mega Drive core is the
major blocking bug for a new official release.

²: many, many thanks to hex\_usr for coming up with a really nice
design. I mostly implemented it the exact same way, but with a few tiny
differences that don't really matter (display " and ", " or " instead of
" & ", " | " in the input settings windows; append → bind;
assignmentName changed to displayName.)

The actual functionality is identical to the old higan v094 and earlier
builds. Emulated digital inputs let you combine multiple possible keys
to trigger the buttons. This is OR logic, so you can map to eg
keyboard.up OR gamepad.up for instance. Emulated analog inputs always
sum together. Emulated rumble outputs will cause all mapped devices to
rumble, which is probably not at all useful but whatever. Hotkeys use
AND logic, so you have to press every key mapped to trigger them. Useful
for eg Ctrl+F to trigger fullscreen.

Obviously, there are cases where OR logic would be nice for hotkeys,
too. Eg if you want both F11 and your gamepad's guide button to trigger
the fullscreen toggle. Unfortunately, this isn't supported, and likely
won't ever be in tomoko. Something I might consider is a throw switch in
the configuration file to swap between AND or OR logic for hotkeys, but
I'm not going to allow construction of mappings like "(Keyboard.Ctrl and
Keyboard.F) or Gamepad.Guide", as that's just too complicated to code,
and too complicated to make a nice GUI to set up the mappings for.
2017-06-06 23:44:40 +10:00
Tim Allen
3bcf3c24c9 Update to v102r20 release.
byuu says:

Changelog:

  - nall: `#undef OUT` on Windows platform
  - GBA: add missing CPU prefetch state to serialization (this was
    breaking serialization in games using ROM prefetch)
  - GBA: reset all PPU data in the power() function (some things were
    missing before, causing issues on reset)
  - GBA: restored horizontal mosaic emulation to the new pixel-based
    renderer
  - GBA: fixed tilemap background horizontal flipping (Legend of Spyro -
    warning screen)
  - GBA: fixed d8 bits of scroll registers (ATV - Thunder Ridge Racers -
    menu screen)
  - SFC: DRAM refresh ticks the ALU MUL/DIV registers five steps forward
    [reported by kevtris]
  - SFC: merged dmaCounter and autoJoypadCounter into new shared
    clockCounter
      - left stub for old dmaCounter so that I can do some traces to
        ensure the new code's 100% identical

GBA save states would have been broken since whenever I emulated ROM
prefetch. I guess not many people are using the GBA core ...
2017-06-06 11:39:27 +10:00
Tim Allen
2461293ff0 Update to v102r19 release.
byuu says:

Note: add `#undef OUT` to the top of higan/gba/ppu/ppu.hpp to compile on
Windows (ugh ...) Now to await posts about this in four more threads
again ;)

Changelog:

  - GBA: rewrote PPU from a scanline-based renderer to a pixel-based
    renderer
  - ruby: fixed video/gdi bugs

Note that there's an approximately 21% speed penalty compared to v102r18
for the pixel-based renderer.

Also, horizontal mosaic effects are not yet implemented. But they should
be prior to v103. This one is a little tricky as it currently works on
fully rendered scanlines. I need to roll the mosaic into the background
renderers, and then for sprites, well ... see below.

The trickiest part by far of this new renderer is the object (sprite)
system. Unlike every other system I emulate, the GBA supports affine
rendering of its sprites. Or in other words, rotation effects. And it
also has a very complex priority system.

Right now, I can't see any way that the GBA PPU could render pixels in
real-time like this. My belief is that there's a 240-entry buffer that
fills up the next scanline's row of pixels. Which means it probably also
runs on the last scanline of Vblank so that the first scanline has
sprite data.

However, I didn't design my object renderer like this just yet. For now,
it creates a buffer of all 240 pixels right away at the start of the
scanline. I know\!\! That's technically scanline-based. But it's only
for fetching object tiledata, and it's only temporary.

What needs to happen is I need a way to run something like a "mini libco
thread" inside of the main thread, so that the object renderer can run
in parallel with the rest of the PPU, yet not be a hideous abomination
of a state machine, yet also not be horrendously slow as a full libco
thread would be.

I'm envisioning some kind of stackless yielding coroutine. But I'll need
to think through how to design that, given the absence of coroutines
even in C++17.
2017-06-04 13:16:44 +10:00
Tim Allen
1ca4609079 Update to v102r18 release.
byuu says:

This WIP fixes all the critical pending issues I had open. I'm sure
there's many more that simply didn't make their way into said list. So
by all means, please report important issues you're aware of so they can
get fixed.

Changelog:

  - ruby: add variable texture support to GDI video driver [bug
    reported by Cydrak]
  - ruby: minor cleanups to XShm video driver
  - ruby: fix handling of up+down, left+right hat cases for XInput
    driver [bug reported by Cydrak]
  - nall: fixed vector class so that compilation with GCC 7.1 should
    succeed [SuperMikeMan]
  - sfc: initialize most DSP registers to random values to fix Magical
    Drop [Jonas Quinn]
  - sfc: lower PPU brightness when luma=0 from 50% scale to 25% scale;
    helps scenes like Final Fantasy III's intro
2017-05-30 17:48:41 +10:00
Tim Allen
82c58527c3 Update to v102r17 release.
byuu says:

Changelog:

  - GBA: process audio at 2MHz instead of 32KHz¹
  - MD: do not allow the 68K to stop the Z80, unless it has been granted
    bus access first
  - MD: do not reset bus requested/granted signals when the 68K resets
    the Z80
      - the above two fix The Lost Vikings
  - MD: clean up the bus address decoding to be more readable
  - MD: add support for a13000-a130ff (#TIME) region; pass to cartridge
    I/O²
  - MD: emulate SRAM mapping used by >16mbit games; bank mapping used
    by >32mbit games³
  - MD: add 'reset pending' flag so that loading save states won't
    reload 68K PC, SP registers
      - this fixes save state support ... mostly⁴
  - MD: if DMA is not enabled, do not allow CD5 to be set [Cydrak]
      - this fixes in-game graphics for Ristar. Title screen still
        corrupted on first run
  - MD: detect and break sprite lists that form an infinite loop
    [Cydrak]
      - this fixes the emulator from dead-locking on certain games
  - MD: add DC offset to sign DAC PCM samples [Cydrak]
      - this improves audio in Sonic 3
  - MD: 68K TAS has a hardware bug that prevents writing the result back
    to RAM
      - this fixes Gargoyles
  - MD: 68K TRAP should not change CPU interrupt level
      - this fixes Shining Force II, Shining in the Darkness, etc
  - icarus: better SRAM heuristics for Mega Drive games

Todo:

  - need to serialize the new cartridge ramEnable, ramWritable, bank
    variables

¹: so technically, the GBA has its FIFO queue (raw PCM), plus a GB
chipset. The GB audio runs at 2MHz. However, I was being lazy and
running the sequencer 64 times in a row, thus decimating the audio to
32KHz. But simply discarding 63 out of every 64 samples resorts in
muddier sound with more static in it.

However ... increasing the audio thread processing intensity 64-fold,
and requiring heavy-duty three-chain lowpass and highpass filters is not
cheap. For this bump in sound quality, we're eating a loss of about 30%
of previous performance.

Also note that the GB audio emulation in the GBA core still lacks many
of the improvements made to the GB core. I was hoping to complete the GB
enhancements, but it seems like I'm never going to pass blargg's
psychotic edge case tests. So, first I want to clean up the GB audio to
my current coding standards, and then I'll port that over to the GBA,
which should further increase sound quality. At that point, it sound
exceed mGBA's audio quality (due to the ridiculously high sampling rate
and strong-attenuation audio filtering.)

²: word writes are probably not handled correctly ... but games are
only supposed to do byte writes here.

³: the SRAM mapping is used by games like "Story of Thor" and
"Phantasy Star IV." Unfortunately, the former wasn't released in the US
and is region protected. So you'll need to change the NTSU to NTSCJ in
md/system/system.cpp in order to boot it. But it does work nicely now.
The write protection bit is cleared in the game, and then it fails to
write to SRAM (soooooooo many games with SRAM write protection do this),
so for now I've had to disable checking that bit. Phantasy Star IV has a
US release, but sadly the game doesn't boot yet. Hitting some other bug.

The bank mapping is pretty much just for the 40mbit Super Street Fighter
game. It shows the Sega and Capcom logos now, but is hitting yet another
bug and deadlocking.

For now, I emulate the SRAM/bank mapping registers on all cartridges,
and set sane defaults. So long as games don't write to $a130XX, they
should all continue to work. But obviously, we need to get to a point
where higan/icarus can selectively enable these registers on a per-game
basis.

⁴: so, the Mega Drive has various ways to lock a chip until another
chip releases it. The VDP can lock the 68K, the 68K can lock the Z80,
etc. If this happens when you save a state, it'll dead-lock the
emulator. So that's obviously a problem that needs to be fixed. The fix
will be nasty ... basically, bypassing the dead-lock, creating a
miniature, one-instruction-long race condition. Extremely unlikely to
cause any issues in practice (it's only a little worse than the SNES
CPU/SMP desync), but ... there's nothing I can do about it. So you'll
have to take it or leave it. But yeah, for now, save states may lock up
the emulator. I need to add code to break the loops when in the process
of creating a save state still.
2017-03-10 21:23:29 +11:00
Tim Allen
04072b278b Update to v102r16 release.
byuu says:

Changelog:

  - Emulator::Stream now allows adding low-pass and high-pass filters
    dynamically
      - also accepts a pass# count; each pass is a second-order biquad
        butterworth IIR filter
  - Emulator::Stream no longer automatically filters out >20KHz
    frequencies for all streams
  - FC: added 20Hz high-pass filter; 20KHz low-pass filter
  - GB: removed simple 'magic constant' high-pass filter of unknown
    cutoff frequency (missed this one in the last WIP)
  - GB,SGB,GBC: added 20Hz high-pass filter; 20KHz low-pass filter
  - MS,GG,MD/PSG: added 20Hz high-pass filter; 20KHz low-pass filter
  - MD: added save state support (but it's completely broken for now;
    sorry)
  - MD/YM2612: fixed Voice#3 per-operator pitch support (fixes sound
    effects in Streets of Rage, etc)
  - PCE: added 20Hz high-pass filter; 20KHz low-pass filter
  - WS,WSC: added 20Hz high-pass filter; 20KHz low-pass filter

So, the point of the low-pass filters is to remove frequencies above
human hearing. If we don't do this, then resampling will introduce
aliasing that results in sounds that are audible to the human ear. Which
basically an annoying buzzing sound. You'll definitely hear the
improvement from these in games like Mega Man 2 on the NES. Of course,
these already existed before, so this WIP won't sound better than
previous WIPs.

The high-pass filters are a little more complicated. Their main role is
to remove DC bias and help to center the audio stream. I don't
understand how they do this at all, but ... that's what everyone who
knows what they're talking about says, thus ... so be it.

I have set all of the high-pass filters to 20Hz, which is below the
limit of human hearing. Now this is where it gets really interesting ...
technically, some of these systems actually cut off a lot of range. For
instance, the GBA should technically use an 800Hz high-pass filter when
output is done through the system's speakers. But of course, if you plug
in headphones, you can hear the lower frequencies.

Now 800Hz ... you definitely can hear. At that level, nearly all of the
bass is stripped out and the audio is very tinny. Just like the real
system. But for now, I don't want to emulate the audio being crushed
that badly.

I'm sticking with 20Hz everywhere since it won't negatively affect audio
quality. In fact, you should not be able to hear any difference between
this WIP and the previous WIP. But theoretically, DC bias should mostly
be removed as a result of these new filters. It may be that we need to
raise the values on some cores in the future, but I don't want to do
that until we know for certain that we have to.

What I can say is that compared to even older WIPs than r15 ... the
removal of the simple one-pole low-pass and high-pass filters with the
newer three-pass, second-order filters should result in much better
attenuation (less distortion of audible frequencies.) Probably not
enough to be noticeable in a blind test, though.
2017-03-09 07:20:40 +11:00
Tim Allen
7e7003fd29 Update to v102r15 release.
byuu says:

Changelog:

  - nall: added DSP::IIR::OnePole (which is a first-order IIR filter)
  - FC/APU: removed strong highpass, weak hipass filters (and the
    dummied out lowpass filter)
  - MS,GG,MD/PSG: removed lowpass filter
  - MS,GG,MD/PSG: audio was not being centered properly; removed
    centering for now
  - MD/YM2612: fixed clipping of accumulator from 18 signed bits to 14
    signed bits (-0x2000 to +0x1fff) [Cydrak]
  - MD/YM2612: removed lowpass filter
  - PCE/PSG: audio was not being centered properly; removed centering
    for now

First thing is that I've removed all of the ad-hoc audio filtering.
Emulator::Stream intrinsically provides a three-pass, second-order
biquad IIR butterworth lowpass filter that clips frequencies above 20KHz
with very good attenuation (as good as IIR gets, anyway.)

It doesn't really make sense to have the various cores running
additional lowpass filters. If we want to filter frequencies below
20KHz, then I can adapt Emulator::Audio::createStream() to take a cutoff
frequency value, and we can do it all at once, with much better quality.

Right now, I don't know what frequencies are best to cut off the various
other audio cores, so they're just gone for now.

As for the highpass filters for the Famicom core, well ... you don't get
aliasing from resampling low frequencies. And generally speaking, too
low a frequency will be inaudible anyway. All these were doing was
killing possible bass (if they were too strong.) We can add them again,
but only if someone can convert Ryphecha's ad-hoc magic integers into a
frequency cutoff. In which case, I'll use my biquad IIR filter to do it
even better. On this note, it may prove useful to do this for the MD PSG
as well, to try and head off unnecessary clamping when mixing with the
YM2612.

Finally, there was the audio centering issue that affected the
MS,GG,MD,PCE,SG cores. It was flooring the "silent" audio level, which
was resulting in extremely heavy distortion if you tried listening to
higan and, say, audacious at the same time. Without the botched
centering, this distortion is completely gone now.

However, without any centering, we've halved the potential volume range.
This means the audio slider in higan's audio settings panel will start
clamping twice as quickly. So ultimately, we need to figure out how to
fix the centering. This isn't as simple as just subtracting less. We
will probably have to center every individual audio channel before
summing them to do this properly.

Results:

On the Mega Drive, Altered Beast sounds quite a bit better, a lot less
distortion now. But it's still not perfect, especially sound effects.
Further, Bare Knuckle / Streets of Rage still has really bad sound
effects. It looks like I broke something in Cydrak's code when trying to
adapt it to my style =(
2017-03-07 07:23:22 +11:00
Tim Allen
89d47914b9 Update to v102r14 release.
byuu says:

Changelog:

  - (MS,GG,MD)/PSG: flip output bit from noise channel [TmEE]
  - MD/YM2612: rewrite YM2612::Channel functions to
    YM2612::Channel::Operator functions¹
  - MD/YM2612: pitch/octave I/O registers should set reload, not value
    (fixes sound in most games)
  - MD/YM2612: don't try to sign-extend raw PCM values (fixes Shining
    Force opening music)
  - MD/YM2612: various algorithm simplifications; conversions from
    `*`, `/`, `%` to `<<`, `>>`; etc.

Overall ... Sonic the Hedgehog sounds really, really great. Almost
perfect, but there's a bit of clamping going on in the special zones.
Langrisser II sounds really great. Shining Force sounds pretty much
perfect. Bare Knucles (Streets of Rage) does pretty badly ... punches
sound more like dinging a salad fork on a wine glass, heh. Altered Beast
is extremely broken ... no music at the title screen, very distorted
in-game music. I suspect a bug outside of the YM2612 is affecting this
game.

So, the YM2612 emulation isn't perfect, but it's a really good start to
the most complex sound chip in all of higan. Hopefully the VRC7 and
YM2413 will prove to be less ferocious ... not that I'm in any rush to
work on either. The former is going to need the NES mapper rewrite to be
done first, and the latter is cool but not very necessary since all
those games have fallbacks to the inferior PSG audio.

But really ... I can't thank Cydrak enough for doing this for me. It
would have probably taken me months to parse through all of the
documentation on this chip (most of which is in a 55-page thread on
spritesmind that is filled with wrong/outdated information at the start,
and corrections as you go deeper.) Not to mention, learning about what
the hell detuning, low-frequency oscillation, tremolo, vibrato, etc were
all about. Or how those algorithms to compute the final output work. Or
the dozens of special cases littered in there to make everything sound
good. Fierce, nasty chip that.

Now the last real problem is save states ... the Mega Drive is going to
be the trickiest of all to implement with libco. There are lots of areas
where one chip will deadlock another chip while it completes some
operation. We don't have a choice but to force those stalls to abort
anyway, in order to let libco reach the start of its entry point once
again. I don't know what kind of impact that'll have on states ... I
suspect they'll work almost as reliably as the SNES does, but I can't
know that until I implement it. It's going to be pretty nasty, though.

¹: this basically removes a lot of unnecessary op. prefixes and the
need to capture `auto& op = operators[index]` at the start of every
function.

I wanted to have subfunctions like
`YM2612::Channel::Operator::Envelope::run()`, etc but unfortunately,
pretty much all of the envelope, phase, pitch, level functions need to
access each other's state.
2017-03-03 21:45:07 +11:00
Tim Allen
0bf2c9d4e1 Update to v102r13 release.
byuu says:

Changelog:

  - removed Emulator::Interface::videoFrequency(), audioFrequency()¹
  - (MS,GG,MD)/PSG: removed inversion on noise channel LFSR update
    [mic_]
  - MD/PSG: lowered volume to match YM2612 volume
  - MD/YM2612: added Cydrak's emulation of FM channels and LFO²

¹: These were no longer used by the UI. The video frequency is
adaptive on many systems. And the audio frequency is meaningless due to
Emulator::Audio always outputting a consistent frequency specified by
the UI. Plus, take the Genesis where there's two sound chips running at
different frequencies. So, these had to go.

²: Due to some lurking bugs, the audio is completely broken
unfortunately. Will need to be debugged :(

First pass looking for any typos didn't yield any obvious results.
2017-03-02 07:40:55 +11:00
Tim Allen
4c3f9b93e7 Update to v102r12 release.
byuu says:

Changelog:

  - MD/PSG: fixed 68K bus Z80 status read address location
  - MS, GG, MD/PSG: channels post-decrement their counters, not
    pre-decrement [Cydrak]¹
  - MD/VDP: cache screen width registers once per scanline; screen
    height registers once per frame
  - MD/VDP: support 256-width display mode (used in Shining Force, etc)
  - MD/YM2612: implemented timers²
  - MD/YM2612: implemented 8-bit PCM DAC²
  - 68000: TRAP instruction should index the vector location by 32 (eg
    by 128 bytes), fixes Shining Force
  - nall: updated hex(), octal(), binary() functions to take uintmax
    instead of template<typename T> parameter³

¹: this one makes an incredible difference. Sie noticed that lots of
games set a period of 0, which would end up being a really long period
with pre-decrement. By fixing this, noise shows up in many more games,
and sounds way better in games even where it did before. You can hear
extra sound on Lunar - Sanposuru Gakuen's title screen, the noise in
Sonic The Hedgehog (Mega Drive) sounds better, etc.

²: this also really helps sound. The timers allow PSG music to play
back at the correct speed instead of playing back way too quickly. And
the PCM DAC lets you hear a lot of drum effects, as well as the
"Sega!!" sound at the start of Sonic the Hedgehog, and the infamous,
"Rise from your grave!" line from Altered Beast.

Still, most music on the Mega Drive comes from the FM channels, so
there's still not a whole lot to listen to.

I didn't implement Cydrak's $02c test register just yet. Sie wasn't 100%
certain on how the extended DAC bit worked, so I'd like to play it a
little conservative and get sound working, then I'll go back and add a
toggle or something to enable undocumented registers, that way we can
use that to detect any potential problems they might be causing.

³: unfortunately we lose support for using hex() on nall/arithmetic
types. If I have a const Pair& version of the function, then the
compiler gets confused on whether Natural<32> should use uintmax or
const Pair&, because compilers are stupid, and you can't have explicit
arguments in overloaded functions. So even though either function would
work, it just decides to error out instead >_>

This is actually really annoying, because I want hex() to be useful for
printing out nall/crypto keys and hashes directly.

But ... this change had to be made. Negative signed integers would crash
programs, and that was taking out my 68000 disassembler.
2017-02-27 19:45:51 +11:00
Tim Allen
1cab2dfeb8 Update to v102r11 release.
byuu says:

Changelog:

  - MD: connected 32KB cartridge RAM up to every Genesis game under 2MB
    loaded¹
  - MS, GG, MD: improved PSG noise channel emulation, hopefully²
  - MS, GG, MD: lowered PSG volume so that the lowpass doesn't clamp
    samples³
  - MD: added read/write handlers for VRAM, VSRAM, CRAM
  - MD: block VRAM copy when CD4 is clear⁴
  - MD: rewrote VRAM fill, VRAM copy to be byte-based⁵
  - MD: VRAM fill byte set should fall through to regular data port
    write handler⁶

¹: the header parsing for backup RAM is really weird. It's spaces
when not used, and seems to be 0x02000001-0x02003fff for the Shining
games. I don't understand why it starts at 0x02000001 instead of
0x02000000. So I'm just forcing every game to have 32KB of RAM for now.
There's also special handling for ROMs > 2MB that also have RAM
(Phantasy Star IV, etc) where there's a toggle to switch between ROM and
RAM. For now, that's not emulated.

I was hoping the Shining games would run after this, but they're still
dead-locking on me :(

²: Cydrak pointed out some flaws in my attempt to implement what he
had. I was having trouble understanding what he meant, so I went back
and read the docs on the sound chip and tried implementing the counter
the way the docs describe. Hopefully I have this right, but I don't know
of any good test ROMs to make sure my noise emulation is correct. The
docs say the shifted-out value goes to the output instead of the low bit
of the LFSR, so I made that change as well.

I think I hear the noise I'm supposed to in Sonic Marble Zone now, but
it seems like it's not correct in Green Hill Zone, adding a bit of an
annoying buzz to the background music. Maybe it sounds better with the
YM2612, but more likely, I still screwed something up :/

³: it's set to 50% range for both cores right now. For the MD, it
will need to be 25% once YM2612 emulation is in.

⁴: technically, this deadlocks the VDP until a hard reset. I could
emulate this, but for now I just don't do the VRAM copy in this case.

⁵: VSRAM fill and CRAM fill not supported in this new mode. They're
technically undocumented, and I don't have good notes on how they work.
I've been seeing conflicting notes on whether the VRAM fill buffer is
8-bits or 16-bits (I chose 8-bits), and on whether you write the low
byte and then high byte of each words, or the high byte and then low
byte (I chose the latter.)

The VRAM copy improvements fix the opening text in Langrisser II, so
that's great.

⁶: Langrisser II sets the transfer length to one less than needed to
fill the background letter tile on the scenario overview screen. After
moving to byte-sized transfers, a black pixel was getting stuck there.
So effectively, VRAM fill length becomes DMA length + 1, and the first
byte uses the data port so it writes a word value instead of just a byte
value. Hopefully this is all correct, although it probably gets way more
complicated with the VDP FIFO.
2017-02-25 22:11:46 +11:00
Tim Allen
68f04c3bb8 Update to v102r10 release.
byuu says:

Changelog:

  - removed Emulator::Interface::Capabilities¹
  - MS: improved the PSG emulation a bit
  - MS: added cheat code support
  - MS: added save state support²
  - MD: emulated the PSG³

¹: there's really no point to it anymore. I intend to add cheat codes
to the GBA core, as well as both cheat codes and save states to the Mega
Drive core. I no longer intend to emulate any new systems, so these
values will always be true. Further, the GUI doesn't respond to these
values to disable those features anymore ever since the hiro rewrite, so
they're double useless.

²: right now, the Z80 core is using a pointer for HL-\>(IX,IY)
overrides. But I can't reliably serialize pointers, so I need to convert
the Z80 core to use an integer here. The save states still appear to
work fine, but there's the potential for an instruction to execute
incorrectly if you're incredibly unlucky, so this needs to be fixed as
soon as possible. Further, I still need a way to serialize
array<T, Size> objects, and I should also add nall::Boolean
serialization support.

³: I don't have a system in place to share identical sound chips. But
this chip is so incredibly simple that it's not really much trouble to
duplicate it. Further, I can strip out the stereo sound support code
from the Game Gear portion, so it's even tinier.

Note that the Mega Drive only just barely uses the PSG. Not at all in
Altered Beast, and only for a tiny part of the BGM music on Sonic 1,
plus his jump sound effect.
2017-02-23 08:25:01 +11:00
Tim Allen
8071da4c6a Update to v102r09 release.
byuu says:

Changelog:

  - MD: restructured DMA to a subclass of VDP
  - MD: implemented VRAM copy mode (fixes Langrisser II ... mostly)
  - MS: implemened PSG support [Cydrak]
  - GG: implemented PSG stereo sound support
  - MS: use the new struct Model {} design that other cores use

The MS/GG PSG should be feature complete, but I don't have good tests
for Game Gear stereo mode, nor for the noise channel. There's also a
really weird behavior with when to reload the channel counters on volume
register writes. I can confirm what Cydrak observed in that following
the docs and reloading always creates serious audio distortion problems.
So, more research is needed there.

To get the correct sound out of the PSG, I have to run it at 3.58MHz /
16, which seems really weird to me. The docs make it sound like it's
supposed to run at the full 3.58MHz. If we can really run it at
223.7KHz, then that's help reduce the overhead of PSG emulation, which
will definitely come in handy for Mega Drive, and possibly later Mega
CD, emulation.

I have not implemented the PSG into the Mega Drive just yet. Nor have I
implemented save states or cheat code support into the MS/GG cores yet.
The latter is next on my list.
2017-02-21 22:07:33 +11:00
Tim Allen
d76c0c7e82 Update to v102r08 release.
byuu says:

Changelog:

  - PCE: restructured VCE, VDCs to run one scanline at a time
  - PCE: bound VDCs to 1365x262 timing (in order to decouple the VDCs
    from the VCE)
  - PCE: the two changes above allow save states to function; also
    grants a minor speed boost
  - PCE: added cheat code support (uses 21-bit bus addressing; compare
    byte will be useful here)
  - 68K: fixed `mov *,ccr` to read two bytes instead of one [Cydrak]
  - Z80: emulated /BUSREQ, /BUSACK; allows 68K to suspend the Z80
    [Cydrak]
  - MD: emulated the Z80 executing instructions [Cydrak]
  - MD: emulated Z80 interrupts (triggered during each Vblank period)
    [Cydrak]
  - MD: emulated Z80 memory map [Cydrak]
  - MD: added stubs for PSG, YM2612 accesses [Cydrak]
  - MD: improved bus emulation [Cydrak]

The PCE core is pretty much ready to go. The only major feature missing
is FM modulation.

The Mega Drive improvements let us start to see the splash screens for
Langrisser II, Shining Force, Shining in the Darkness. I was hoping I
could get them in-game, but no such luck. My Z80 implementation is
probably flawed in some way ... now that I think about it, I believe I
missed the BusAPU::reset() check for having been granted access to the
Z80 first. But I doubt that's the problem.

Next step is to implement Cydrak's PSG core into the Master System
emulator. Once that's in, I'm going to add save states and cheat code
support to the Master System core.

Next, I'll add the PSG core into the Mega Drive. Then I'll add the
'easy' PCM part of the YM2612. Then the rest of the beastly YM2612 core.
Then finally, cap things off with save state and cheat code support.

Should be nearing a new release at that point.
2017-02-20 19:13:10 +11:00
Tim Allen
7c9b78b7bb Update to v102r07 release.
byuu says:

Changelog:

  - PCE: emulated PSG volume controls (vastly enhances audio quality)
  - PCE: emulated PSG noise as a square wave (somewhat enhances audio
    quality)
  - PCE: added save state support (currently broken and deadlocks the
    emulator though)

Thankfully, MAME had some rather easy to read code on how the volume
adjustment works, which they apparently ripped out of expired patents.
Hooray!

The two remaining sound issues are:

1. the random number generator for the noise channel is definitely not
hardware accurate. But it won't affect the sound quality at all. You'd
only be able to tell the difference by looking at hex bytes of a stream
rip.
2. I have no clue how to emulate the LFO (frequency modulation). A comment
in MAME's code (they also don't emulate it) advises that they aren't
aware of any games that even use it. But I'm there has to be at least one?

Given LFO not being used, and the RNG not really mattering all that much
... the sound's pretty close to perfect now.
2017-02-13 10:09:03 +11:00
Tim Allen
fa6cbac251 Update to v102r06 release.
byuu says:

Changelog:

  - added higan/emulator/platform.hpp (moved out Emulator::Platform from
    emulator/interface.hpp)
  - moved gmake build paramter to nall/GNUmakefile; both higan and
    icarus use it now
  - added build=profile mode
  - MD: added the region select I/O register
  - MD: started to add region selection support internally (still no
    external select or PAL support)
  - PCE: added cycle stealing when reading/writing to the VDC or VCE;
    and when using ST# instructions
  - PCE: cleaned up PSG to match the behavior of Mednafen (doesn't
    improve sound at all ;_;)
      - note: need to remove loadWaveSample, loadWavePeriod
  - HuC6280: ADC/SBC decimal mode consumes an extra cycle; does not set
    V flag
  - HuC6280: block transfer instructions were taking one cycle too many
  - icarus: added code to strip out PC Engine ROM headers
  - hiro: added options support to BrowserDialog

The last one sure ended in failure. The plan was to put a region
dropdown directly onto hiro::BrowserDialog, and I had all the code for
it working. But I forgot one important detail: the system loads
cartridges AFTER powering on, so even though I could technically change
the system region post-boot, I'd rather not do so.

So that means we have to know what region we want before we even select
a game. Shit.
2017-02-11 10:56:42 +11:00
Tim Allen
bf70044edc Update to v102r05 release.
byuu says:

Changelog:

  - higan: added Makefile option,
    `build=(release|debug|instrument|optimize)` , defaults to release
  - PCE: added preliminary PSG (sound) emulation

The Makefile thing is just to make it easier to build debug releases
without having to hand-edit the Makefile. Just say "gmake build=debug"
and you'll get -g, otherwise you'll get -O3 -s. I'll probably start
adding these build= blocks to my other projects. Or maybe I'll put it
into nall, in which case release will need a different name ... a stable
-01, and a fast -03 mode. I also want to add a mode to generate
profiling information (via gprof.)

Unfortunately, the existing documentation on the PCE's PSG is as
barebones as humanly possible.

Right now, I support waveform mode, direct D/A mode, and noise
generation mode. However for noise, I'm not actually generating a proper
square wave, and I don't know the PRNG algorithm used for choosing the
random values. So for now, I'm just feeding in nall::random() values to
it.

I'm also not sure about the noise mode's frequency counter. Magic Kit is
implying it's 64*~frequency, but that results in an 11-bit period. It
seems only logical that we'd want a 12-bit period. So my guess is that
it's actually 12-bit, and halfway through it alternates between two
randomly generated values every 32 samples, and the two values are
generated every time the period hits zero.

Next up, it's not clear when the period counter is reloaded, either for
the waveform or the noise mode. So for now, when enabling the channel, I
reload the waveform period. And when enabling noise mode, I reload the
noise period. I don't know if you need to do it when writing to the
frequency registers or not.

Next, it's not clear whether the period is a decrement-and-compare, or a
compare-and-decrement, and whether we reload with frequency,
frequency-1, or frequency+1. There's this cryptic note in
pcetext.txt:

> The PSG channel frequency is 12 bits, $001 is the highest frequency,
> $FFF is the next to lowest frequency, and $000 is the lowest frequency.

As best I can tell, he's trying to say that it's decrement-and-compare.

Whatever the case, there's periodic popping noises every few seconds. I
thought it might be because this is the first system with a fractional
sampling rate (~3.57MHz), but rounding the frequency to a whole number
doesn't help at all, and emulator/audio should be able to handle
fractional resampling rates anyway.

The popping noises could also be due to PSG writes being cycle-timed,
and my HuC6280 cycle timings not being very great yet. The PSG has no
kind of interrupts, so I think careful timing is the only way to do
certain things, especially D/A mode.

Next up, I really don't understand the frequency modulation mode at all.
I don't have any idea whatsoever how to support that. It also has a
frequency value that we'll need to understand how the period works and
reloads. Basic idea though is the channel 1 output turns into a value to
modulate channel 0's frequency by, and channel 1's output gets muted.

Next up, I don't know how the volume controls work at all. There's a
master volume left+right, per-channel volume left+right, and per-channel
overall volume. The documentation lists their effects in terms of
decibels. I have no fucking clue how to turn decibels into multiply-by
values. Let alone how to stack THREE levels of audio volume controls
>_>

Next, it looks like the output is always 5-bit unsigned per-channel, but
there's also all the volume adjustments. So I don't know the final
bit-depth of the final output to normalize the value into a signed
floating point value between -1.0 and +1.0. So for now, half the
potential speaker range (anything below zero) isn't used in the
generated output.

As bad as all this sounds, and it is indeed bad ... the audio's about
~75% correct, so you can definitely play games like this, it just won't
be all that much fun.
2017-02-10 08:56:59 +11:00
Tim Allen
ee7662a8be Update to v102r04 release.
byuu says:

Changelog:
  - Super Game Boy support is functional once again
  - new GameBoy::SuperGameBoyInterface class
  - system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
    Engine
  - merged WonderSwanInterface, WonderSwanColorInterface shared
    functions to WonderSwan::Interface
  - merged GameBoyInterface, GameBoyColorInterface shared functions to
    GameBoy::Interface
  - Interface::unload() now calls Interface::save() for Master System,
    Game Gear, Mega Drive, PC Engine, SuperGrafx
  - PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
    file)
      - this means you can now save your progress in games like Neutopia
      - the PCE-CD I/O registers like BRAM write protect are not
        emulated yet
  - PCE: IRQ sources now hold the IRQ line state, instead of the CPU
    holding it
      - this fixes most SuperGrafx games, which were fighting over the
        VDC IRQ line previously
  - PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
    are disabled
  - PCE: VCE and the VDCs now synchronize to each other; fixes pixel
    widths in all games
  - PCE: greatly increased the accuracy of the VPC priority selection
    code (windows may be buggy still)
  - HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
    [Jonas Quinn]

The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.

In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.

We are going to have to profile and optimize this code once sound
emulation and save states are in.

Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.

-----

Oh, just a fair warning ... the hooks for the SGB are a work in
progress.

If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.

Right now, higan looks like this:

  - Emulator::Video handles the platform→videoRefresh calls
  - Emulator::Audio handles the platform→audioSample calls
  - each core hard-codes the platform→inputPoll, inputRumble calls
  - each core hard-codes calls to path, open, load to process files
  - dipSettings and notify are specialty hacks, neither are even hooked
    up right now to anything

With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.

The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.

dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.

The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.

However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.

And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.

But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.

I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 12:06:06 +11:00
Tim Allen
186f008574 Update to v102r03 release.
byuu says:

Changelog:

  - PCE: split VCE from VDC
  - HuC6280: changed bus from (uint21 addr) to (uint8 bank, uint13 addr)
  - added SuperGrafx emulation (adds secondary VDC, plus new VPC)

The VDC now has no concept of the actual display raster timing, and
instead is driven by Vpulse (start of frame) and Hpulse (start of
scanline) signals from the VCE. One still can't render the start of the
next scanline onto the current scanline through overly aggressive
timings, but it shouldn't be too much more difficult to allow that to
occur now. This process incurs quite a major speed hit, so low-end
systems with Atom CPUs can't run things at 60fps anymore.

The timing needs a lot of work. The pixels end up very jagged if the VCE
doesn't output batches of 2-4 pixels at a time. But this should not be a
requirement at all, so I'm not sure what's going wrong there.

Yo, Bro and the 512-width mode of TV Sports Basketball is now broken as
a result of these changes, and I'm not sure why.

To load SuperGrafx games, you're going to have to change the .pce
extensions to .sg or .sgx. Or you can manually move the games from the
PC Engine folder to the SuperGrafx folder and change the game folder
extensions. I have no way to tell the games apart. Mednafen uses CRC32
comparisons, and I may consider that since there's only five games, but
I'm not sure yet.

The only SuperGrafx game that's playable right now is Aldynes. And the
priorities are all screwed up. I don't understand how the windows or the
priorities work at all from sgxtech.txt, so ... yeah. It's pretty
broken, but it's a start.

I could really use some help with this, as I'm very lost right now with
rendering :/

-----

Note that the SuperGrafx is technically its own system, it's not an
add-on.

As such, I'm giving it a separate .sys folder, and a separate library.

There's debate over how to name this thing. "SuperGrafx" appears more
popular than "Super Grafx". And you might also call it the "PC Engine
SuperGrafx", but I decided to leave off the prefix so it appears more
distinct.
2017-01-24 08:18:54 +11:00
Tim Allen
bdc100e123 Update to v102r02 release.
byuu says:

Changelog:

  - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it
      - if it's really invalid C++, then GCC needs to stop accepting it
        in strict `-std=c++14` mode
  - Emulator::Interface::Information::resettable is gone
  - Emulator::Interface::reset() is gone
  - FC, SFC, MD cores updated to remove soft reset behavior
  - split GameBoy::Interface into GameBoyInterface,
    GameBoyColorInterface
  - split WonderSwan::Interface into WonderSwanInterface,
    WonderSwanColorInterface
  - PCE: fixed off-by-one scanline error [hex_usr]
  - PCE: temporary hack to prevent crashing when VDS is set to < 2
  - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#)
    types to (u)int_(#)t types
  - icarus: replaced usage of unique with strip instead (so we don't
    mess up frameworks on macOS)
  - libco: added macOS-specific section marker [Ryphecha]

So ... the major news this time is the removal of the soft reset
behavior. This is a major!! change that results in a 100KiB diff file,
and it's very prone to accidental mistakes!! If anyone is up for
testing, or even better -- looking over the code changes between v102r01
and v102r02 and looking for any issues, please do so. Ideally we'll want
to test every NES mapper type and every SNES coprocessor type by loading
said games and power cycling to make sure the games are all cleanly
resetting. It's too big of a change for me to cover there not being any
issues on my own, but this is truly critical code, so yeah ... please
help if you can.

We technically lose a bit of hardware documentation here. The soft reset
events do all kinds of interesting things in all kinds of different
chips -- or at least they do on the SNES. This is obviously not ideal.
But in the process of removing these portions of code, I found a few
mistakes I had made previously. It simplifies resetting the system state
a lot when not trying to have all the power() functions call the reset()
functions to share partial functionality.

In the future, the goal will be to come up with a way to add back in the
soft reset behavior via keyboard binding as with the Master System core.
What's going to have to happen is that the key binding will have to send
a "reset pulse" to every emulated chip, and those chips are going to
have to act independently to power() instead of reusing functionality.
We'll get there eventually, but there's many things of vastly greater
importance to work on right now, so it'll be a while. The information
isn't lost ... we'll just have to pull it out of v102 when we are ready.

Note that I left the SNES reset vector simulation code in, even though
it's not possible to trigger, for the time being.

Also ... the Super Game Boy core is still disconnected. To be honest, it
totally slipped my mind when I released v102 that it wasn't connected
again yet. This one's going to be pretty tricky to be honest. I'm
thinking about making a third GameBoy::Interface class just for SGB, and
coming up with some way of bypassing platform-> calls when in this
mode.
2017-01-23 08:04:26 +11:00
Tim Allen
c40e9754bc Update to v102r01 release.
byuu says:

Changelog:

  - MS, MD, PCE: remove controllers from scheduler in destructor
    [hex_usr]
  - PCE: no controller should return all bits set (still causing errant
    key presses when swapping gamepads)
  - PCE: emulate MDR for hardware I/O $0800-$17ff
  - PCE: change video resolution to 1140x242
  - PCE: added tertiary background Vscroll register (secondary cache)
  - PCE: create classes out of VDC VRAM, SATB, CRAM for cleaner access
    and I/O registers
  - PCE: high bits of CRAM read should be set
  - PCE: partially emulated VCE display registers: color frequency, HDS,
    HDW, VDS, VDW
  - PCE: 32-width sprites now split to two 16-width sprites to handle
    overflow properly
  - PCE: hopefully emulated sprite zero hit correctly (it's not well
    documented, and not often used)
  - PCE: trigger line coincidence interrupts during the previous
    scanline's Hblank period
  - tomoko: raise viewport from 320x240 to 326x242 to accommodate PC
    Engine's max resolution
  - nall: workaround for Clang compilation bug that can't figure out
    that a char is an integral data type
2017-01-22 11:33:36 +11:00
Tim Allen
ae5968cfeb Update to v102 release.
byuu says (in the public announcement):

This release adds very preliminary emulation of the Sega Master System
(Mark III), Sega Game Gear, Sega Mega Drive (Genesis), and NEC PC Engine
(Turbografx-16). These cores do not yet offer sound emulation, save
states or cheat codes.

I'm always very hesitant to release a new emulation core in its alpha
stages, as in the past this has resulted in lasting bad impressions
of cores that have since improved greatly. For instance, the Game Boy
Advance emulation offered today is easily the second most accurate around,
yet it is still widely judged by its much older alpha implementation.

However, it's always been tradition with higan to not hold onto code
in secret. Rather than delay future releases for another year or two,
I'll put my faith in you all to understand that the emulation of these
systems will improve over time.

I hope that by releasing things as they are now, I might be able to
receive some much needed assistance in improving these cores, as the
documentation for these new systems is very much less than ideal.

byuu says (in the WIP forum):

Changelog:

  - PCE: latch background scroll registers (fixes Neutopia scrolling)
  - PCE: clip background attribute table scrolling (fixes Blazing Lazers
    scrolling)
  - PCE: support background/sprite enable/disable bits
  - PCE: fix large sprite indexing (fixes Blazing Lazers title screen
    sprites)
  - HuC6280: wrap zeropage accesses to never go beyond $20xx
  - HuC6280: fix alternating addresses for block move instructions
    (fixes Neutopia II)
  - HuC6280: block move instructions save and restore A,X,Y registers
  - HuC6280: emulate BCD mode (may not be 100% correct, based on SNES
    BCD) (fixes Blazing Lazers scoring)
2017-01-20 08:01:15 +11:00
Tim Allen
b03563426f Update to v101r35 release.
byuu says:

Changelog:
  - PCE: added 384KB HuCard ROM mirroring mode
  - PCE: corrected D-pad polling order
  - PCE: corrected palette color ordering (GRB, not RGB -- yes,
    seriously)
  - PCE: corrected SATB DMA -- should write to SATB, not to VRAM
  - PCE: broke out Background, Sprite VDC settings to separate
    subclasses
  - PCE: emulated VDC backgrounds
  - PCE: emulated VDC sprites
  - PCE: emulated VDC sprite overflow, collision interrupts
  - HuC6280: fixed disassembler output for STi instructions
  - HuC6280: added missing LastCycle check to interrupt()
  - HuC6280: fixed BIT, CMP, CPX, CPY, TRB, TSB, TST flag testing and
    result
  - HuC6280: added extra cycle delays to the block move instructions
  - HuC6280: fixed ordering for flag set/clear instructions (happens
    after LastCycle check)
  - HuC6280: removed extra cycle from immediate instructions
  - HuC6280: fixed indirectLoad, indirectYStore absolute addressing
  - HuC6280: fixed BBR, BBS zeropage value testing
  - HuC6280: fixed stack push/pull direction

Neutopia looks okay until the main title screen, then there's some
gibberish on the bottom. The game also locks up with some gibberish once
you actually start a new game. So, still not playable just yet =(
2017-01-19 19:38:57 +11:00
Tim Allen
f500426158 Update to v101r34 release.
byuu says:

Changelog:

  - PCE: emulated gamepad polling
  - PCE: emulated CPU interrupt sources
  - PCE: emulated timer
  - PCE: smarter emulation of ST0,ST1,ST2 instructions
  - PCE: better structuring of CPU, VDP IO registers
  - PCE: connected palette generation to the interface
  - PCE: emulated basic VDC timing
  - PCE: emulated VDC Vblank, Coincidence, and DMA completion IRQs
  - PCE: emulated VRAM, SATB DMA transfers
  - PCE: emulated VDC I/O registers

Everything I've implemented today likely has lots of bugs, and is
untested for obvious reasons.

So basically, after I fix many horrendous bugs, it should now be
possible to implement the VDC and start getting graphical output.
2017-01-17 08:02:56 +11:00
Tim Allen
8499c64756 Update to v101r33 release.
byuu says:

Changelog:

  - PCE: HuC6280 core completed

There's bound to be a countless stream of bugs, and the cycle counts are
almost certainly not exact yet, but ... all instructions are implemented.

So at this point, I can start comparing trace logs against Mednafen's
debugger output.

Of course, we're very likely to immediately slam into a wall of needing
I/O registers implemented for the VDC in order to proceed further.
2017-01-15 11:58:47 +11:00
Tim Allen
26bd7590ad Update to v101r32 release.
byuu says:

Changelog:

  - SMS: fixed controller connection bug
  - SMS: fixed Z80 reset bug
  - PCE: emulated HuC6280 MMU
  - PCE: emulated HuC6280 RAM
  - PCE: emulated HuCard ROM reading
  - PCE: implemented 178 instructions
  - tomoko: removed "soft reset" functionality
  - tomoko: moved "power cycle" to just above "unload" option

I'm not sure of the exact number of HuC6280 instructions, but it's less
than 260.

Many of the ones I skipped are HuC6280-originals that I don't know how
to emulate just yet.

I'm also really unsure about the zero page stuff. I believe we should be
adding 0x2000 to the addresses to hit page 1, which is supposed to be
mapped to the zero page (RAM). But when I look at turboEMU's source, I
have no clue how the hell it could possibly be doing that. It looks to
be reading from page 0, which is almost always ROM, which would be ...
really weird.

I also don't know if I've emulated the T mode opcodes correctly or not.
The documentation on them is really confusing.
2017-01-14 10:59:38 +11:00
Tim Allen
21ee597aae Add a .gitlab-ci.yml to automate WIP builds. 2017-01-13 12:18:25 +11:00
Tim Allen
bf90bdfcc8 Update to v101r31 release.
byuu says:

Changelog:

  - converted Emulator::Interface::Bind to Emulator::Platform
  - temporarily disabled SGB hooks
  - SMS: emulated Game Gear palette (latching word-write behavior not
    implemented yet)
  - SMS: emulated Master System 'Reset' button, Game Gear 'Start' button
  - SMS: removed reset() functionality, driven by the mappable input now
    instead
  - SMS: split interface class in two: one for Master System, one for
    Game Gear
  - SMS: emulated Game Gear video cropping to 160x144
  - PCE: started on HuC6280 CPU core—so far only registers, NOP
    instruction has been implemented

Errata:

  - Super Game Boy support is broken and thus disabled
  - if you switch between Master System and Game Gear without
    restarting, bad things happen:
      - SMS→GG, no video output on the GG
      - GG→SMS, no input on the SMS

I'm not sure what's causing the SMS\<-\>GG switch bug, having a hard
time debugging it. Help would be very much appreciated, if anyone's up
for it. Otherwise I'll keep trying to track it down on my end.
2017-01-13 12:15:45 +11:00
Tim Allen
0ad70a30f8 Update to v101r30 release.
byuu says:

Changelog:

  - SMS: added cartridge ROM/RAM mirroring (fixes Alex Kidd)
  - SMS: fixed 8x16 sprite mode (fixes Wonder Boy, Ys graphics)
  - Z80: emulated "ex (sp),hl" instruction
  - Z80: fixed INx NF (should be set instead of cleared)
  - Z80: fixed loop condition check for CPxR, INxR, LDxR, OTxR (fixes
    walking in Wonder Boy)
  - SFC: removed Debugger and sfc/debugger.hpp
  - icarus: connected MS, GG, MD importing to the scan dialog
  - PCE: added emulation skeleton to higan and icarus

At this point, Master System games are fairly highly compatible, sans
audio. Game Gear games are running, but I need to crop the resolution
and support the higher color palette that they can utilize. It's really
something else the way they handled the resolution shrink on that thing.

The last change is obviously going to be the biggest news.

I'm very well aware it's not an ideal time to start on a new emulation
core, with the MS and MD cores only just now coming to life with no
audio support.

But, for whatever reason, my heart's really set on working on the PC
Engine. I wanted to write the final higan skeleton core, and get things
ready so that whenever I'm in the mood to work on the PCE, I can do so.

The skeleton is far and away the most tedious and obnoxious part of the
emulator development, because it's basically all just lots of
boilerplate templated code, lots of new files to create, etc.

I really don't know how things are going to proceed ... but I can say
with 99.9% certainty that this will be the final brand new core ever
added to higan -- at least one written by me, that is. This was
basically the last system from my childhood that I ever cared about.
It's the last 2D system with games that I really enjoy playing. No other
system is worth dividing my efforts and reducing the quality and amount
of time to work on the systems I have.

In the future, there will be potential for FDS, Mega CD and PCE-CD
support. But those will all be add-ons, and they'll all be really
difficult and challenge the entire design of higan's UI (it's entirely
cartridge-driven at this time.) None of them will be entirely new cores
like this one.
2017-01-12 07:27:30 +11:00
Tim Allen
79c83ade70 Update to v101r29 release.
byuu says:

Changelog:

  - SMS: background VDP clips partial tiles on the left (math may not be
    right ... it's hard to reason about)
  - SMS: fix background VDP scroll locks
  - SMS: fix VDP sprite coordinates
  - SMS: paint black after the end of the visible display
      - todo: shouldn't be a brute force at the end of the main VDP
        loop, should happen in each rendering unit
  - higan: removed emulator/debugger.hpp
  - higan: removed privileged: access specifier
  - SFC: removed debugger hooks
      - todo: remove sfc/debugger.hpp
  - Z80: fixed disassembly of (fd,dd) cb (displacement) (opcode)
    instructions
  - Z80: fix to prevent interrupts from firing between ix/iy prefixes
    and opcodes
      - todo: this is a rather hacky fix that could, if exploited, crash
        the stack frame
  - Z80: fix BIT flags
  - Z80: fix ADD hl,reg flags
  - Z80: fix CPD, CPI flags
  - Z80: fix IND, INI flags
  - Z80: fix INDR, INIT loop flag check
  - Z80: fix OUTD, OUTI flags
  - Z80: fix OTDR, OTIR loop flag check
2017-01-10 08:27:13 +11:00
Tim Allen
a3aea95e6b Update to v101r28 release.
byuu says:

Changelog:

  - SMS: emulated the remaining 240 instructions in the (0xfd, 0xdd)
    0xcb (displacement) (opcode) set
      - 1/8th of these were "legal" instructions, and apparently games
        use them a lot
  - SMS: emulated the standard gamepad controllers
      - reset button not emulated yet

The reset button is tricky. In every other case, reset is a hardware
thing that instantly reboots the entire machine.

But on the SMS, it's more like a gamepad button that's attached to the
front of the device. When you press it, it fires off a reset vector
interrupt and the gamepad polling routine lets you query the status of
the button.

Just having a reset option in the "Master System" hardware menu is not
sufficient to fully emulate the behavior. Even more annoying is that the
Game Gear doesn't have such a button, yet the core information structs
aren't flexible enough for the Master System to have it, and the Game
Gear to not have it, in the main menu. But that doesn't matter anyway,
since it won't work having it in the menu for the Master System.

So as a result, I'm going to have to have a new "input device" called
"Hardware" that has the "Reset" button listed under there. And for the
sake of consistency, I'm not sure if we should treat the other systems
the same way or not :/
2017-01-09 07:55:02 +11:00
Tim Allen
569f5abc28 Update to v101r27 release.
byuu says:

Changelog:

  - SMS: emulated the generic Sega memory mapper (none of the more
    limited forms of it yet)
      - (missing ROM shift, ROM write enable emulation -- no commercial
        games use either, though)
  - SMS: bus I/O returns 0xff instead of 0x00 so games don't think every
    key is being pressed at once
      - (this is a hack until I implement proper controller pad reading)
  - SMS: very limited protection against reading/writing past the end of
    ROM/RAM (todo: should mirror)
  - SMS: VDP background HSCROLL subtracts, rather than adds, to the
    offset (unlike VSCROLL)
  - SMS: VDP VSCROLL is 9-bit, modulates voffset+vscroll to 224 in
    192-line mode (32x28 tilemap)
  - SMS: VDP tiledata for backgrounds and sprites use `7-(x&7)` rather
    than `(x&7)`
  - SMS: fix output color to be 6-bit rather than 5-bit
  - SMS: left clip uses register `#7`, not palette color `#7`
      - (todo: do we want `color[reg7]` or `color[16 + reg7]`?)
  - SMS: refined handling of 0xcb, 0xed prefixes in the Z80 core and its
    disassembler
  - SMS: emulated (0xfd, 0xdd) 0xcb opcodes 0x00-0x0f (still missing
    0x10-0xff)
  - SMS: fixed 0xcb 0b-----110 opcodes to use direct HL and never allow
    (IX,IY)+d
  - SMS: fixed major logic bug in (IX,IY)+d displacement
      - (was using `read(x)` instead of `operand()` for the displacement
        byte fetch before)
  - icarus: fake there always being 32KiB of RAM in all SMS cartridges
    for the time being
      - (not sure how to detect this stuff yet; although I've read it's
        not even really possible `>_>`)

TODO: remove processor/z80/dissassembler.cpp code block at line 396 (as it's unnecessary.)

Lots of commercial games are starting to show trashed graphical output now.
2017-01-06 19:11:38 +11:00
Tim Allen
5bdf55f08f Update to v101r25 release.
byuu says:

Changelog:

  - SMS: emulated VDP mode 4 graphical output (background, sprites)
  - added $(windres) to icarus as well

I'm sure the VDP emulation is still really, really buggy, but
essentially I handle:

  - mode 4 rendering
  - background scrolling
  - background hscroll lock
  - background vscroll lock
  - background nametable relocation
  - sprite nametable relocation
  - sprite tiledata relocation
  - sprite 192-line y=0xd0 edge case (end sprite rendering)
  - sprite 8-pixel x-coordinate displacement
  - sprite extended size (height only in mode 4)
  - sprite overflow
  - sprite collision
  - left column masking
  - display disable
  - backdrop color
  - 192, 224, 240 height

I do not support:

  - mode 2 rendering
  - sprite zoom
  - disallowing 240 height in NTSC mode
  - PAL mode
  - probably lots more
2016-12-30 18:24:35 +11:00
Tim Allen
e30780bb72 Update to v101r25 release.
byuu says:

Changelog:

  - Makefile: added $(windres), -lpthread to Windows port
  - GBA: WAITCNT.prefetch is not writable (should fix Donkey Kong: King
    of Swing) \[endrift\]
  - SMS: fixed hcounter shift value \[hex\_usr\]
  - SMS: emulated interrupts (reset button isn't hooked up anywhere, not
    sure where to put it yet)

This WIP actually took a really long time because the documentation on
SMS interrupts was all over the place. I'm hoping I've emulated them
correctly, but I honestly have no idea. It's based off my best
understanding from four or five different sources. So it's probably
quite buggy.

However, a few interrupts fire in Sonic the Hedgehog, so that's
something to start with. Now I just have to hope I've gotten some games
far enough in that I can start seeing some data in the VDP VRAM. I need
that before I can start emulating graphics mode 4 to get some actual
screen output.

Or I can just say to hell with it and use a "Hello World" test ROM.
That'd probably be smarter.
2016-12-26 23:11:08 +11:00
Tim Allen
bab2ac812a Update to v101r24 release.
byuu says:

Changelog:

  - SMS: extended bus mapping of in/out ports: now decoding them fully
    inside ms/bus
  - SMS: moved Z80 disassembly code from processor/z80 to ms/cpu
    (cosmetic)
  - SMS: hooked up non-functional silent PSG sample generation, so I can
    cap the framerate at 60fps
  - SMS: hooked up the VDP main loop: 684 clocks/scanline, 262
    scanlines/frame (no PAL support yet)
  - SMS: emulated the VDP Vcounter and Hcounter polling ... hopefully
    it's right, as it's very bizarre
  - SMS: emulated VDP in/out ports (data read, data write, status read,
    control write, register write)
  - SMS: decoding and caching all VDP register flags (variable names
    will probably change)
  - nall: \#undef IN on Windows port (prevent compilation warning on
    processor/z80)

Watching Sonic the Hedgehog, I can definitely see some VDP register
writes going through, which is a good sign.

Probably the big thing that's needed before I can get enough into the
VDP to start showing graphics is interrupt support. And interrupts are
never fun to figure out :/

What really sucks on this front is I'm flying blind on the Z80 CPU core.
Without a working VDP, I can't run any Z80 test ROMs to look for CPU
bugs. And the CPU is certainly too buggy still to run said test ROM
anyway. I can't find any SMS emulators with trace logging from reset.
Such logs vastly accelerate tracking down CPU logic bugs, so without
them, it's going to take a lot longer.
2016-12-17 22:31:34 +11:00
Tim Allen
1d7b674dd4 Update to v101r23 release.
byuu says:

This is a really tiny WIP. Just wanted to add the known fixes before I start debugging it against Mednafen in a fork.

Changelog:

  - Z80: fixed flag calculations on 8-bit ADC, ADD, SBC, SUB
  - Z80: fixed flag calculations on 16-bit ADD
  - Z80: simplified DAA logic \[AWJ\]
  - Z80: RETI sets IFF1=IFF2 (same as RETN)
2016-11-15 18:20:42 +11:00
Tim Allen
c2c957a9da Update to v101r22 release.
byuu says:

Changelog:
- Z80: all 25 remaining instructions implemented

Now onto the debugging ... :/
2016-11-01 22:42:25 +11:00
Tim Allen
8cf20dabbf Update to v101r21 release.
byuu says:

Changelog:

- Z80: emulated 83 new instructions
- Z80: timing improvements

DAA is a skeleton implementation to complete the normal opcode set. Also
worth noting that I don't know exactly what the hell RETI is doing,
so for now it acts like RET. RETN probably needs some special handling
besides just setting IFF1=IFF2 as well.

I'm now missing 24 ED-prefix instructions, plus DAA, for a total of 25
opcodes remaining. And then, of course, several weeks worth of debugging
all of the inevitable bugs in the core.
2016-11-01 08:10:33 +11:00
Tim Allen
2707c5316d Update to v101r20 release.
byuu says:

Changelog:
- Z80: emulated 272 new instructions
- hiro/GTK: fixed v101r19 Linux regression [thanks, SuperMikeMan!]
2016-10-29 11:33:30 +11:00
Tim Allen
f3e67da937 Update to v101r19 release.
byuu says:

Changelog:

-   added \~130 new PAL games to icarus (courtesy of Smarthuman
    and aquaman)
-   added all three Korean-localized games to icarus
-   sfc: removed SuperDisc emulation (it was going nowhere)
-   sfc: fixed MSU1 regression where the play/repeat flags were not
    being cleared on track select
-   nall: cryptography support added; will be used to sign future
    databases (validation will always be optional)
-   minor shims to fix compilation issues due to nall changes

The real magic is that we now have 25-30% of the PAL SNES library in
icarus!

Signing will be tricky. Obviously if I put the public key inside the
higan archive, then all anyone has to do is change that public key for
their own releases. And if you download from my site (which is now over
HTTPS), then you don't need the signing to verify integrity. I may just
put the public key on my site on my site and leave it at that, we'll
see.
2016-10-28 08:16:58 +11:00
Tim Allen
c6fc15f8d2 Update to v101r18 release.
byuu says:

Changelog:

  - added 30 new PAL games to icarus (courtesy of Mikerochip)
  - new version of libco no longer requires mprotect nor W|X permissions
  - nall: default C compiler to -std=c11 instead of -std=c99
  - nall: use `-fno-strict-aliasing` during compilation
  - updated nall/certificates (hopefully for the last time)
  - updated nall/http to newer coding conventions
  - nall: improve handling of range() function

I didn't really work on higan at all, this is mostly just a release
because lots of other things have changed.

The most interesting is `-fno-strict-aliasing` ... basically, it joins
`-fwrapv` as being "stop the GCC developers from doing *really* evil
shit that could lead to security vulnerabilities or instabilities."

For the most part, it's a ~2% speed penalty for higan. Except for the
Sega Genesis, where it's a ~10% speedup. I have no idea how that's
possible, but clearly something's going very wrong with strict aliasing
on the Genesis core.

So ... it is what it is. If you need the performance for the non-Genesis
cores, you can turn it off in your builds. But I'm getting quite sick of
C++'s "surprises" and clever compiler developers, so I'm keeping it on
in all of my software going forward.
2016-09-14 21:55:53 +10:00
Tim Allen
d6e9d94ec3 Update to v101r17 release.
byuu says:

Changelog:

  - Z80: added most opcodes between 0x00 and 0x3f (two or three hard
    ones missing still)
  - Z80: redid register declaration *again* to handle AF', BC', DE',
    HL' (ugggggh, the fuck? Alternate registers??)
      - basically, using `#define <register name>` values to get around
        horrendously awful naming syntax
  - Z80: improved handling of displace() so that it won't ever trigger
    on (BC) or (DE)
2016-09-06 23:53:14 +10:00
Tim Allen
2fbbccf985 Update to v101r16 release.
byuu says:

Changelog:

  - Z80: implemented 113 new instructions (all the easy
    LD/ADC/ADD/AND/OR/SBC/SUB/XOR ones)
  - Z80: used alternative to castable<To, With> type (manual cast inside
    instruction() register macros)
  - Z80: debugger: used register macros to reduce typing and increase
    readability
  - Z80: debugger: smarter way of handling multiple DD/FD prefixes
    (using gotos, yay!)
  - ruby: fixed crash with Windows input driver on exit (from SuperMikeMan)

I have no idea how the P/V flag is supposed to work on AND/OR/XOR, so
that's probably wrong for now. HALT is also mostly a dummy function for
now. But I typically implement those inside instruction(), so it
probably won't need to be changed? We'll see.
2016-09-06 10:09:33 +10:00
Tim Allen
4c3f58150c Update to v101r15 release.
byuu says:

Changelog:

  - added (poorly-named) castable<To, With> template
  - Z80 debugger rewritten to make declaring instructions much simpler
  - Z80 has more instructions implemented; supports displacement on
    (IX), (IY) now
  - added `Processor::M68K::Bus` to mirror `Processor::Z80::Bus`
      - it does add a pointer indirection; so I'm not sure if I want to
        do this for all of my emulator cores ...
2016-09-04 23:51:27 +10:00
Tim Allen
d91f3999cc Update to v101r14 release.
byuu says:
Changelog:

  - rewrote the Z80 core to properly handle 0xDD (IX0 and 0xFD (IY)
    prefixes
  - added Processor::Z80::Bus as a new type of abstraction
  - all of the instructions implemented have their proper T-cycle counts
    now
  - added nall/certificates for my public keys

The goal of `Processor::Z80::Bus` is to simulate the opcode fetches being
2-read + 2-wait states; operand+regular reads/writes being 3-read. For
now, this puts the cycle counts inside the CPU core. At the moment, I
can't think of any CPU core where this wouldn't be appropriate. But it's
certainly possible that such a case exists. So this may not be the
perfect solution.

The reason for having it be a subclass of Processor::Z80 instead of
virtual functions for the MasterSystem::CPU core to define is due to
naming conflicts. I wanted the core to say `in(addr)` and have it take
the four clocks. But I also wanted a version of the function that didn't
consume time when called. One way to do that would be for the core to
call `Z80::in(addr)`, which then calls the regular `in(addr)` that goes to
`MasterSystem::CPU::in(addr)`. But I don't want to put the `Z80::`
prefix on all of the opcodes. Very easy to forget it, and then end up not
consuming any time. Another is to use uglier names in the
`MasterSystem::CPU` core, like `read_`, `write_`, `in_`, `out_`, etc. But,
yuck.

So ... yeah, this is an experiment. We'll see how it goes.
2016-09-03 21:26:04 +10:00
Tim Allen
7c96826eb0 Update to v101r13 release.
byuu says:

Changelog:

  - MS: added ms/bus
  - Z80: implemented JP/JR/CP/DI/IM/IN instructions
  - MD/VDP: added window layer emulation
  - MD/controller/gamepad: fixed d2,d3 bits (Altered Beast requires
    this)

The Z80 is definitely a lot nastier than the LR35902. There's a lot of
table duplication with HL→IX→IY; and two of them nest two levels deep
(eg FD CB xx xx), so the design may change as I implement more.
2016-08-27 14:48:21 +10:00
Tim Allen
5df717ff2a Update to v101r12 release.
byuu says:

Changelog:

  - new md/bus/ module for bus reads/writes
      - abstracts byte/word accesses wherever possible (everything but
        RAM; forces all but I/O to word, I/O to byte)
      - holds the system RAM since that's technically not part of the
        CPU anyway
  - added md/controller and md/system/peripherals
  - added emulation of gamepads
  - added stub PSG audio output (silent) to cap the framerate at 60fps
    with audio sync enabled
  - fixed VSRAM reads for plane vertical scrolling (two bugs here: add
    instead of sub; interlave plane A/B)
  - mask nametable read offsets (can't exceed 8192-byte nametables
    apparently)
  - emulated VRAM/VSRAM/CRAM reads from VDP data port
  - fixed sprite width/height size calculations
  - added partial emulation of 40-tile per scanline limitation (enough
    to fix Sonic's title screen)
  - fixed off-by-one sprite range testing
  - fixed sprite tile indexing
  - Vblank happens at Y=224 with overscan disabled
      - unsure what happens when you toggle it between Y=224 and Y=240
        ... probably bad things
  - fixed reading of address register for ADDA, CMPA, SUBA
  - fixed sign extension for MOVEA effect address reads
  - updated MOVEM to increment the read addresses (but not writeback)
    for (aN) mode

With all of that out of the way, we finally have Sonic the Hedgehog
(fully?) playable. I played to stage 1-2 and through the special stage,
at least. EDIT: yeah, we probably need HIRQs for Labyrinth Zone.

Not much else works, of course. Most games hang waiting on the Z80, and
those that don't (like Altered Beast) are still royally screwed. Tons of
features still missing; including all of the Z80/PSG/YM2612.

A note on the perihperals this time around: the Mega Drive EXT port is
basically identical to the regular controller ports. So unlike with the
Famicom and Super Famicom, I'm inheriting the exension port from the
controller class.
2016-08-22 08:11:24 +10:00
Tim Allen
f7ddbfc462 Update to v101r11 release.
byuu says:

Changelog:

  - 68K: fixed NEG/NEGX operand order
  - 68K: fixed bug in disassembler that was breaking trace logging
  - VDP: improved sprite rendering (still 100% broken)
  - VDP: added horizontal/vertical scrolling (90% broken)

Forgot:

  - 68K: fix extension word sign bit on indexed modes for disassembler
    as well
  - 68K: emulate STOP properly (use r.stop flag; clear on IRQs firing)

I'm really wearing out fast here. The Genesis documentation is somehow
even worse than Game Boy documentation, but this is a far more complex
system.

It's a massive time sink to sit here banging away at every possible
combination of how things could work, only to see no positive
improvements. Nothing I do seems to get sprites to do a goddamn thing.

squee says the sprite Y field is 10-bits, X field is 9-bits. genvdp says
they're both 10-bits. BlastEm treats them like they're both 10-bits,
then masks off the upper bit so it's effectively 9-bits anyway.

Nothing ever bothers to tell you whether the horizontal scroll values
are supposed to add or subtract from the current X position. Probably
the most basic detail you could imagine for explaining horizontal
scrolling and yet ... nope. Nothing.

I can't even begin to understand how the VDP FIFO functionality works,
or what the fuck is meant by "slots".

I'm completely at a loss as how how in the holy hell the 68K works with
8-bit accesses. I don't know whether I need byte/word handlers for every
device, or if I can just hook it right into the 68K core itself. This
one's probably the most major design detail. I need to know this before
I go and implement the PSG/YM2612/IO ports-\>gamepads/Z80/etc.

Trying to debug the 68K is murder because basically every game likes to
start with a 20,000,000-instruction reset phase of checksumming entire
games, and clearing out the memory as agonizingly slowly as humanly
possible. And like the ARM, there's too many registers so I'd need three
widescreen monitors to comfortably view the entire debugger output lines
onscreen.

I can't get any test ROMs to debug functionality outside of full games
because every **goddamned** test ROM coder thinks it's acceptable to tell
people to go fetch some toolchain from a link that died in the late '90s
and only works on MS-DOS 6.22 to build their fucking shit, because god
forbid you include a 32KiB assembled ROM image in your fucking archives.

... I may have to take a break for a while. We'll see.
2016-08-21 12:50:05 +10:00
Tim Allen
0b70a01b47 Update to v101r10 release.
byuu says:
Changelog:

  - 68K: MOVEQ is 8-bit signed
  - 68K: disassembler was print EOR for OR instructions
  - 68K: address/program-counter indexed mode had the signed-word/long
    bit backward
  - 68K: ADDQ/SUBQ #n,aN always works in long mode; regardless of size
  - 68K→VDP DMA needs to use `mode.bit(0)<<22|dmaSource`; increment by
    one instead of two
  - Z80: added registers and initial two instructions
  - MS: hooked up enough to load and start running games
      - Sonic the Hedgehog can execute exactly one instruction... whoo.
2016-08-20 00:11:26 +10:00
Tim Allen
4d2e17f9c0 Update to v101r09 release.
byuu says:

Sorry, two WIPs in one day. Got excited and couldn't wait.

Changelog:

  - ADDQ, SUBQ shouldn't update flags when targeting an address register
  - ADDA should sign extend effective address reads
  - JSR was pushing the PC too early
  - some improvements to 8-bit register reads on the VDP (still needs
    work)
  - added H/V counter reads to the VDP IO port region
  - icarus: added support for importing Master System and Game Gear ROMs
  - tomoko: added library sub-menus for each manufacturer
      - still need to sort Game Gear after Mega Drive somehow ...

The sub-menu system actually isn't all that bad. It is indeed a bit more
annoying, but not as annoying as I thought it was going to be. However,
it looks a hell of a lot nicer now.
2016-08-18 08:05:50 +10:00
Tim Allen
043f6a8b33 Update to v101r08 release.
byuu says:

Changelog:

  - 68K: fixed read-modify-write instructions
  - 68K: fixed ADDX bug (using wrong target)
  - 68K: fixed major bug with SUB using wrong argument ordering
  - 68K: fixed sign extension when reading address registers from
    effective addressing
  - 68K: fixed sign extension on CMPA, SUBA instructions
  - VDP: improved OAM sprite attribute table caching behavior
  - VDP: improved DMA fill operation behavior
  - added Master System / Game Gear stubs (needed for developing the Z80
    core)
2016-08-17 22:31:22 +10:00
Tim Allen
ffd150735b Update to v101r07 release.
byuu says:

Added VDP sprite rendering. Can't get any games far enough in to see if
it actually works. So in other words, it doesn't work at all and is 100%
completely broken.

Also added 68K exceptions and interrupts. So far only the VDP interrupt
is present. It definitely seems to be firing in commercial games, so
that's promising. But the implementation is almost certainly completely
wrong. There is fuck all of nothing for documentation on how interrupts
actually work. I had to find out the interrupt vector numbers from
reading the comments from the Sonic the Hedgehog disassembly. I have
literally no fucking clue what I0-I2 (3-bit integer priority value in
the status register) is supposed to do. I know that Vblank=6, Hblank=4,
Ext(gamepad)=2. I know that at reset, SR.I=7. I don't know if I'm
supposed to block interrupts when I is >, >=, <, <= to the interrupt
level. I don't know what level CPU exceptions are supposed to be.

Also implemented VDP regular DMA. No idea if it works correctly since
none of the commercial games run far enough to use it. So again, it's
horribly broken for usre.

Also improved VDP fill mode. But I don't understand how it takes
byte-lengths when the bus is 16-bit. The transfer times indicate it's
actually transferring at the same speed as the 68K->VDP copy, strongly
suggesting it's actually doing 16-bit transfers at a time. In which case,
what happens when you set an odd transfer length?

Also, both DMA modes can now target VRAM, VSRAM, CRAM. Supposedly there's
all kinds of weird shit going on when you target VSRAM, CRAM with VDP
fill/copy modes, but whatever. Get to that later.

Also implemented a very lazy preliminary wait mechanism to to stall out
a processor while another processor exerts control over the bus. This
one's going to be a major work in progress. For one, it totally breaks
the model I use to do save states with libco. For another, I don't
know if a 68K->VDP DMA instantly locks the CPU, or if it the CPU could
actually keep running if it was executing out of RAM when it started
the DMA transfer from ROM (eg it's a bus busy stall, not a hard chip
stall.) That'll greatly change how I handle the waiting.

Also, the OSS driver now supports Audio::Latency. Sound should be
even lower latency now. On FreeBSD when set to 0ms, it's absolutely
incredible. Cannot detect latency whatsoever. The Mario jump sound seems
to happen at the very instant I hear my cherry blue keyswitch activate.
2016-08-15 14:56:38 +10:00
Tim Allen
427bac3011 Update to v101r06 release.
byuu says:

I reworked the video sizing code. Ended up wasting five fucking hours
fighting GTK. When you call `gtk_widget_set_size_request`, it doesn't
actually happen then. This is kind of a big deal because when I then go
to draw onto the viewport, the actual viewport child window is still the
old size, so the image gets distorted. It recovers in a frame or so with
emulation, but if we were to put a still image on there, it would stay
distorted.

The first thought is, `while(gtk_events_pending())
gtk_main_iteration_do(false);` right after the `set_size_request`. But
nope, it tells you there's no events pending. So then you think, go
deeper, use `XPending()` instead. Same thing, GTK hasn't actually issued
the command to Xlib yet. So then you think, if the widget is realized,
just call a blocking `gtk_main_iteration`. One call does nothing, two
calls results in a deadlock on the second one ... do it before program
startup, and the main window will never appear. Great.

Oh, and it's not just the viewport. It's also the widget container area
of the windows, as well as the window itself, as well as the fullscreen
mode toggle effect. They all do this.

For the latter three, I couldn't find anything that worked, so I just
added 20ms loops of constantly calling `gtk_main_iteration_do(false)`
after each one of those things. The downside here is toggling the status
bar takes 40ms, so you'll see it and it'll feel a tiny bit sluggish.

But I can't have a 20ms wait on each widget resize, that would be
catastrophic to performance on windows with lots of widgets.

I tried hooking configure-event and size-allocate, but they were very
unreliable. So instead I ended up with a loop that waits up to a maximm
of 20ms that inspects the `widget->allocation.(width,height)` values
directly and waits for them to be what we asked for with
`set_size_request`.

There was some extreme ugliness in GTK with calling
`gtk_main_iteration_do` recursively (`hiro::Widget::setGeometry` is
called recursively), so I had to lock it to only happen on the top level
widgets (the child ones should get resized while waiting on the
top-level ones, so it should be fine in practice), and also only run it
on realized widgets.

Even still, I'm getting ~3 timeouts when opening the settings dialog in
higan, but no other windows. But, this is the best I can do for now.

And the reason for all of this pain? Yeah, updated the video code.

So the Emulator::Interface now has this:

    struct VideoSize { uint width, height; };  //or requiem for a tuple
    auto videoSize() -> VideoSize;
    auto videoSize(uint width, uint height, bool arc) -> VideoSize;

The first function, for now, is just returning the literal surface size.
I may remove this ... one thing I want to allow for is cores that send
different texture sizes based on interlace/hires/overscan/etc settings.

The second function is more interesting. Instead of having the UI trying
to figure out sizing, I figure the emulation cores can do a better job
and we can customize it per-core now. So it gets the window's width and
height, and whether the user asked for aspect correction, and then
computes the best width/height ratio possible. For now they're all just
doing multiples of a 1x scale to the UI 2x,3x,4x modes.

We still need a third function, which will probably be what I repurpose
videoSize() for: to return the 'effective' size for pixel shaders, to
then feed into ruby, to then feed into quark, to then feed into our
shaders. Since shaders use normalized coordinates for pixel fetching,
this should work out just fine. The real texture size will be exposed to
quark shaders as well, of course.

Now for the main window ... it's just hard-coded to be 640x480, 960x720,
1280x960 for now. It works nicely for some cores on some modes, not so
much for others. Work in progress I guess.

I also took the opportunity to draw the about dialog box logo on the
main window. Got a bit fancy and used the old spherical gradient and
impose functionality of nall/image on it. Very minor highlight, nothing
garish. Just something nicer than a solid black window.

If you guys want to mess around with sizes, placements, and gradient
styles/colors/shapes ... feel free. If you come up with something nicer,
do share.

That's what led to all the GTK hell ... the logo wasn't drawing right as
you resized the window. But now it is, though I am not at all happy with
the hacking I had to do.

I also had to improve the video update code as a result of this:

  - when you unload a game, it blacks out the screen
      - if you are not quitting the emulator, it'll draw the logo; if
        you are, it won't
  - when you load a game, it black out the logo

These options prevent any unsightliness from resizing the viewport with
image data on it already

I need to redraw the logo when toggling fullscreen with no game loaded
as well for Windows, it seems.
2016-08-15 14:52:05 +10:00
Tim Allen
ac2d0ba1cf Update to v101r05 release.
byuu says:

Changelog:

  - 68K: fixed bug that affected BSR return address
  - VDP: added very preliminary emulation of planes A, B, W (W is
    entirely broken though)
  - VDP: added command/address stuff so you can write to VRAM, CRAM,
    VSRAM
  - VDP: added VRAM fill DMA

I would be really surprised if any commercial games showed anything at
all, so I'd probably recommend against wasting your time trying, unless
you're really bored :P

Also, I wanted to add: I am accepting patches\! So if anyone wants to
look over the 68K core for bugs, that would save me untold amounts of
time in the near future :D
2016-08-13 09:47:30 +10:00
Tim Allen
1df2549d18 Update to v101r04 release.
byuu says:

Changelog:

  - pulled the (u)intN type aliases into higan instead of leaving them
    in nall
  - added 68K LINEA, LINEF hooks for illegal instructions
  - filled the rest of the 68K lambda table with generic instance of
    ILLEGAL
  - completed the 68K disassembler effective addressing modes
      - still unsure whether I should use An to decode absolute
        addresses or not
      - pro: way easier to read where accesses are taking place
      - con: requires An to be valid; so as a disassembler it does a
        poor job
      - making it optional: too much work; ick
  - added I/O decoding for the VDP command-port registers
  - added skeleton timing to all five processor cores
  - output at 1280x480 (needed for mixed 256/320 widths; and to handle
    interlace modes)

The VDP, PSG, Z80, YM2612 are all stepping one clock at a time and
syncing; which is the pathological worst case for libco. But they also
have no logic inside of them. With all the above, I'm averaging around
250fps with just the 68K core actually functional, and the VDP doing a
dumb "draw white pixels" loop. Still way too early to tell how this
emulator is going to perform.

Also, the 320x240 mode of the Genesis means that we don't need an aspect
correction ratio. But we do need to ensure the output window is a
multiple 320x240 so that the scale values work correctly. I was
hard-coding aspect correction to stretch the window an additional \*8/7.
But that won't work anymore so ... the main higan window is now 640x480,
960x720, or 1280x960. Toggling aspect correction only changes the video
width inside the window.

It's a bit jarring ... the window is a lot wider, more black space now
for most modes. But for now, it is what it is.
2016-08-12 11:07:04 +10:00
Tim Allen
9b8c3ff8c0 Update to v101r03 release.
byuu says:

The 68K core now implements all 88 instructions. It ended up being 111
instructions in my core due to splitting up opcodes with the same name
but different addressing modes or directions (removes conditions at the
expense of more code.)

Technically, I don't have exceptions actually implemented yet, and
RESET/STOP don't do anything but set flags. So there's still more to
go. But ... close enough for statistics time!

The M68K core source code is 124,712 bytes in size. The next largest
core is the ARM7 core at 70,203 bytes in size.

The M68K object size is 942KiB; with the next largest being the V30MZ
core at 173KiB.

There are a total of 19,656 invalid opcodes in the 68000 revision (unless
of course I've made mistakes in my mappings, which is very probably.)

Now the fun part ... figuring out how to fix bugs in this core without
VDP emulation :/
2016-08-11 08:02:02 +10:00
Tim Allen
0a57cac70c Update to v101r02 release.
byuu says:

Changelog:

  - Emulator: use `(uintmax)-1 >> 1` for the units of time
  - MD: implemented 13 new 68K instructions (basically all of the
    remaining easy ones); 21 remain
  - nall: replaced `(u)intmax_t` (64-bit) with *actual* `(u)intmax` type
    (128-bit where available)
      - this extends to everything: atoi, string, etc. You can even
        print 128-bit variables if you like

22,552 opcodes still don't exist in the 68K map. Looking like quite a
few entries will be blank once I finish.
2016-08-09 21:07:18 +10:00
Tim Allen
8bdf8f2a55 Update to v101r01 release.
byuu says:

Changelog:

  - added eight more 68K instructions
  - split ADD(direction) into two separate ADD functions

I now have 54 out of 88 instructions implemented (thus, 34 remaining.)
The map is missing 25,182 entries out of 65,536. Down from 32,680 for
v101.00

Aside: this version number feels really silly. r10 and r11 surely will
as well ...
2016-08-08 20:12:03 +10:00
Tim Allen
e39987a3e3 Update to v101 release.
byuu says (in the public announcement):

Not a large changelog this time, sorry. This release is mostly to fix
the SA-1 issue, and to get some real-world testing of the new scheduler
model. Most of the work in the past month has gone into writing a 68000
CPU core; yet it's still only about half-way finished.

Changelog (since the previous release):

  - fixed SNES SA-1 IRQ regression (fixes Super Mario RPG level-up
    screen)
  - new scheduler for all emulator cores (precision of 2^-127)
  - icarus database adds nine new SNES games
  - added Input/Frequency to settings file (allows simulation of
    latency)

byuu says (in the WIP forum):

Changelog:

  - in 32-bit mode, Thread uses uint64\_t with 2^-63 time units (10^-7
    precision in the worst case)
      - nearly ten times the precision of an attosecond
  - in 64-bit mode, Thread uses uint128\_t with 2^-127 time units
    (10^-26 precision in the worst case)
      - far more accurate than yoctoseconds; almost closing in on planck
        time

Note: a quartz crystal is accurate to 10^-4 or 10^-5. A cesium fountain
atomic clock is accurate to 10^-15. So ... yeah. 2^-63 was perfectly
fine; but there was no speed penalty whatsoever for using uint128\_t in
64-bit mode, so why not?
2016-08-08 20:04:15 +10:00
Tim Allen
f5e5bf1772 Update to v100r16 release.
byuu says:

(Windows users may need to include <sys/time.h> at the top of
nall/chrono.hpp, not sure.)

Unchangelog:
- forgot to add the Scheduler clock=0 fix because I have the memory of
  a goldfish

Changelog:
- new icarus database with nine additional games
- hiro(GTK,Qt) won't constantly write its settings.bml file to disk
  anymore
- added latency simulator for fun (settings.bml => Input/Latency in
  milliseconds)

So the last one ... I wanted to test out nall::chrono, and I was also
thinking that by polling every emulated frame, it's pretty wasteful when
you are using Fast Forward and hitting 200+fps. As I've said before,
calls to ruby::input::poll are not cheap.

So to get around this, I added a limiter so that if you called the
hardware poll function within N milliseconds, it'll return without
doing any actual work. And indeed, that increases my framerate of Zelda
3 uncapped from 133fps to 142fps. Yay. But it's not a "real" speedup,
as it only helps you when you exceed 100% speed (theoretically, you'd
need to crack 300% speed since the game itself will poll at 16ms at 100%
speed, but yet it sped up Zelda 3, so who am I to complain?)

I threw the latency value into the settings file. It should be 16,
but I set it to 5 since that was the lowest before it started negatively
impacting uncapped speeds. You're wasting your time and CPU cycles setting
it lower than 5, but if people like placebo effects it might work. Maybe
I should let it be a signed integer so people can set it to -16 and think
it's actually faster :P (I'm only joking. I took out the 96000hz audio
placebo effect as well. Not really into psychological tricks anymore.)

But yeah seriously, I didn't do this to start this discussion again for
the billionth time. Please don't go there. And please don't tell me this
WIP has higher/lower latency than before. I don't want to hear it.

The only reason I bring it up is for the fun part that is worth
discussing: put up or shut up time on how sensitive you are to
latency! You can set the value above 5 to see how games feel.

I personally can't really tell a difference until about 50. And I can't
be 100% confident it's worse until about 75. But ... when I set it to
150, games become "extra difficult" ... the higher it goes, the worse
it gets :D

For this WIP, I've left no upper limit cap. I'll probably set a cap of
something like 500ms or 1000ms for the official release. Need to balance
user error/trolling with enjoyability. I'll think about it.

[...]

Now, what I worry about is stupid people seeing it and thinking it's an
"added latency" setting, as if anyone would intentionally make things
worse by default. This is a limiter. So if 5ms have passed since the
game last polled, and that will be the case 99.9% of the time in games,
the next poll will happen just in time, immediately when the game polls
the inputs. Thus, a value below 1/<framerate>ms is not only pointless,
if you go too low it will ruin your fast forward max speeds.

I did say I didn't want to resort to placebo tricks, but I also don't
want to spark up public discussion on this again either. So it might
be best to default Input/Latency to 0ms, and internally have a max(5,
latency) wrapper around the value.
2016-08-03 22:32:40 +10:00
Tim Allen
c50723ef61 Update to v100r15 release.
byuu wrote:

Aforementioned scheduler changes added. Longer explanation of why here:
http://hastebin.com/raw/toxedenece

Again, we really need to test this as thoroughly as possible for
regressions :/
This is a really major change that affects absolutely everything: all
emulation cores, all coprocessors, etc.

Also added ADDX and SUB to the 68K core, which brings us just barely
above 50% of the instruction encoding space completed.

[Editor's note: The "aformentioned scheduler changes" were described in
a previous forum post:

    Unfortunately, 64-bits just wasn't enough precision (we were
    getting misalignments ~230 times a second on 21/24MHz clocks), so
    I had to move to 128-bit counters. This of course doesn't exist on
    32-bit architectures (and probably not on all 64-bit ones either),
    so for now ... higan's only going to compile on 64-bit machines
    until we figure something out. Maybe we offer a "lower precision"
    fallback for machines that lack uint128_t or something. Using the
    booth algorithm would be way too slow.

    Anyway, the precision is now 2^-96, which is roughly 10^-29. That
    puts us far beyond the yoctosecond. Suck it, MAME :P I'm jokingly
    referring to it as the byuusecond. The other 32-bits of precision
    allows a 1Hz clock to run up to one full second before all clocks
    need to be normalized to prevent overflow.

    I fixed a serious wobbling issue where I was using clock > other.clock
    for synchronization instead of clock >= other.clock; and also another
    aliasing issue when two threads share a common frequency, but don't
    run in lock-step. The latter I don't even fully understand, but I
    did observe it in testing.

    nall/serialization.hpp has been extended to support 128-bit integers,
    but without explicitly naming them (yay generic code), so nall will
    still compile on 32-bit platforms for all other applications.

    Speed is basically a wash now. FC's a bit slower, SFC's a bit faster.

The "longer explanation" in the linked hastebin is:

    Okay, so the idea is that we can have an arbitrary number of
    oscillators. Take the SNES:

    - CPU/PPU clock = 21477272.727272hz
    - SMP/DSP clock = 24576000hz
    - Cartridge DSP1 clock = 8000000hz
    - Cartridge MSU1 clock = 44100hz
    - Controller Port 1 modem controller clock = 57600hz
    - Controller Port 2 barcode battler clock = 115200hz
    - Expansion Port exercise bike clock = 192000hz

    Is this a pathological case? Of course it is, but it's possible. The
    first four do exist in the wild already: see Rockman X2 MSU1
    patch. Manifest files with higan let you specify any frequency you
    want for any component.

    The old trick higan used was to hold an int64 counter for each
    thread:thread synchronization, and adjust it like so:

    - if thread A steps X clocks; then clock += X * threadB.frequency
      - if clock >= 0; switch to threadB
    - if thread B steps X clocks; then clock -= X * threadA.frequency
      - if clock <  0; switch to threadA

    But there are also system configurations where one processor has to
    synchronize with more than one other processor. Take the Genesis:

    - the 68K has to sync with the Z80 and PSG and YM2612 and VDP
    - the Z80 has to sync with the 68K and PSG and YM2612
    - the PSG has to sync with the 68K and Z80 and YM2612

    Now I could do this by having an int64 clock value for every
    association. But these clock values would have to be outside the
    individual Thread class objects, and we would have to update every
    relationship's clock value. So the 68K would have to update the Z80,
    PSG, YM2612 and VDP clocks. That's four expensive 64-bit multiply-adds
    per clock step event instead of one.

    As such, we have to account for both possibilities. The only way to
    do this is with a single time base. We do this like so:

    - setup: scalar = timeBase / frequency
    - step: clock += scalar * clocks

    Once per second, we look at every thread, find the smallest clock
    value. Then subtract that value from all threads. This prevents the
    clock counters from overflowing.

    Unfortunately, these oscillator values are psychotic, unpredictable,
    and often times repeating fractions. Even with a timeBase of
    1,000,000,000,000,000,000 (one attosecond); we get rounding errors
    every ~16,300 synchronizations. Specifically, this happens with a CPU
    running at 21477273hz (rounded) and SMP running at 24576000hz. That
    may be good enough for most emulators, but ... you know how I am.

    Plus, even at the attosecond level, we're really pushing against the
    limits of 64-bit integers. Given the reciprocal inverse, a frequency
    of 1Hz (which does exist in higan!) would have a scalar that consumes
    1/18th of the entire range of a uint64 on every single step. Yes, I
    could raise the frequency, and then step by that amount, I know. But
    I don't want to have weird gotchas like that in the scheduler core.

    Until I increase the accuracy to about 100 times greater than a
    yoctosecond, the rounding errors are too great. And since the only
    choice above 64-bit values is 128-bit values; we might as well use
    all the extra headroom. 2^-96 as a timebase gives me the ability to
    have both a 1Hz and 4GHz clock; and run them both for a full second;
    before an overflow event would occur.

Another hastebin includes demonstration code:

    #include <libco/libco.h>

    #include <nall/nall.hpp>
    using namespace nall;

    //

    cothread_t mainThread = nullptr;
    const uint iterations = 100'000'000;
    const uint cpuFreq = 21477272.727272 + 0.5;
    const uint smpFreq = 24576000.000000 + 0.5;
    const uint cpuStep = 4;
    const uint smpStep = 5;

    //

    struct ThreadA {
      cothread_t handle = nullptr;
      uint64 frequency = 0;
      int64 clock = 0;

      auto create(auto (*entrypoint)() -> void, uint frequency) {
        this->handle = co_create(65536, entrypoint);
        this->frequency = frequency;
        this->clock = 0;
      }
    };

    struct CPUA : ThreadA {
      static auto Enter() -> void;
      auto main() -> void;
      CPUA() { create(&CPUA::Enter, cpuFreq); }
    } cpuA;

    struct SMPA : ThreadA {
      static auto Enter() -> void;
      auto main() -> void;
      SMPA() { create(&SMPA::Enter, smpFreq); }
    } smpA;

    uint8 queueA[iterations];
    uint offsetA;
    cothread_t resumeA = cpuA.handle;

    auto EnterA() -> void {
      offsetA = 0;
      co_switch(resumeA);
    }

    auto QueueA(uint value) -> void {
      queueA[offsetA++] = value;
      if(offsetA >= iterations) {
        resumeA = co_active();
        co_switch(mainThread);
      }
    }

    auto CPUA::Enter() -> void { while(true) cpuA.main(); }

    auto CPUA::main() -> void {
      QueueA(1);
      smpA.clock -= cpuStep * smpA.frequency;
      if(smpA.clock < 0) co_switch(smpA.handle);
    }

    auto SMPA::Enter() -> void { while(true) smpA.main(); }

    auto SMPA::main() -> void {
      QueueA(2);
      smpA.clock += smpStep * cpuA.frequency;
      if(smpA.clock >= 0) co_switch(cpuA.handle);
    }

    //

    struct ThreadB {
      cothread_t handle = nullptr;
      uint128_t scalar = 0;
      uint128_t clock = 0;

      auto print128(uint128_t value) {
        string s;
        while(value) {
          s.append((char)('0' + value % 10));
          value /= 10;
        }
        s.reverse();
        print(s, "\n");
      }

      //femtosecond (10^15) =    16306
      //attosecond  (10^18) =   688838
      //zeptosecond (10^21) = 13712691
      //yoctosecond (10^24) = 13712691 (hitting a dead-end on a rounding error causing a wobble)
      //byuusecond? ( 2^96) = (perfect? 79,228 times more precise than a yoctosecond)

      auto create(auto (*entrypoint)() -> void, uint128_t frequency) {
        this->handle = co_create(65536, entrypoint);

        uint128_t unitOfTime = 1;
      //for(uint n : range(29)) unitOfTime *= 10;
        unitOfTime <<= 96;  //2^96 time units ...

        this->scalar = unitOfTime / frequency;
        print128(this->scalar);
        this->clock = 0;
      }

      auto step(uint128_t clocks) -> void { clock += clocks * scalar; }
      auto synchronize(ThreadB& thread) -> void { if(clock >= thread.clock) co_switch(thread.handle); }
    };

    struct CPUB : ThreadB {
      static auto Enter() -> void;
      auto main() -> void;
      CPUB() { create(&CPUB::Enter, cpuFreq); }
    } cpuB;

    struct SMPB : ThreadB {
      static auto Enter() -> void;
      auto main() -> void;
      SMPB() { create(&SMPB::Enter, smpFreq); clock = 1; }
    } smpB;

    auto correct() -> void {
      auto minimum = min(cpuB.clock, smpB.clock);
      cpuB.clock -= minimum;
      smpB.clock -= minimum;
    }

    uint8 queueB[iterations];
    uint offsetB;
    cothread_t resumeB = cpuB.handle;

    auto EnterB() -> void {
      correct();
      offsetB = 0;
      co_switch(resumeB);
    }

    auto QueueB(uint value) -> void {
      queueB[offsetB++] = value;
      if(offsetB >= iterations) {
        resumeB = co_active();
        co_switch(mainThread);
      }
    }

    auto CPUB::Enter() -> void { while(true) cpuB.main(); }

    auto CPUB::main() -> void {
      QueueB(1);
      step(cpuStep);
      synchronize(smpB);
    }

    auto SMPB::Enter() -> void { while(true) smpB.main(); }

    auto SMPB::main() -> void {
      QueueB(2);
      step(smpStep);
      synchronize(cpuB);
    }

    //

    #include <nall/main.hpp>
    auto nall::main(string_vector) -> void {
      mainThread = co_active();

      uint masterCounter = 0;
      while(true) {
        print(masterCounter++, " ...\n");

        auto A = clock();
        EnterA();
        auto B = clock();
        print((double)(B - A) / CLOCKS_PER_SEC, "s\n");

        auto C = clock();
        EnterB();
        auto D = clock();
        print((double)(D - C) / CLOCKS_PER_SEC, "s\n");

        for(uint n : range(iterations)) {
          if(queueA[n] != queueB[n]) return print("fail at ", n, "\n");
        }
      }
    }

...and that's everything.]
2016-07-31 12:11:20 +10:00
Tim Allen
ca277cd5e8 Update to v100r14 release.
byuu says:

(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)

I completely replaced the time management system in higan and overhauled
the scheduler.

Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.

The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.

The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:

    auto SMP::step(uint clocks) -> void {
      clock += clocks * (uint64)cpu.frequency;
      dsp.clock -= clocks;
      if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
      if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
    }

To this:

    auto SMP::step(uint clocks) -> void {
      Thread::step(clocks);
      synchronize(dsp);
      synchronize(cpu);
    }

As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.

Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.

Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.

Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.

----

Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.

The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.

----

EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 13:56:12 +10:00
Tim Allen
306cac2b54 Update to v100r13 release.
byuu says:

Changelog: M68K improvements, new instructions added.
2016-07-26 20:46:43 +10:00
Tim Allen
f230d144b5 Update to v100r12 release.
byuu says:

All of the above fixes, plus I added all 24 variations on the shift
opcodes, plus SUBQ, plus fixes to the BCC instruction.

I can now run 851,767 instructions into Sonic the Hedgehog before hitting
an unimplemented instruction (SUB).

The 68K core is probably only ~35% complete, and yet it's already within
4KiB of being the largest CPU core, code size wise, in all of higan. Fuck
this chip.
2016-07-25 23:15:54 +10:00
Tim Allen
7ccfbe0206 Update to v100r11 release.
byuu says:

I split the Register class and read/write handlers into DataRegister and
AddressRegister, given that they have different behaviors on byte/word
accesses (data tends to preserve the upper bits; address tends to
sign-extend things.)

I expanded EA to EffectiveAddress. No sense in abbreviating things
to death.

I've now implemented 26 instructions. But the new ones are just all the
stupid from/to ccr/sr instructions.

Ryphecha confirmed that you can't set the undefined bits, so I don't
think the BitField concept is appropriate for the CCR/SR. Instead, I'm
just storing direct flags and have (read,write)(CCR,SR) instead. This
isn't like the 65816 where you have subroutines that push and pop the
flag register. It's much more common to access individual flags. Doesn't
match the consistency angle of the other CPU cores, but ... I think this
is the right thing to for the 68K specifically.
2016-07-23 12:32:35 +10:00
Tim Allen
4b897ba791 Update to v100r10 release.
byuu says:

Redesigned the handling of reading/writing registers to be about eight
times faster than the old system. More work may be needed ... it seems
data registers tend to preserve their upper bits upon assignment; whereas
address registers tend to sign-extend values into them. It may make
sense to have DataRegister and AddressRegister classes with separate
read/write handlers. I'd have to hold two Register objects inside the
EffectiveAddress (EA) class if we do that.

Implemented 19 opcodes now (out of somewhere between 60 and 90.) That gets
the first ~530,000 instructions in Sonic the Hedgehog running (though
probably wrong. But we can run a lot thanks to large initialization
loops.)

If I force the core to loop back to the reset vector on an invalid opcode,
I'm getting about 1500fps with a dumb 320x240 blit 60 times a second and
just the 68K running alone (no Z80, PSG, VDP, YM2612.) I don't know if
that's good or not. I guess we'll find out.

I had to stop tonight because the final opcode I execute is an RTS
(return from subroutine) that's branching back to address 0; which is
invalid ... meaning something went terribly wrong and the system crashed.
2016-07-22 22:03:25 +10:00
Tim Allen
be3f6ac0d5 Update to v100r09 release.
byuu says:

Another six hours in ...

I have all of the opcodes, memory access functions, disassembler mnemonics
and table building converted over to the new template<uint Size> format.

Certainly, it would be quite easy for this nightmare chip to throw me
another curveball, but so far I can handle:

- MOVE (EA to, EA from) case
  - read(from) has to update register index for +/-(aN) mode
- MOVEM (EA from) case
  - when using +/-(aN), RA can't actually be updated until the transfer
    is completed
- LEA (EA from) case
  - doesn't actually perform the final read; just returns the address
    to be read from
- ANDI (EA from-and-to) case
  - same EA has to be read from and written to
  - for -(aN), the read has to come from aN-2, but can't update aN yet;
    so that the write also goes to aN-2
- no opcode can ever fetch the extension words more than once
- manually control the order of extension word fetching order for proper
  opcode decoding

To do all of that without a whole lot of duplicated code (or really
bloating out every single instruction with red tape), I had to bring
back the "bool valid / uint32 address" variables inside the EA struct =(

If weird exceptions creep in like timing constraints only on certain
opcodes, I can use template flags to the EA read/write functions to
handle that.
2016-07-19 19:12:05 +10:00
Tim Allen
92fe5b0813 Update to v100r08 release.
byuu says:

Six and a half hours this time ... one new opcode, and all old opcodes
now in a deprecated format. Hooray, progress!

For building the table, I've decided to move from:

    for(uint opcode : range(65536)) {
      if(match(...)) bind(opNAME, ...);
    }

To instead having separate for loops for each supported opcode. This
lets me specialize parts I want with templates.

And to this aim, I'm moving to replace all of the
(read,write)(size, ...) functions with (read,write)<Size>(...) functions.

This will amount to the ~70ish instructions being triplicated ot ~210ish
instructions; but I think this is really important.

When I was getting into flag calculations, a ton of conditionals
were needed to mask sizes to byte/word/long. There was also lots of
conditionals in all the memory access handlers.

The template code is ugly, but we eliminate a huge amount of branch
conditions this way.
2016-07-18 08:11:29 +10:00
Tim Allen
059347e575 Update to v100r07 release.
byuu says:

Four and a half hours of work and ... zero new opcodes implemented.

This was the best job I could do refining the effective address
computations. Should have all twelve 68000 modes implemented now. Still
have a billion questions about when and how I'm supposed to perform
certain edge case operations, though.
2016-07-17 13:24:28 +10:00
Tim Allen
0d6a09f9f8 Update to v100r06 release.
byuu says:

Up to ten 68K instructions out of somewhere between 61 and 88, depending
upon which PDF you look at. Of course, some of them aren't 100% completed
yet, either. Lots of craziness with MOVEM, and BCC has a BSR variant
that needs stack push/pop functions.

This WIP actually took over eight hours to make, going through every
possible permutation on how to design the core itself. The updated design
now builds both the instruction decoder+dispatcher and the disassembler
decoder into the same main loop during M68K's constructor.

The special cases are also really psychotic on this processor, and
I'm afraid of missing something via the fallthrough cases. So instead,
I'm ordering the instructions alphabetically, and including exclusion
cases to ignore binding invalid cases. If I end up remapping an existing
register, then it'll throw a run-time assertion at program startup.

I wanted very much to get rid of struct EA (EffectiveAddress), but
it's too difficult to keep track of the internal effective address
without it. So I split out the size to a separate parameter, since
every opcode only has one size parameter, and otherwise it was getting
duplicated in opcodes that take two EAs, and was also awkward with the
flag testing. It's a bit more typing, but I feel it's more clean this way.

Overall, I'm really worried this is going to be too slow. I don't want
to turn the EA stuff into templates, because that will massively bloat
out compilation times and object sizes, and will also need a special DSL
preprocessor since C++ doesn't have a static for loop. I can definitely
optimize a lot of EA's address/read/write functions away once the core
is completed, but it's never going to hold a candle to a templatized
68K core.

----

Forgot to include the SA-1 regression fix. I always remember immediately
after I upload and archive the WIP. Will try to get that in next time,
I guess.
2016-07-16 18:39:44 +10:00
Tim Allen
b72f35a13e Update to v100r05 release.
byuu says:

Alright, I'm definitely going to need to find some people willing to
tolerate my questions on this chip, so I'm going to go ahead and announce
I'm working on this I guess.

This core is way too big for a surprise like the NES and WS cores
were. It'll probably even span multiple v10x releases before it's
even ready.
2016-07-13 08:47:04 +10:00
Tim Allen
1c0ef793fe Update to v100r04 release.
byuu says:

I now have enough of three instructions implemented to get through the
first four instructions in Sonic the Hedgehog.

But they're far from complete. The very first instruction uses EA
addressing, which is similar to x86's ModRM in terms of how disgustingly
complex it is. And it also accesses Z80 control registers, which obviously
isn't going to do anything yet.

The slow speed was me being stupid again. It's not 7.6MHz per frame,
it's 7.67MHz per second. So yeah, speed is so far acceptable again. But
we'll see how things go as I keep emulating more. The 68K decode is not
pretty at all.
2016-07-12 20:19:31 +10:00
Tim Allen
76a8ecd32a Update to v100r03 release.
byuu says:

Changelog:
- moved Thread, Scheduler, Cheat functionality into emulator/ for
  all cores
- start of actual Mega Drive emulation (two 68K instructions)

I'm going to be rather terse on MD emulation, as it's too early for any
meaningful dialogue here.
2016-07-10 15:28:26 +10:00
Tim Allen
3dd1aa9c1b Update to v100r02 release.
byuu says:

Sigh ... I'm really not a good person. I'm inherently selfish.

My responsibility and obligation right now is to work on loki, and
then on the Tengai Makyou Zero translation, and then on improving the
Famicom emulation.

And yet ... it's not what I really want to do. That shouldn't matter;
I should work on my responsibilities first.

Instead, I'm going to be a greedy, self-centered asshole, and work on
what I really want to instead.

I'm really sorry, guys. I'm sure this will make a few people happy,
and probably upset even more people.

I'm also making zero guarantees that this ever gets finished. As always,
I wish I could keep these things secret, so if I fail / give up, I could
just drop it with no shame. But I would have to cut everyone out of the
WIP process completely to make it happen. So, here goes ...

This WIP adds the initial skeleton for Sega Mega Drive / Genesis
emulation. God help us.

(minor note: apparently the new extension for Mega Drive games is .md,
neat. That's what I chose for the folders too. I thought it was .smd,
so that'll be fixed in icarus for the next WIP.)

(aside: this is why I wanted to get v100 out. I didn't want this code in
a skeleton state in v100's source. Nor did I want really broken emulation,
which the first release is sure to be, tarring said release.)

...

So, basically, I've been ruminating on the legacy I want to leave behind
with higan. 3D systems are just plain out. I'm never going to support
them. They're too complex for my abilities, and they would run too slowly
with my design style. I'm not willing to compromise my design ideals. And
I would never want to play a 3D game system at native 240p/480i resolution
... but 1080p+ upscaling is not accurate, so that's a conflict I want
to avoid entirely. It's also never going to emulate computer systems
(X68K, PC-98, FM-Towns, etc) because holy shit that would completely
destroy me. It's also never going emulate arcade machines.

So I think of higan as a collection of 2D emulators for consoles
and handhelds. I've gone over every major 2D gaming system there is,
looking for ones with games I actually care about and enjoy. And I
basically have five of those systems supported already. Looking at the
remaining list, I see only three systems left that I have any interest
in whatsoever: PC-Engine, Master System, Mega Drive. Again, I'm not in
any way committing to emulating any of these, but ... if I had all of
those in higan, I think I'd be content to really, truly, finally stop
writing more emulators for the rest of my life.

And so I decided to tackle the most difficult system first. If I'm
successful, the Z80 core should cover a lot of the work on the SMS. And
the HuC6280 should land somewhere between the NES and SNES in terms of
difficulty ... closer to the NES.

The systems that just don't appeal to me at all, which I will never touch,
include, but are not limited to:
* Atari 2600/5200/7800
* Lynx
* Jaguar
* Vectrex
* Colecovision
* Commodore 64
* Neo-Geo
* Neo-Geo Pocket / Color
* Virtual Boy
* Super A'can
* 32X
* CD-i
* etc, etc, etc.

And really, even if something were mildly interesting in there ... we
have to stop. I can't scale infinitely. I'm already way past my limit,
but I'm doing this anyway. Too many cores bloats everything and kills
quality on everything. I don't want higan to become MESS v2.

I don't know what I'll do about the Famicom Disk System, PC-Engine CD,
and Mega CD. I don't think I'll be able to achieve 60fps emulating the
Mega CD, even if I tried to.

I don't know what's going to happen here with even the Mega Drive. Maybe
I'll get driven crazy with the documentation and quit. Maybe it'll end
up being too complicated and I'll quit. Maybe the emulation will end up
way too slow and I'll give up. Maybe it'll take me seven years to get
any games playable at all. Maybe Steve Snake, AamirM and Mike Pavone
will pool money to hire a hitman to come after me. Who knows.

But this is what I want to do, so ... here goes nothing.
2016-07-09 14:21:37 +10:00
Tim Allen
88c79e56a0 Update to v100r01 release.
[This version, with the internal version number changed back to "v100",
replaced the original v100 source archive on byuu.org soon after v100's
release, because it fixes important bugs in that version. --Ed]

byuu says:

Changelog:
- fixed default paths for Sufami Turbo slotted games
- moved WonderSwan orientation controls to the port rather than the device
  - I do like hex_usr's idea here; but that'll need more consideration;
    so this is a temporary fix
- added new debugger interface (see the public topic for more on that)
2016-07-08 22:31:35 +10:00
Tim Allen
07995c05a5 Update to v100 release.
byuu says:

higan has finally reached v100!

I feel it's important to stress right away that this is not "version
1.00", nor is it a major milestone release. Rather than arbitrary version
numbers, all of my software simply bumps version numbers by one for each
official release. As such, higan v100 is simply higan's 100th release.

That said, the primary focus of this release has been code
clean-ups. These are always somewhat dangerous in that regressions are
possible. We've tested through sixteen WIP revisions, one of which was
open to the public, to try and minimize any regressions. But all the same,
please report any regressions if you discover any.

Changelog (since v099):
FC: render during pixels 1-256 instead of 0-255 [hex_usr]
FC: rewrote controller emulation code
SFC: 8% speedup over the previous release thanks to PPU optimizations
SFC: fixed nasty DB address wrapping regression from v099
SFC: USART developer controller removed; superseded by 21fx
SFC: Super Multitap option removed from controller port 1; ports
    renamed 2-5
SFC: hidden option to experiment with 128KB VRAM (strictly for novelty)
higan: audio volume no longer divided by number of audio streams
higan: updated controller polling code to fix possible future mapping
    issues
higan: replaced nall/stream with nall/vfs for file-loading subsystem
tomoko: can now load multi-slotted games via command-line
tomoko: synchronize video removed from UI; still available in the
    settings file
tomoko, icarus: can navigate to root drive selection on Windows
all: major code cleanups and refactoring (~1MB diff against v099)

Note 1: the audio volume change means that SGB and MSU1 games won't
lose half the volume on the SNES sounds anymore. However, if one goes
overboard and drives the sound all the way to max volume with the MSU1,
clamping may occur. The obvious solution is not to drive volume that high
(it will vastly overpower the SNES audio, which usually never exceeds
25% volume.) Another option is to lower the volume in the audio settings
panel to 50%. In general, neither is likely to ever be necessary.

Note 2: the synchronize video option was hidden from the UI because it
is no longer useful. With the advent of compositors, the loss of the
complicated timing settings panel, support for the WonderSwan and its
75hz display, the need to emulate variable refresh rate behaviors in the
Game Boy, the unfortunate latency spike and audio distortion caused by
long Vsync pauses, and the arrival of adaptive sync technology ... it
no longer makes sense to present this option. However, as stated, you
can edit settings.bml to enable this option anyway if you insist and
understand the aforementioned risks.

Changelog (since v099r16 open beta):

- fixed MSU1 audio sign extension
- fixed compilation with SGB support disabled
- icarus can now navigate to root directory
- fixed compilation issues with OS X port
- (hopefully) fixed label height issue with hiro that affected icarus
  import dialog
- (mostly) fixed BS Memory, Sufami Turbo slot loading

Errata:

- forgot to remove the " - Slot A", " - Slot B" suffixes for Sufami
  Turbo slot loading
  - this means you have to navigate up one folder and then into Sufami
    Turbo/ to load games for this system
- moving WonderSwan orientation controls to the device slot is causing
  some nastiness
  - can now select orientation from the main menu, but it doesn't rotate
    the display
2016-07-08 22:04:59 +10:00
Tim Allen
13ad9644a2 Update to v099r16 release (public beta).
byuu says:

Changelog:
- hiro: BrowserDialog can navigate up to drive selection on Windows
- nall: (file,path,dir,base,prefix,suffix)name =>
  Location::(file,path,dir,base,prefix,suffix)
- higan/tomoko: rename audio filter label from "Sinc" to "IIR - Biquad"
- higan/tomoko: allow loading files via icarus on the command-line
  once again
- higan/tomoko: (begrudging) quick hack to fix presentation window focus
  on startup
- higan/audio: don't divide output audio volume by number of streams
- processor/r65816: fix a regression in (read,write)DB; fixes Taz-Mania
- fixed compilation regressions on Windows and Linux

I'm happy with where we are at with code cleanups and stability, so I'd
like to release v100. But even though I'm not assigning any special
significance to this version, we should probably test it more thoroughly
first.
2016-07-04 21:53:24 +10:00
Tim Allen
8d5cc0c35e Update to v099r15 release.
byuu says:

Changelog:
- nall::lstring -> nall::string_vector
- added IntegerBitField<type, lo, hi> -- hopefully it works correctly...
- Multitap 1-4 -> Super Multitap 2-5
- fixed SFC PPU CGRAM read regression
- huge amounts of SFC PPU IO register cleanups -- .bits really is lovely
- re-added the read/write(VRAM,OAM,CGRAM) helpers for the SFC PPU
  - but they're now optimized to the realities of the PPU (16-bit data
    sizes / no address parameter / where appropriate)
  - basically used to get the active-display overrides in a unified place;
    but also reduces duplicate code in (read,write)IO
2016-07-04 21:48:17 +10:00
Tim Allen
82293c95ae Update to v099r14 release.
byuu says:

Changelog:
- (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel
  like they were contributing enough to be worth it]
- cleaned up nall::integer,natural,real functionality
  - toInteger, toNatural, toReal for parsing strings to numbers
  - fromInteger, fromNatural, fromReal for creating strings from numbers
  - (string,Markup::Node,SQL-based-classes)::(integer,natural,real)
    left unchanged
  - template<typename T> numeral(T value, long padding, char padchar)
    -> string for print() formatting
    - deduces integer,natural,real based on T ... cast the value if you
      want to override
    - there still exists binary,octal,hex,pointer for explicit print()
      formatting
- lstring -> string_vector [but using lstring = string_vector; is
  declared]
  - would be nice to remove the using lstring eventually ... but that'd
    probably require 10,000 lines of changes >_>
- format -> string_format [no using here; format was too ambiguous]
- using integer = Integer<sizeof(int)*8>; and using natural =
  Natural<sizeof(uint)*8>; declared
  - for consistency with boolean. These three are meant for creating
    zero-initialized values implicitly (various uses)
- R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees
  up struct IO {} io; naming]
- SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {}
  (status,registers); now
  - still some CPU::Status status values ... they didn't really fit into
    IO functionality ... will have to think about this more
- SFC CPU, PPU, SMP now use step() exclusively instead of addClocks()
  calling into step()
- SFC CPU joypad1_bits, joypad2_bits were unused; killed them
- SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it
- SFC PPU OAM moved into PPU::Object; since nothing else uses it
  - the raw uint8[544] array is gone. OAM::read() constructs values from
    the OAM::Object[512] table now
  - this avoids having to determine how we want to sub-divide the two
    OAM memory sections
  - this also eliminates the OAM::synchronize() functionality
- probably more I'm forgetting

The FPS fluctuations are driving me insane. This WIP went from 128fps to
137fps. Settled on 133.5fps for the final build. But nothing I changed
should have affected performance at all. This level of fluctuation makes
it damn near impossible to know whether I'm speeding things up or slowing
things down with changes.
2016-07-01 21:50:32 +10:00
Tim Allen
67457fade4 Update to v099r13 release.
byuu says:

Changelog:
- GB core code cleanup completed
- GBA core code cleanup completed
- some more cleanup on missed processor/arm functions/variables
- fixed FC loading icarus bug
- "Load ROM File" icarus functionality restored
- minor code unification efforts all around (not perfect yet)
  - MMIO->IO
  - mmio.cpp->io.cpp
  - read,write->readIO,writeIO

It's been a very long work in progress ... starting all the way back with
v094r09, but the major part of the higan code cleanup is now completed! Of
course, it's very important to note that this is only for the basic style:

- under_score functions and variables are now camelCase
- return-type function-name() are now auto function-name() -> return-type
- Natural<T>/Integer<T> replace (u)intT_n types where possible
- signed/unsigned are now int/uint
- most of the x==true,x==false tests changed to x,!x

A lot of spot improvements to consistency, simplicity and quality have
gone in along the way, of course. But we'll probably never fully finishing
beautifying every last line of code in the entire codebase. Still,
this is a really great start. Going forward, WIP diffs should start
being smaller and of higher quality once again.

I know the joke is, "until my coding style changes again", but ... this
was way too stressful, way too time consuming, and way too risky. I'm
too old and tired now for extreme upheavel like this again. The only
major change I'm slowly mulling over would be renaming the using
Natural<T>/Integer<T> = (u)intT; shorthand to something that isn't as
easily confused with the (u)int_t types ... but we'll see. I'll definitely
continue to change small things all the time, but for the larger picture,
I need to just accept the style I have and live with it.
2016-06-29 21:10:28 +10:00
Tim Allen
7a68059f78 Update to v099r12 release.
byuu says:

Changelog:
- fixed FC AxROM / VRC7 regression
- BitField split to BooleanBitField/NaturalBitField (in preparation
  for IntegerBitField)
- BitFieldReference removed
- GB CPU cleaned up
- GB Cartridge + Mappers cleaned up
- SFC CGRAM is now emulated as uint15[256] instead of uint[512]
- sfc/ppu/memory.cpp no longer needed; removed
- purged SFC Debugger hooks for now (some of the operator[] calls were
  bypassing them anyway)

Unfortunately, for reasons that defy all semblance of logic, the CGRAM
change caused a slight speed hit. As have the last few changes. We're
now down to around 129.5fps compared to 123.fps for v099 and 134.5fps
at our peak (v099r01-r02).

I really like the style I came up with for the Game Boy mappers to settle
the purpose(ROM,RAM) vs (rom,ram)Purpose naming convention. If I ever get
around to redoing the NES mappers, that's likely the approach I'll take.
2016-06-28 20:43:47 +10:00
Tim Allen
3e807946b8 Update to v099r11 release.
byuu says:

Changelog:
- NES PPU core updated to use BitFields (absolutely massive improvement
  in code readability)
- NES APU core updated to new coding style
- NES cartridge/board and cartridge/chip updated to new coding style
- pushed NES PPU rendering one dot forward (doesn't fix King's Quest V
  yet, sadly)
- fixed SNES PPU BG tilemask for 128KiB VRAM mode (doesn't fix Yoshi's
  Island, though)

So ... I kind of went overboard with the fc/cartridge changes. This WIP
diff is 185KiB >_>
I didn't realize it was going to be as big a task as it was, but once
I started everything broke in a chain reaction, so I had to do it all
at once.

There's a massive chance we've broken a bunch of NES things. Any typos
in this WIP are going to be absolutely insidious to track down =(

But ... supposing I pulled it off, this means the Famicom core is now
fully converted to the new coding style as well. That leaves only the
GB and GBA cores. Once those are finished, then we'll finally be free
of these gigantic hellspawn diffs.
2016-06-27 23:07:57 +10:00
Tim Allen
a816998122 Update to v099r10 release.
byuu says:

Changelog:
- higan/profile/ => higan/systems/ [temporary; unless we can't think of
  a better base folder name]
- god-damn-better-have fixed the input polling bug
- re-added command-line and drag-and-drop loading
  - command-line loading can now load multiple folders at once (SGB+GB
    game; Sufami Turbo+Slot A+Slot B; etc)
  - if you load just the base cart, it'll present you with a dialog to
    optionally load slotted cart(s)
- MSU1 now goes through nall/vfs instead of directly accessing the
  filesystem
- Famicom Cartridge, PPU cores updated to newer programming style
  - there's countless opportunity for BitField and .bits() in the PPU
    ... but I'm worried about breaking things

If anyone has a working MSU1 game and can test the changes out, that'd
be appreciated. I still don't have a test ROM on my dev box.

I wouldn't worry too much about extensively testing the Famicom PPU
changes just yet ... I'm still struggling with what to name the structs
inside the classes between all of my emulators, and the BitField/.bits()
changes will be much more important to test at a later date.

The only use case left for Emulator::Interface::path(uint id) is for
21fx emulation. This peripheral loads a DLL/SO via LoadLibrary/dlopen,
which do not have any official ways to open a file in RAM. I'm
very hesitant to use the portable trick of writing the memory to a
temporary file, loading it, and deleting the temporary file once done
... it's a real waste of disk activity. I might make something like
vfs::file::isVirtual->bool,path()->string to get around this. But even
once I do, the underlying LoadLibrary/dlopen call is still going to be
direct disk access.
2016-06-26 18:54:12 +10:00
Tim Allen
3a9c7c6843 Update to v099r09 release.
byuu says:

Changelog:
- Emulator::Interface::Medium::bootable removed
- Emulator::Interface::load(bool required) argument removed
  [File::Required makes no sense on a folder]
- Super Famicom.sys now has user-configurable properties (CPU,PPU1,PPU2
  version; PPU1 VRAM size, Region override)
- old nall/property removed completely
- volatile flags supported on coprocessor RAM files now (still not in
  icarus, though)
- (hopefully) fixed SNES Multitap support (needs testing)
- fixed an OAM tiledata range clipping limit in 128KiB VRAM mode (doesn't
  fix Yoshi's Island, sadly)
- (hopefully, again) fixed the input polling bug hex_usr reported
- re-added dialog box for when File::Required files are missing
  - really cool: if you're missing a boot ROM, BIOS ROM, or IPL ROM,
    it warns you immediately
  - you don't have to select a game before seeing the error message
    anymore
- fixed cheats.bml load/save location
2016-06-25 18:53:11 +10:00
Tim Allen
f48b332c83 Update to v099r08 release.
byuu says:

Changelog:
- nall/vfs work 100% completed; even SGB games load now
- emulation cores now call load() for the base cartridges as well
- updated port/device handling; portmask is gone; device ID bug should
  be resolved now
- SNES controller port 1 multitap option was removed
- added support for 128KiB SNES PPU VRAM (for now, edit sfc/ppu/ppu.hpp
  VRAM::size=0x10000; to enable)

Overall, nall/vfs was a huge success!! We've substantially reduced
the amount of boilerplate code everywhere, while still allowing (even
easier than before) support for RAM-based game loading/saving. All of
nall/stream is dead and buried.

I am considering removing Emulator::Interface::Medium::id and/or
bootable flag. Or at least, doing something different with it. The
values for the non-bootable GB/BS/ST entries duplicate the ID that is
supposed to be unique. They are for GB/GBC and WS/WSC. Maybe I'll use
this as the hardware revision selection ID, and then gut non-bootable
options. There's really no reason for that to be there. I think at one
point I was using it to generate library tabs for non-bootable systems,
but we don't do that anymore anyway.

Emulator::Interface::load() may not need the required flag anymore ... it
doesn't really do anything right now anyway.

I have a few reasons for having the cores load the base cartridge. Most
importantly, it is going to enable a special mode for the WonderSwan /
WonderSwan Color in the future. If we ever get the IPLROMs dumped ... it's
possible to boot these systems with no games inserted to set user profile
information and such. There are also other systems that may accept being
booted without a cartridge. To reach this state, you would load a game and
then cancel the load dialog. Right now, this results in games not loading.

The second reason is this prevents nasty crashes when loading fails. So
if you're missing a required manifest, the emulator won't die a violent
death anymore. It's able to back out at any point.

The third reason is consistency: loading the base cartridge works the
same as the slot cartridges.

The fourth reason is Emulator::Interface::open(uint pathID)
values. Before, the GB, SB, GBC modes were IDs 1,2,3 respectively. This
complicated things because you had to pass the correct ID. But now
instead, Emulator::Interface::load() returns maybe<uint> that is nothing
when no game is selected, and a pathID for a valid game. And now open()
can take this ID to access this game's folder contents.

The downside, which is temporary, is that command-line loading is
currently broken. But I do intend on restoring it. In fact, I want to do
better than before and allow multi-cart booting from the command-line by
specifying the base cartridge and then slot cartridges. The idea should
be pretty simple: keep a queue of pending filenames that we fill from
the command-line and/or drag-and-drop operations on the main window,
and then empty out the queue or prompt for load dialogs from the UI
when booting a system. This also might be a bit more unorthodox compared
to the traditional emulator design of "loadGame(filename)", but ... oh
well. It's easy enough still.

The port/device changes are fun. We simplified things quite a bit. The
portmask stuff is gone entirely. While ports and devices keep IDs,
this is really just sugar-coating so UIs can use for(auto& port :
emulator->ports) and access port.id; rather than having to use for(auto
n : range(emulator->ports)) { auto& port = emulator->ports[n]; ... };
but they should otherwise generally be identical to the order they appear
in their respective ranges. Still, don't rely on that.

Input::id is gone. There was no point since we also got rid of the nasty
Input::order vector. Since I was in here, I went ahead and caved on the
pedantics and renamed Input::guid to Input::userData.

I removed the SNES controller port 1 multitap option. Basically, the only
game that uses this is N-warp Daisakusen and, no offense to d4s, it's
not really a good game anyway. It's just a quick demo to show 8-players
on the SNES. But in the UI, all it does is confuse people into wasting
time mapping a controller they're never going to use, and they're going
to wonder which port to use. If more compelling use cases for 8-players
comes about, we can reconsider this. I left all the code to support this
in place, so all you have to do is uncomment one line to enable it again.

We now have dsnes emulation! :D
If you change PPU::VRAM::size to 0x10000 (words), then you should now
have 128KiB of VRAM. Even better, it serializes the used-VRAM size,
so your save states shouldn't crash on you if you swap between the two
(though if you try this, you're nuts.)

Note that this option does break commercial software. Yoshi's Island in
particular. This game is setting A15 on some PPU register writes, but
not on others. The end result of this is things break horribly in-game.

Also, this option is causing a very tiny speed hit for obvious reasons
with the variable masking value (I'm even using size-1 for now.) Given
how niche this is, I may just leave it a compile-time constant to avoid
the overhead cost. Otherwise, if we keep the option, then it'll go into
Super Famicom.sys/manifest.bml ... I'll flesh that out in the near-future.

----

Finally, some fun for my OCD ... my monitor suddenly cut out on me
in the middle of working on this WIP, about six hours in of non-stop
work. Had to hit a bunch of ctrl+alt+fN commands (among other things)
and trying to log in headless on another TTY to do issue commands,
trying to recover the display. Finally power cycled the monitor and it
came back up. So all my typing ended up going to who knows where.

Usually this sort of thing terrifies me enough that I scrap a WIP and
start over to ensure I didn't screw anything up during the crashed screen
when hitting keys randomly.

Obviously, everything compiles and appears to work fine. And I know
it's extremely paranoid, but OCD isn't logical, so ... I'm going
to go over every line of the 100KiB r07->r08 diff looking for any
corruption/errors/whatever.

----

Review finished.

r08 diff review notes:
- fc/controller/gamepad/gamepad.cpp:
  use uint device = ID::Device::Gamepad; not id = ...;
- gb/cartridge/cartridge.hpp:
  remove redundant uint _pathID; (in Information::pathID already)
- gb/cartridge/cartridge.hpp:
  pull sha256 inside Information
- sfc/cartridge/load/cpp:
  add " - Slot (A,B)" to interface->load("Sufami Turbo"); to be more
  descriptive
- sfc/controller/gamepad/gamepad.cpp:
  use uint device = ID::Device::Gamepad; not id = ...;
- sfc/interface/interface.cpp:
  remove n variable from the Multitap device input generation loop
  (now unused)
- sfc/interface/interface.hpp:
  put struct Port above struct Device like the other classes
- ui-tomoko:
  cheats.bml is reading from/writing to mediumPaths(0) [system folder
  instead of game folder]
- ui-tomoko:
  instead of mediumPaths(1) - call emulator->metadataPathID() or something
  like that
2016-06-24 22:16:53 +10:00
Tim Allen
ccd8878d75 Update to v099r07 release.
byuu says:

Changelog:
- (hopefully) fixed BS Memory and Sufami Turbo slot loading
- ported GB, GBA, WS cores to use nall/vfs
- completely removed loadRequest, saveRequest functionality from
  Emulator::Interface and ui-tomoko
  - loadRequest(folder) is now load(folder)
- save states now use a shared Emulator::SerializerVersion string
  - whenever this is bumped, all older states will break; but this makes
    bumping state versions way easier
  - also, the version string makes it a lot easier to identify
    compatibility windows for save states
- SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr]

NOTE: Super Game Boy loading is currently broken, and I'm not entirely
sure how to fix it :/
The file loading handoff was -really- complicated, and so I'm kind of
at a loss ... so for now, don't try it.
Everything else should theoretically work, so please report any bugs
you find.

So, this is pretty much it. I'd be very curious to hear feedback from
people who objected to the old nall/stream design, whether they are
happy with the new file loading system or think it could use further
improvements.

The 16-bit VRAM turned out to be a wash on performance (roughly the same
as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The
main reason for this was because Yoshi's Island was breaking horribly
until I changed the vramRead, vramWrite functions to take uint15 instead
of uint16.

I suspect the issue is we're using uint16s in some areas now that need
to be uint15, and this game is setting the VRAM address to 0x8000+,
causing us to go out of bounds on memory accesses.

But ... I want to go ahead and do something cute for fun, and just because
we can ... and this new interface is so incredibly perfect for it!! I
want to support an SNES unit with 128KiB of VRAM. Not out of the box,
but as a fun little tweakable thing. The SNES was clearly designed to
support that, they just didn't use big enough VRAM chips, and left one
of the lines disconnected. So ... let's connect it anyway!

In the end, if we design it right, the only code difference should be
one area where we mask by 15-bits instead of by 16-bits.
2016-06-24 22:09:30 +10:00
Tim Allen
875f031182 Update to v099r06 release.
byuu says:

Changelog:
- Super Famicom core converted to use nall/vfs
  - excludes Super Game Boy; since that's invoked from inside the GB core

This was definitely the major obstacle to test nall/vfs'
applicability. Things worked out pretty great in the end.

We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB
(cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes
a very large source of indirection. Before it was: "coprocessor <=>
cartridge <=> interface" for loading and saving data, and now it's just
"coprocessor <=> cartridge". And it may make sense to eventually turn
this into just "cartridge -> coprocessor" by making each coprocessor
class handle its own markup parsing.

It's nice to have all the manifest parsing in one location (well, sans
MSU1); but it's also nice for loading/unloading to be handled by each
coprocessor itself. So I'll have to think longer about that one.

I've also started handling Interface::save() differently. Instead of
keeping track of memory IDs and filenames, and iterating through that
vector of objects ... instead I now have a system that mirrors the markup
parsing on loading, but handles saving instead. This was actually the
reason the code size savings weren't more significant, but I like this
style more. As before, it removes an extra level of indirection.

So ... next up, I need to port over the GB, then GBA, then WS
cores. These shouldn't take too long since they're all very simple with
just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then
after that, gut all the old stream stuff from nall and higan. Kill the
(load,save)Request stuff, rename the load(Gamepak)Request to something
simpler, and then we should be good.

Anyway ... these are some huge changes.
2016-06-24 22:01:03 +10:00
Tim Allen
f04d9d58f5 Update to v099r05 release.
byuu says:

Changelog:
- added nall/vfs
- converted Famicom core to use nall/vfs interface instead of nall/stream
  interface
2016-06-20 21:00:32 +10:00
Tim Allen
40abcfc4a5 Update to v099r04 release.
byuu says:

Changelog:
- lots of code cleanups to processor/r6502 (the switch.cpp file is only
  halfway done ...)
- lots of code cleanups to fc/cpu
- removed fc/input
- implemented fc/controller

hex_usr, you may not like this, but I want to keep the controller port
and expansion port interface separate, like I do with the SNES. I realize
the NES' is used more for controllers, and the SNES' more for hardware
expansions, but ... they're not compatible pinouts and you can't really
connect one to the other.

Right now, I've only implemented the controller portion. I'll have to
get to the peripheral portion later.

Also, the gamepad implementation there now may be wrong. It's based off
the Super Famicom version obviously. I'm not sure if the Famicom has
different behavior with latching $4016 writes, or not. But, it works in
Mega Man II, so it's a start.

Everyone, be sure to remap your controls, and then set port 1 -> gamepad
after loading your first Famicom game with the new WIP.
2016-06-18 16:04:32 +10:00
Tim Allen
44a8c5a2b4 Update to v099r03 release.
byuu says:

Changelog:
- finished cleaning up the SFC core to my new coding conventions
- removed sfc/controller/usart (superseded by 21fx)
- hid Synchronize Video option from the menu (still in the configuration
  file)

Pretty much the only minor detail left is some variable names in the
SA-1 core that really won't look good at all if I move to camelCase,
so I'll have to rethink how I handle those. It's probably a good area
to attempt using BitFields, to see how it impacts performance. But I'll
do that in a test branch first.

But for the most part, this should be the end of the gigantic diffs (this
one was 174KiB), at least for the SFC/WS cores. Still have the FC/GB/GBA
cores to clean up more fully. Assuming we don't spot any new regressions,
we should be ~95% out of the woods on code cleanups breaking things.
2016-06-17 23:03:54 +10:00
Tim Allen
f1a80075fa Update to v099r02 release.
byuu says:

Changelog:
- renamed sfc/ppu/sprite (OAM oam;) to sfc/ppu/object (Object obj;) [hex_usr]
- renamed sfc/ppu's memory {vram, oam, cgram} to just vram, oam, cgram
- fixed addr&=~1 regression [hex_usr]
- fixed 8bpp tiledata regression [hex_usr]
2016-06-15 21:32:17 +10:00
Tim Allen
ae5b4c3bb3 Update to v099r01 release.
byuu says:

Changelog:
- massive cleanups and optimizations on the PPU core
- ~9% speedup over v099 official

This is pretty much it for the low-hanging fruit of speeding up higan. Any
more gains from this point will be extremely hard-fought, unfortunately.
2016-06-14 20:51:54 +10:00
Tim Allen
c074c6e064 Update to v099 release.
byuu says:

Time for a new release. There are a few important emulation improvements
and a few new features; but for the most part, this release focuses on
major code refactoring, the details of which I will mostly spare you.

The major change is that, as of v099, the SNES balanced and performance
cores have been removed from higan. Basically, in addition to my five
other emulation cores, these were too much of a burden to maintain. And
they've come along as far as I was able to develop them. If you need to
use these cores, please use these two from the v098 release.

I'm very well aware that ~80% of the people using higan for SNES
emulation were using the two removed profiles. But they simply had
to go. Hopefully in the future, we can compensate for their loss by
increasing the performance of the accuracy core.

Changelog (since v098):

SFC: balanced profile removed
SFC: performance profile removed
SFC: expansion port devices can now be changed during gameplay (atlhough
    you shouldn't)
SFC: fixed bug in SharpRTC leap year calculations
SFC: emulated new research findings for the S-DD1 coprocessor
SFC: fixed CPU emulation-mode wrapping bug with pei, [dp], [dp]+y
    instructions [AWJ]
SFC: fixed Super Game Boy bug that caused the bottom tile-row to flicker
    in games
GB: added MBC1M (multi-cart) mapper; icarus can't detect these so manual
    manifests are needed for now
GB: corrected return value when HuC3 unmapped RAM is read; fixes Robopon
    [endrift]
GB: improved STAT IRQ emulation; fixes Altered Space, etc [endrift,
    gekkio]
GB: partial emulation of DMG STAT write IRQ bug; fixes Legend of Zerd,
    Road Rash, etc
nall: execute() fix, for some Linux platforms that had trouble detecting
    icarus
nall: new BitField class; which allows for simplifying flag/register
    emulation in various cores
ruby: added Windows WASAPI audio driver (experimental)
ruby: remove attempts to call glSwapIntervalEXT (fixes crashing on some
    Linux systems)
ui: timing settings panel removed
video: restored saturation, gamma, luminance settings
video: added new post-emulation sprite system; light gun cursors are
    now higher-resolution
audio: new resampler (6th-order Butterworth biquad IIR); quite a bit
    faster than the old one
audio: added optional basic reverb filter (for fun)
higan: refresh video outside cooperative threads (workaround for shoddy
    code in AMD graphics drivers)
higan: individual emulation cores no longer have unique names
higan: really substantial code refactoring; 43% reduction in binary size

Off the bat, here are the known bugs:

hiro/Windows: focus stealing bug on startup. Needs to be fixed in hiro,
    not with a cheap hack to tomoko.

higan/SFC: some of the coprocessors are saving some volatile memory to
    disk. Completely harmless, but still needs to be fixed.

ruby/WASAPI: some sound cards have a lot of issues with the current driver
    (eg FitzRoy's). We need to find a clean way to fix this before it
    can be made the default driver. Which would be a huge win because
    the latency improvements are substantial, and in exclusive mode,
    WASAPI allows G-sync to work very well.

[From the v099 WIP thread, here's the changelog since v098r19:

- GB: don't force mode 1 during force-blank; fixes v098r16 regression
  with many Game Boy games
- GB: only perform the STAT write IRQ bug during vblank, not hblank
  (still not hardware accurate, though)

-Ed.]
2016-06-11 11:13:18 +10:00
Tim Allen
50420e3dd2 Update to v098r19 release.
byuu says:

Changelog:
- added nall/bit-field.hpp
- updated all CPU cores (sans LR35902 due to some complexities) to use
  BitFields instead of bools
- updated as many CPU cores as I could to use BitFields instead of union {
  struct { uint8_t ... }; }; pairs

The speed changes are mostly a wash for this. In some instances,
I noticed a ~2-3% speedup (eg SNES emulation), and in others a 2-3%
slowdown (eg Famicom emulation.) It's within the margin of error, so
it's safe to say it has no impact.

This does give us a lot of new useful things, however:

- no more manual reconstruction of flag values from lots of left shifts
  and ORs
- no more manual deconstruction of flag values from lots of ANDs
- ability to get completely free aliases to flag groups (eg GSU can
  provide alt2, alt1 and also alt (which is alt2,alt1 combined)
- removes the need for the nasty order_lsbN macro hack (eventually will
  make higan 100% endian independent)
- saves us from insane compilers that try and do nasty things with
  alignment on union-structs
- saves us from insane compilers that try to store bit-field bits in
  reverse order
- will allow some really novel new use cases (I'm planning an
  instant-decode ARM opcode function, for instance.)
- reduces code size (we can serialize flag registers in one line instead
  of one for each flag)

However, I probably won't use it for super critical code that's constantly
reading out register values (eg PPU MMIO registers.) I think there we
would end up with a performance penalty.
2016-06-09 08:26:35 +10:00
Tim Allen
b08449215a Update to v098r18 release.
byuu says:

Changelog:
- hiro: fixed the BrowserDialog column resizing when navigating to new
  folders (prevents clipping of filenames)
  - note: this is kind of a quick-fix; but I have a good idea how to do
    the proper fix now
- nall: added BitField<T, Lo, Hi> class
  - note: not yet working on the SFC CPU class; need to go at it with
    a debugger to find out what's happening
- GB: emulated DMG/SGB STAT IRQ bug; fixes Zerd no Densetsu and Road Rash
  (won't fix anything else; don't get hopes up)
2016-06-07 21:55:03 +10:00
Tim Allen
9b452c9f5f Update to v098r17 release.
byuu says:

Changelog:
- fixed Super Game Boy regression from v096r04 with bottom tile row
  flickering
- fixed GB STAT IRQ regression from previous WIP
  - Altered Space is now playable
  - GBVideoPlayer isn't; but nobody seems to know exactly what weird
    hardware quirk that one relies on to work
- ~3-4% speed improvement in SuperFX games by eliminating function<>
  callback on register assignments
  - most noticeable in Doom in-game; least noticeable on Yoshi's Island
    title screen (darn)
- finished GSU core and SuperFX coprocessor code cleanups
- did some more work cleaning up the LR35902 core and GB CPU code

Just a fair warning: don't get your hopes up on these GB
fixes. Cliffhanger now hangs completely (har har), and none of the
other bugs are fixed. We pretty much did all this work just for Altered
Space. So, I hope you like playing Altered Space.
2016-06-06 08:10:01 +10:00
Tim Allen
3681961ca5 Update to v098r16 release.
byuu says:

Changelog:
- GNUmakefile: reverted $(call unique,) to $(strip)
- processor/r6502: removed templates; reduces object size from 146.5kb
  to 107.6kb
- processor/lr35902: removed templates; reduces object size from 386.2kb
  to 197.4kb
- processor/spc700: merged op macros for switch table declarations
- sfc/coprocessor/sa1: partial cleanups; flattened directory structure
- sfc/coprocessor/superfx: partial cleanups; flattened directory structure
- sfc/coprocessor/icd2: flattened directory structure
- gb/ppu: changed behavior of STAT IRQs

Major caveat! The GB/GBC STAT IRQ changes has a major bug in it somewhere
that's seriously breaking most games. I'm pushing the WIP anyway, because
I believe the changes to be mostly correct. I'd like to get more people
looking at these changes, and also try more heavy-handed hacking and
diff comparison logging between the previous WIP and this one.
2016-06-05 15:03:21 +10:00
Tim Allen
20ac95ee49 Update to v098r15 release.
byuu says:

Changelog:
- removed template usage from processor/spc700; cleaned up many function
  names and the switch table
  - object size: 176.8kb => 127.3kb
  - source code size: 43.5kb => 37.0kb
- fixed processor/r65816 BRK/COP vector regression [hex_usr]
- corrected HuC3 unmapped RAM read value; fixes Robopon [endrift]
- cosmetic: simplified the butterworth constant calculation
  [Wolfram|Alpha]

The SPC700 core changes took forever, about three hours of work.

Only the LR35902 and R6502 still need their template functions
removed. The point of this is that it doesn't cause any speed penalty
to do so, and it results in smaller binary sizes and faster compilation
times.
2016-06-05 14:52:43 +10:00
Tim Allen
fdc41611cf Update to v098r14 release.
byuu says:

Changelog:
- improved attenuation of biquad filter by computing butterworth Q
  coefficients correctly (instead of using the same constant)
- adding 1e-25 to each input sample into the biquad filters to try and
  prevent denormalization
- updated normalization from [0.0 to 1.0] to [-1.0 to +1.0]; volume/reverb
  happen in floating-point mode now
- good amount of work to make the base Emulator::Audio support any number
  of output channels
  - so that we don't have to do separate work on left/right channels;
    and can instead share the code for each channel
- Emulator::Interface::audioSample(int16 left, int16 right); changed to:
  - Emulator::Interface::audioSample(double* samples, uint channels);
  - samples are normalized [-1.0 to +1.0]
  - for now at least, channels will be the value given to
    Emulator::Audio::reset()
- fixed GUI crash on startup when audio driver is set to None

I'm probably going to be updating ruby to accept normalized doubles as
well; but I'm not sure if I will try and support anything other 2-channel
audio output. It'll depend on how easy it is to do so; perhaps it'll be
a per-driver setting.

The denormalization thing is fierce. If that happens, it drops the
emulator framerate from 220fps to about 20fps for Game Boy emulation. And
that happens basically whenever audio output is silent. I'm probably
also going to make a nall/denormal.hpp file at some point with
platform-specific functionality to set the CPU state to "denormals as
zero" where applicable. I'll still add the 1e-25 offset (inaudible)
as another fallback.
2016-06-01 21:23:22 +10:00
Tim Allen
839813d0f1 Update to v098r13 release.
byuu says:

Changelog:
- nall/dsp returns with new iir/biquad.hpp and resampler/cubic.hpp files
- nall/queue.hpp added (simple ring buffer ... nall/vector wouldn't
  cause too many moves with FIFO)
- audio streams now only buffer 20ms; so even if multiple audio streams
  desync, latency can never exceed 20ms
- replaced blackman windwed sinc FIR hermite audio filter with transposed
  direct form II biquadratic sixth-order IIR butterworth filter (better
  attenuation of frequencies above 20KHz, faster, no need for decimation,
  less code)
- put in experimental eight-tap echo filter (a lot better than what I
  had before, but still rather weak)
- substantial cleanups to the SuperFX GSU processor core (slightly
  faster, 479KB->100KB object file, 42.7KB->33.4KB source code size,
  way less code duplication)

We'll definitely want to test the whole SuperFX library (not many games)
just to make sure there's no regressions caused by this one.

Not sure what I want to do with audio processing effects yet. I've always
really wanted lots of fun controls to customize audio, and now finally
with this new biquad filter, I can finally start implementing real
effects. For instance, an equalizer wouldn't be too complicated anymore.

The new reverb effect is still a poor man's version. I need to find human
readable source for implementing a comb-filter properly. I'm pretty sure
I can already treat nall::queue as an all-pass filter since all that
does is phase shift (fancy audio term for "delay audio"). What's really
going to be hard is figuring out how to expose user-friendly settings for
controlling it. It looks like you need a bunch of coprime coefficients,
and I don't think casual users are going to be able to hand-enter coprime
values to get the echo effect they want. I uh ... don't even know how
to calculate coprime values dynamically right now >_> But we're going
to have to, as they are correlated to the output sampling rate.

We'll definitely want to make some audio profiles so that users can
quickly select pre-configured themes that sound nice, but expose the
underlying coefficients so that they can tweak stuff to their liking. This
isn't just about higan, this is about me trying to learn digital signal
processing, so please don't be too upset about feature creep or anything
on this.

Anyway ... I'm having some difficulties with my audio right now. When
the reverb effect is enabled, there's a bunch of static on system
reset for just a moment. But this should not be possible. nall::queue
is initializing all previous reverb sample elements to 0.0. I don't
understand where static is coming in from. Further, we have the same
issue with both the windowed sinc and the biquad filters ... a bit of
a popping sound when starting a game. Any help tracking this down would
be appreciated.

There's also one really annoying issue ... I can't seem to do reverb
or volume adjustments with normalized samples. If I say "volume *= 0.5"
in higan/audio/audio.cpp line 68, it doesn't just halve the volume, it
adds a whole bunch of distortion. This makes absolutely zero sense to
me. The sample values are between 0.0 (mute) and 1.0 (full volume) here,
so multiplying a double by 0.5 shouldn't cause distortion. So right now,
I'm doing these adjustments with less precision after denormalizing back
to int16. Anyone ever see something like that? :/
2016-06-01 08:29:36 +10:00
Tim Allen
7f3cfa17b9 Update to v098r12 release.
byuu says:

Changelog:
- higan/video: added support for Emulator::Sprite
- higan/resource: a new system for accessing embedded binary files
  inside the emulation cores; holds the sprites
- higan/sfc/superscope,justifier: re-enabled display of crosshairs
- higan/sfc/superscope: fixed turbo toggle (also shows different
  crosshair color when in turbo mode)
- higan/sfc/ppu: always outputs at 512x480 resolution now
  - causes a slight speed-hit from ~127fps to ~125fps;
  - but allows high-resolution 32x32 cursors that look way better;
  - also avoids the need to implement sprite scaling logic

Right now, the PPU code to always output at 480-height is a really gross
hack. Don't worry, I'll make that nicer before release.

Also, superscope.cpp and justifier.cpp are built around a 256x240
screen. But since we now have 512x480, we can make the cursor's movement
much smoother by doubling the resolution on both axes. The actual games
won't see any accuracy improvements when firing the light guns, but the
cursors will animate nicer so I think it's still worth it. I'll work on
that before the next release as well.

The current 32x32 cursors are nicer, but we can do better now with full
24-bit color. So feel free to submit alternatives. I'll probably reject
them, but you can always try :D

The sprites don't support alpha blending, just color keying (0x00000000
= transparent; anything else is 0xff......). We can revisit that later
if necessary.

The way I have it designed, the only files that do anything with
Emulator::Sprite at all are the superscope and justifier folders.
I didn't have to add any hooks anywhere else. Rendering the sprite is
a lot cleaner than the old code, too.
2016-05-26 21:20:15 +10:00
Tim Allen
ae5d380d06 Update to v098r11 release.
byuu says:

Changelog:
- fixed nall/path.hpp compilation issue
- fixed ruby/audio/xaudio header declaration compilation issue (again)
- cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the
  file was whitespace overkill)
- added null terminator entry to nall/windows/utf8.hpp argc[] array
- nall/windows/guid.hpp uses the Windows API for generating the GUID
  - this should stop all the bug reports where two nall users were
    generating GUIDs at the exact same second
- fixed hiro/cocoa compilation issue with uint# types
- fixed major higan/sfc Super Game Boy audio latency issue
- fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions
- major cleanups to higan/processor/r65816 core
  - merged emulation/native-mode opcodes
  - use camel-case naming on memory.hpp functions
  - simplify address masking code for memory.hpp functions
  - simplify a few opcodes themselves (avoid redundant copies, etc)
  - rename regs.* to r.* to match modern convention of other CPU cores
- removed device.order<> concept from Emulator::Interface
  - cores will now do the translation to make the job of the UI easier
- fixed plurality naming of arrays in Emulator::Interface
  - example: emulator.ports[p].devices[d].inputs[i]
  - example: vector<Medium> media
- probably more surprises

Major show-stoppers to the next official release:
- we need to work on GB core improvements: LY=153/0 case, multiple STAT
  IRQs case, GBC audio output regs, etc.
- we need to re-add software cursors for light guns (Super Scope,
  Justifier)
- after the above, we need to fix the turbo button for the Super Scope

I really have no idea how I want to implement the light guns. Ideally,
we'd want it in higan/video, so we can support the NES Zapper with the
same code. But this isn't going to be easy, because only the SNES knows
when its output is interlaced, and its resolutions can vary as
{256,512}x{224,240,448,480} which requires pixel doubling that was
hard-coded to the SNES-specific behavior, but isn't appropriate to be
exposed in higan/video.
2016-05-25 21:13:02 +10:00
Tim Allen
3ebc77c148 Update to v098r10 release.
byuu says:

Changelog:
- synchronized tomoko, loki, icarus with extensive changes to nall
  (118KiB diff)
2016-05-16 19:51:12 +10:00
Tim Allen
6ae0abe3d3 Update to v098r09 release.
byuu says:

Changelog:
- fixed major nall/vector/prepend bug
- renamed hiro/ListView to hiro/TableView
- added new hiro/ListView control which is a simplified abstraction of
  hiro/TableView
- updated higan's cheat database window and icarus' scan dialog to use
  the new ListView control
- compilation works once again on all platforms (Windows, Cocoa, GTK,
  Qt)
- the loki skeleton compiles once again (removed nall/DSP references;
  updated port/device ID names)

Small catch: need to capture layout resize events internally in Windows
to call resizeColumns. For now, just resize the icarus window to get it
to use the full window width for list view items.
2016-05-04 20:07:13 +10:00
Tim Allen
0955295475 Update to v098r08 release.
byuu says:

Changelog:
- nall/vector rewritten from scratch
- higan/audio uses nall/vector instead of raw pointers
- higan/sfc/coprocessor/sdd1 updated with new research information
- ruby/video/glx and ruby/video/glx2: fuck salt glXSwapIntervalEXT!

The big change here is definitely nall/vector. The Windows, OS X and Qt
ports won't compile until you change some first/last strings to
left/right, but GTK will compile.

I'd be really grateful if anyone could stress-test nall/vector. Pretty
much everything I do relies on this class. If we introduce a bug, the
worst case scenario is my entire SFC game dump database gets corrupted,
or the byuu.org server gets compromised. So it's really critical that we
test the hell out of this right now.

The S-DD1 changes mean you need to update your installation of icarus
again. Also, even though the Lunar FMV never really worked on the
accuracy core anyway (it didn't initialize the PPU properly), it really
won't work now that we emulate the hard-limit of 16MiB for S-DD1 games.
2016-05-02 19:57:04 +10:00
Tim Allen
7cdae5195a Update to v098r07 release.
byuu says:

Changelog:
- GB: support modeSelect and RAM for MBC1M (Momotarou Collection)
- audio: implemented native resampling support into Emulator::Stream
- audio: removed nall::DSP completely

Unfortunately, the new resampler didn't turn out quite as fast as I had
hoped. The final hermite resampling added some overhead; and I had to
bump up the kernel count to 500 from 400 to get the buzzing to go away
on my main PC. I think that's due to it running at 48000hz output
instead of 44100hz output, maybe?

Compared to Ryphecha's:
(NES) Mega Man 2: 167fps -> 166fps
(GB) Mega Man II: 224fps -> 200fps
(WSC) Riviera: 143fps -> 151fps

Odd that the WS/WSC ends up faster while the DMG/CGB ends up slower.

But this knocks 922 lines down to 146 lines. The only files left in all
of higan not written (or rewritten) by me are ruby/xaudio2.h and
libco/ppc.c
2016-04-23 17:55:59 +10:00
Tim Allen
e2ee6689a0 Update to v098r06 release.
byuu says:

Changelog:
- emulation cores now refresh video from host thread instead of
  cothreads (fix AMD crash)
- SFC: fixed another bug with leap year months in SharpRTC emulation
- SFC: cleaned up camelCase on function names for
  armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes
- GB: added MBC1M emulation (requires manually setting mapper=MBC1M in
  manifest.bml for now, sorry)
- audio: implemented Emulator::Audio mixer and effects processor
- audio: implemented Emulator::Stream interface
  - it is now possible to have more than two audio streams: eg SNES
    + SGB + MSU1 + Voicer-Kun (eventually)
- audio: added reverb delay + reverb level settings; exposed balance
  configuration in UI
- video: reworked palette generation to re-enable saturation, gamma,
  luminance adjustments
- higan/emulator.cpp is gone since there was nothing left in it

I know you guys are going to say the color adjust/balance/reverb stuff
is pointless. And indeed it mostly is. But I like the idea of allowing
some fun special effects and configurability that isn't system-wide.

Note: there seems to be some kind of added audio lag in the SGB
emulation now, and I don't really understand why. The code should be
effectively identical to what I had before. The only main thing is that
I'm sampling things to 48000hz instead of 32040hz before mixing. There's
no point where I'm intentionally introducing added latency though. I'm
kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be
much appreciated :/

I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as
well, and that would be very bad.
2016-04-22 23:35:51 +10:00
Tim Allen
55e507d5df Update to v098r05 release.
byuu says:

Changelog:
- WS/WSC: re-added support for screen rotation (code is inside WS core)
- ruby: changed sample(uint16_t left, uint16_t right) to sample(int16_t
  left, int16_t right);
  - requires casting to uint prior to shifting in each driver, but
    I felt it was misleading to use uint16_t just to avoid that
- ruby: WASAPI is now built in by default; has wareya's improvements,
  and now supports latency adjust
- tomoko: audio settings panel has new "Exclusive Mode" checkbox for
  WASAPI driver only
  - note: although the setting *does* take effect in real-time, I'd
    suggest restarting the emulator after changing it
- tomoko: audio latency can now be set to 0ms (which in reality means
  "the minimum supported by the driver")
- all: increased cothread size from 512KiB to 2MiB to see if it fixes
  bullshit AMD driver crashes
  - this appears to cause a slight speed penalty due to cache locality
    going down between threads, though
2016-04-18 20:49:45 +10:00
Tim Allen
a2d3b8ba15 Update to v098r04 release.
byuu says:

Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
  (must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
  mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
  [2]

[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.

The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.

I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?

[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.

Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.

Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.

Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.

Also, the SNES light gun pointers are missing for now.

Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.

And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)

The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-12 07:29:56 +10:00
Tim Allen
1929ad47d2 Update to v098r03 release.
byuu says:

It took several hours, but I've rebuilt much of the SNES' bus memory
mapping architecture.

The new design unifies the cartridge string-based mapping
("00-3f,80-bf:8000-ffff") and internal bus.map calls. The map() function
now has an accompanying unmap() function, and instead of a fixed 256
callbacks, it'll scan to find the first available slot. unmap() will
free slots up when zero addresses reference a given slot.

The controllers and expansion port are now both entirely dynamic.
Instead of load/unload/power/reset, they only have the constructor
(power/reset/load) and destructor (unload). What this means is you can
now dynamically change even expansion port devices after the system is
loaded.

Note that this is incredibly dangerous and stupid, but ... oh well. The
whole point of this was for 21fx. There's no way to change the expansion
port device prior to loading a game, but if the 21fx isn't active, then
the reset vector hijack won't work. Now you can load a 21fx game, change
the expansion port device, and simply reset the system to active the
device.

The unification of design between controller port devices and expansion
port devices is nice, and overall this results in a reduction of code
(all of the Mapping stuff in Cartridge is gone, replaced with direct bus
mapping.) And there's always the potential to expand this system more in
the future now.

The big missing feature right now is the ability to push/pop mappings.
So if you look at how the 21fx does the reset vector, you might vomit
a little bit. But ... it works.

Also changed exit(0) to _exit(0) in the POSIX version of nall::execute.

[The _exit(0) thing is an attempt to make higan not crash when it tries
to launch icarus and it's not on $PATH. The theory is that higan forks,
then the child tries to exec icarus and fails, so it exits, all the
unique_ptrs clean up their resources and tell the X server to free
things the parent process is still using. Calling _exit() prevents
destructors from running, and seems to prevent the problem. -Ed.]
2016-04-09 20:21:18 +10:00
Tim Allen
7403e69307 Update to v098r02 release.
byuu says:

Changelog:
- SFC: fixed a regression on auto joypad polling due to missing
  parentheses
- SFC: exported new PPU::vdisp() const -> uint; function [1]
- SFC: merged PPU MMIO functions into the read/write handles (as
  I previously did for the CPU)
- higan: removed individual emulator core names (bnes, bsnes, bgb, bgba,
  bws) [2] Forgot:
- to remove /tomoko from the about dialog

[1] note that technically I was relying on the cached, per-frame
overscan setting when the CPU and light guns were polling the number of
active display scanlines per frame. This was technically incorrect as
you can change this value mid-frame and it'll kick in. I've never seen
any game toggle overscan every frame, we only know about this because
anomie tested this a long time ago. So, nothing should break, but ...
you know how the SNES is. You can't even look at the code without
something breaking, so I figured I'd mention it >_>

[2] I'll probably keep referring to the SNES core as bsnes anyway.
I don't mind if you guys use the b<system> names as shorthand. The
simplification is mostly to make the branding easier.
2016-04-09 15:20:41 +10:00
Tim Allen
19e1d89f00 Update to v098r01 release.
byuu says:

Changelog:
- SFC: balanced profile removed
- SFC: performance profile removed
- SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed
- SFC: Coprocessor, Controller (and expansion port) shared Thread code
  merged to SFC::Cothread
  - Cothread here just means "Thread with CPU affinity" (couldn't think
    of a better name, sorry)
- SFC: CPU now has vector<Thread*> coprocessors, peripherals;
  - this is the beginning of work to allow expansion port devices to be
    dynamically changed at run-time
- ruby: all audio drivers default to 48000hz instead of 22050hz now if
  no frequency is assigned
  - note: the WASAPI driver can default to whatever the native frequency
    is; doesn't have to be 48000hz
- tomoko: removed the ability to change the frequency from the UI (but
  it will display the frequency used)
- tomoko: removed the timing settings panel
  - the goal is to work toward smooth video via adaptive sync
  - the model is broken by not being in control of the audio frequency
    anyway
  - it's further broken by PAL running at 50hz and WSC running at 75hz
  - it was always broken anyway by SNES interlace timing varying from
    progressive timing
- higan: audio/ stub created (for now, it's just nall/dsp/ moved here
  and included as a header)
- higan: video/ stub created
- higan/GNUmakefile: now includes build rules for essential components
  (libco, emulator, audio, video)

The audio changes are in preparation to merge wareya's awesome WASAPI
work without the need for the nall/dsp resampler.
2016-04-09 13:40:12 +10:00
Tim Allen
aff00506c5 Update to v098 hotfix release.
byuu says:

There was a minor SNES input regression spotted very shortly after
release.
2016-04-09 12:43:12 +10:00
Tim Allen
e846c83d47 Update to v098 release.
byuu says:

This release most notably adds WonderSwan and WonderSwan Color
emulation.

It is also the final release that will include the balanced and
performance profiles for bsnes.

Changelog (since v097):
- higan: added WonderSwan and WonderSwan Color emulation
- higan: simplified the coooperative-thread schedulers for all emulation
  cores
- higan: moved from native (u)int[8,16,32,64]_t types to
  Natural<T>/Integer<T> classes
- higan: major cleanups to the Makefiles; including auto-selection of
  processor cores
- loki: very barebones skeleton in place now; does absolutely nothing
  - these allow the removal of huge amounts of manual bit-twiddling with
    more readable alternatives
- FC: fixed PPU OAM reads (mask the correct bits when writing) [hex_usr]
- SFC: fixed expansion port device mapping on game load
- SFC: reworked the way SGB games were loaded -* SFC core can now be
  compiled without GB core (and thus without SGB support)
- SFC: added Super Disc expansion port device (although it's just
  a non-functional skeleton so far)
- SFC: bugfix to SharpRTC emulation regarding leap year extra day counts
  (Dai Kaijuu Monogatari II)
- SFC: major code cleanups to the CPU core and the R65816 processor base
  class
- SFC: added 21fx emulation (not the old 21fx that became MSu1; reusing
  the name for a new idea)
  - basic idea is to move the serial USART to the expansion port along
    with a reset vector hijack
- SFC: emulate reset vector pushing PC onto the stack on system soft
  reset
- GB: pass gekkio's if_ie_registers and boot_hwio-G test ROMs
- GBA: reworked all handling of MMIO functions: removed the get/set
  class functions
- nall: improved edge case return values for
  (basename,pathname,dirname,...)
- ruby: fixed ~AudioXAudio2() typo (now calls destructor on exit)
- ruby: if DirectSoundCreate fails (no sound device present), return
  false from init instead of crashing
- tomoko: added "All" option to filetype dropdown for ROM loading
  - allows loading GBC games in SGB mode
- tomoko: locate() updated to search multiple paths [2]
- tomoko: fixed some oddities when changing the audio frequency/latency
  settings
- icarus: can now work with WonderSwan and WonderSwan Color games

Note 1: 90% of the changelog for this release was related to the
WonderSwan emulation being in development. Doesn't make a lot of sense
to post about fixes since the code didn't exist publicly prior to this
release.
2016-04-09 12:38:50 +10:00
Tim Allen
06d44b4878 Update to v097r32 release.
byuu says:

Changelog:
- bsnes-accuracy emulates reset vector properly[1]
- bsnes-balanced compiles once more
- bsnes-performance compiles once more

The balanced and performance profiles are fixed for the last time. They
will be removed for v098r01.

Please test this WIP as much as you can. I intend to release v098 soon.
I know save states are a little unstable for the WS/WSC, but they work
well enough for a release. If I can't figure it out soon, I'm going to
post v098 anyway.

[1] this one's been a really long time coming, but ... one of the bugs
I found when I translated Tekkaman Blade was that my translation patch
would crash every now and again when you hit the reset button on a real
SNES, but it always worked upon power on.

Turns out that while power-on initializes the stack register to $01ff,
reset does things a little bit differently. Reset actually triggers the
reset interrupt vector after putting the CPU into emulation mode, but it
doesn't initialize the stack pointer. The net effect is that the stack
high byte is set to $01, and the low byte is left as it was. And then
the reset vector runs, which pushes the low 16-bits of the program
counter, plus the processor flags, onto the stack frame. So you can
actually tell where the game was at when the system was reset ... sort
of.

It's a really weird behavior to be sure. But here's the catch: say
you're hacking a game, and so you hook the reset vector with jsl
showMyTranslationCreditsSplashScreen, and inside this new subroutine,
you then perform whatever bytes you hijacked, and then initialize the
stack frame to go about your business drawing the screen, and when
you're done, you return via rtl.

Generally, this works fine. But if S={0100, 0101, or 0102}, then the
stack will wrap due to being in emulation mode at reset. So it will
write to {0100, 01ff, 01fe}. But now in your subroutine, you enable
native mode. So when you return from your subroutine hijack, it reads
the return address from {01ff, 0200, 0201} instead of the expected
{01ff, 0100, 0101}. Thus, you get an invalid address back, and you
"return" to the wrong location, and your program dies.

The odds of this happening depend on how the game handles S, but
generally speaking, it's a ~1:85 chance.

By emulating this behavior, I'll likely expose this bug in many ROM
hacks that do splash screen hooks like this, including my own Tekkaman
Blade translation. And it's also very possible that there are commercial
games that screw this up as well.

But, it's what the real system does. So if any crashes start happening
as of this WIP upon resetting the game, well ... it'd happen on real
hardware, too.
2016-04-03 21:17:20 +10:00
Tim Allen
25eaaa82f4 Update to v097r31 release.
byuu says:

Changelog:
- WS: fixed sprite window clipping (again)
- WS: don't set IRQ status bits of IRQ enable bits are clear
- SFC: signed/unsigned -> int/uint for DSP core
- SFC: removed eBoot
- SFC: added 21fx (not the same as the old precursor to MSU1; just
  reusing the name)

Note: XI Little doesn't seem to be fixed after all ... but the other
three are. So I guess we're at 13 bugs :( And holy shit that music when
you choose a menu option is one of the worst sounds I've ever heard in
my life >_<
2016-03-29 20:15:01 +11:00
Tim Allen
2d83300235 Update to v097r30 release.
byuu says:

Changelog:
- fixed sprite window attribute bit (Final Fantasy, Tekken Card
  Challenge, etc)
- rewrote renderer to support 2bpp color mode (Dark Eyes, Dokodemo
  Hamster, Flash Koibito-kun, etc)
2016-03-29 19:44:03 +11:00
Tim Allen
680d16561e Update to v097r29 release.
byuu says:

Changelog:
- fixed DAS instruction (Judgment Silversword score)
- fixed [VH]TMR_FREQ writes (Judgement Silversword audio after area 20)
- fixed initialization of SP (fixes seven games that were hanging on
  startup)
- added SER_STATUS and SER_DATA stubs (fixes four games that were
  hanging on startup)
- initialized IEEP data (fixes Super Robot Taisen Compact 2 series)
  - note: you'll need to delete your internal.com in WonderSwan
    (Color).sys folders
- fixed CMPS and SCAS termination condition (fixes serious bugs in four
  games)
- set read/writeCompleted flags for EEPROM status (fixes Tetsujin 28
  Gou)
- major code cleanups to SFC/R65816 and SFC/CPU
  - mostly refactored disassembler to output strings instead of using
    char* buffer
  - unrolled all the subfolders on sfc/cpu to a single directory
  - corrected casing for all of sfc/cpu and a large portion of
    processor/r65816

I kind of went overboard on the code cleanup with this WIP. Hopefully
nothing broke. Any testing one can do with the SFC accuracy core would
be greatly appreciated.

There's still an absolutely huge amount of work left to go, but I do
want to eventually refresh the entire codebase to my current coding
style, which is extremely different from stuff that's been in higan
mostly untouched since ~2006 or so. It's dangerous and fickle work, but
if I don't do it, then the code will be a jumbled mess of several
different styles.
2016-03-26 12:56:15 +11:00
Tim Allen
379ab6991f Update to v097r28 release.
byuu says:

Changelog: (all WSC unless otherwise noted)
- fixed LINECMP=0 interrupt case (fixes FF4 world map during airship
  sequence)
- improved CPU timing (fixes Magical Drop flickering and FF1 battle
  music)
- added per-frame OAM caching (fixes sprite glitchiness in Magical Drop,
  Riviera, etc.)
- added RTC emulation (fixes Dicing Knight and Judgement Silversword)
- added save state support
- added cheat code support (untested because I don't know of any cheat
  codes that exist for this system)
- icarus: can now detect games with RTC chips
- SFC: bugfix to SharpRTC emulation (Dai Kaijuu Monogatari II)
  - ( I was adding the extra leap year day to all 12 months instead of
    just February ... >_< )

Note that the RTC emulation is very incomplete. It's not really
documented at all, and the two games I've tried that use it never even
ask you to set the date/time (so they're probably just using it to count
seconds.) I'm not even sure if I've implement the level-sensitive
behavior correctly (actually, now that I think about it, I need to mask
the clear bit in INT_ACK for the level-sensitive interrupts ...)

A bit worried about the RTC alarm, because it seems like it'll fire
continuously for a full minute. Or even if you turn it off after it
fires, then that doesn't seem to be lowering the line until the next
second ticks on the RTC, so that likely needs to happen when changing
the alarm flag.

Also not sure on this RTC's weekday byte. On the SharpRTC, it actually
computes this for you. Because it's not at all an easy thing to
calculate yourself in 65816 or V30MZ assembler. About 40 lines of code
to do it in C. For now, I'm requiring the program to calculate the value
itself.

Also note that there's some gibberish tiles in Judgement Silversword,
sadly. Not sure what's up there, but the game's still fully playable at
least.

Finally, no surprise: Beat-Mania doesn't run :P
2016-03-25 17:19:08 +11:00
Tim Allen
d3413db04a Update to v097r27 release.
byuu says:

Absolutely major improvements to the WS/C emulation today.

Changelog: (all WS/C related)
- fixed channel 3 sweep pitch adjustment
- fixed channel 3 sweep value sign extension
- removed errant channel 5 speed setting (not what's really going on)
- fixed sign extension on channel 5 samples
- improved DAC mixing of all five audio channels
- fixed r26 regression with PPU timing loop
- fixed sprite windowing behavior (sprite attribute flag is window mode;
  not window enable)
- added per-scanline register latching to the PPU
- IRQs should terminate HLT even when the IRQ enable register bits are
  clear
- fixed PALMONO reads
- added blur emulation
- added color emulation (based on GBA, so it heavily desaturates colors;
  not entirely correct, but it helps a lot)
- no longer decimating audio to 24KHz; running at full 3.072MHz through
  the windowed sinc filter [1]
- cleaned up PPU portRead / portWrite functions significantly
- emulated a weird quirk as mentioned by trap15 regarding timer
  frequency writes enabling said timers [2]
- emulated LCD_CTRL sleep bit; screen can now be disabled (always draws
  black in this case for now)
- improved OAM caching; but it's still disabled because it causes huge
  amounts of sprite glitches (unsure why)
- fixed rendering of sprites that wrap around the screen edges back to
  the top/left of the display
- emulated keypad interrupts
- icarus: detect orientation bit in game header
- higan: use orientation setting in manifest to set default screen
  rotation

[1] the 24KHz -> 3.072MHz sound change is huge. Sound is substantially
improved over the previous WIPs. It does come at a pretty major speed
penalty, though. This is the highest frequency of any system in higan
running through an incredibly (amazing, yet) demanding sinc resampler.
Frame rate dropped from around 240fps to 150fps with the sinc filter on.
If you choose a different audio filter, you'll get most of that speed
back, but audio will sound worse again.

[2] we aren't sure if this is correct hardware behavior or not. It seems
to very slightly help Magical Drop, but not much.

The blur emulation is brutal. It's absolutely required for Riviera's
translucency simulation of selected menu items, but it causes serious
headaches due to the WS's ~75hz refresh rate running on ~60hz monitors
without vsync. It's probably best to leave it off and just deal with the
awful flickering on Riviera's menu options.

Overall, WS/C emulation is starting to get quite usable indeed. Couple
of major bugs that I'd really like to get fixed before releasing it,
though. But they're getting harder and harder to fix ...

Major Bugs:
- Final Fantasy battle background music is absent. Sound effects still
  work. Very weird.
- Final Fantasy IV scrolling during airship flight opening sequence is
  horribly broken. Scrolls one screen at a time.
- Magical Drop flickers like crazy in-game. Basically unplayable like
  this.
- Star Hearts character names don't appear in the smaller dialog box
  that pops up.

Minor Bugs:
- Occasional flickering during Riviera opening scenes.
- One-frame flicker of Leda's sprite at the start of the first stage.
2016-03-19 18:35:25 +11:00
Tim Allen
a7f7985581 Update to v097r26 release.
byuu says:

Changelog:
- WS: fixed 8-bit sign-extended imul (fixes Star Hearts completely,
  Final Fantasy world map)
- WS: fixed rcl/rcr carry shifting (fixes Crazy Climber, others)
- WS: added sound DMA emulation (Star Hearts rain sound for one example)
- WS: added OAM caching, but it's forced every line for now because
  otherwise there are too many sprite glitches
- WS: use headphoneEnable bit instead of speakerEnable bit (fixes muted
  audio in games)
- WS: various code cleanups (I/O mapping, audio channel naming, etc)

The hypervoice channel doesn't sound all that great just yet. But I'm
not sure how it's supposed to sound. I need a better example of some
more complex music.

What's left are some unknown register status bits (especially in the
sound area), keypad interrupts, RTC emulation, CPU prefetch emulation.
And then it's all just bugs. Lots and lots of bugs that need to be
fixed.

EDIT: oops, bad typo in the code.

ws/ppu/ppu.cpp line 20: change range(256) to range(224).

Also, delete the r.speed stuff from channel5.cpp to make the rain sound
a lot better in Star Hearts. Apparently that's outdated and not what the
bits really do.
2016-03-17 22:28:15 +11:00
Tim Allen
b586471562 Update to v097r25 release.
byuu says:

Changelog:
- WS: added HblankTimer and VblankTimer IRQs; although they don't appear
  to have any effect on any games that use them :/
- WS: added sound emulation; works perfectly in some games (eg Riviera);
  is completely silent in most games (eg GunPey)

The sound emulation only partially supports the hypervoice (headphone
only) channel. I need to implement the SDMA before it'll actually do
anything useful. I'm a bit confused about how exactly things work. It
looks like the speaker volume shift and clamp only applies to speaker
mode and not headphone mode, which is very weird. Then there's the
software possibility of muting the headphones and/or the speaker.
Preferably, I want to leave the emulator always in headphone mode for
the extra audio channel. If there are games that force-mute the
headphones, but not speakers, then I may need to force headphones back
on but with the hypervoice channel disabled. I guess we'll see how
things go.

Rough guess is probably that the channels default to enabled after the
IPLROM, and games aren't bothering to manually enable them or something.
2016-03-14 22:03:32 +11:00
Tim Allen
c33065fbd1 Update to v097r24 release.
byuu says:

Changelog:
- WS: fixed bug when IRQs triggered during a rep string instruction
- WS: added sprite attribute caching (per-scanline); absolutely massive
  speed-up
- WS: emulated limit of 32 sprites per scanline
- WS: emulated the extended PPU register bit behavior based on the
  DISP_CTRL tile bit-depth setting
- WS: added "Rotate" key binding; can be used to flip the WS display
  between horizontal and vertical in real-time

The prefix emulation may not be 100% hardware-accurate, but the edge
cases should be extreme enough to not come up in the WS library. No way
to get the emulation 100% down without intensive hardware testing.
trap15 pointed me at a workflow diagram for it, but that diagram is
impossible without a magic internal stack frame that grows with every
IRQ, and can thus grow infinitely large.

The rotation thing isn't exactly the most friendly set-up, but oh well.
I'll see about adding a default rotation setting to manifests, so that
games like GunPey can start in the correct orientation. After that, if
the LCD orientation icon turns out to be reliable, then I'll start using
that. But if there are cases where it's not reliable, then I'll leave it
to manual button presses.

Speaking of icons, I'll need a set of icons to render on the screen.
Going to put them to the top right on vertical orientation, and on the
bottom left for horizontal orientation. Just outside of the video
output, of course.

Overall, WS is getting pretty far along, but still some major bugs in
various games. I really need sound emulation, though. Nobody's going to
use this at all without that.
2016-03-13 11:22:15 +11:00
Tim Allen
79e7e6ab9e Update to v097r23 release.
byuu says:

Changelog:
- emulated SuperDisc $21e1 basic interface (NEC 4-bit MCU); all hardware
  tests pass now (but they don't test much)
- WS/V30MZ: fixed inc/dec reg flag calculation
- WS/V30MZ: fixed lds/les instructions

WS/C compatibility should be way up now. SuperDisc BIOS passes all tests
now (but they only test for the presence of the interface, nothing
more.)
2016-03-13 11:22:14 +11:00
Tim Allen
3d3ac8c1db Update to v097r22 release.
byuu says:

Changelog:
- WS: fixed lods, scas instructions
- WS: implemented missing GRP4 instructions
- WS: fixed transparency for screen one
- WSC: added color-mode PPU rendering
- WS+WSC: added packed pixel mode support
- WS+WSC: added dummy sound register reads/writes
- SFC: added threading to SuperDisc (it's hanging for right now; need to
  clear IRQ on $21e2 writes)

SuperDisc Timer and Sound Check were failing before due to not turning
off IRQs on $21e4 clear, so I'm happy that's fixed now.

Riviera starts now, and displays the first intro screen before crashing.
Huge, huge amounts of corrupted graphics, though. This game's really
making me work for it :(

No color games seem fully playable yet, but a lot of monochrome and
color games are now at least showing more intro screen graphics before
dying.

This build defaults to horizontal orientation, but I left the inputs
bound to vertical orientation. Whoops. I still need to implement
a screen flip key binding.
2016-03-13 11:22:14 +11:00
Tim Allen
b0d2f5033e Update to v097r21 release.
byuu says:

Changelog:
- icarus: WS/C detects RAM type/size heuristically now
- icarus: WS/C uses ram type=$type instead of $type
- WS: use back color instead of white for backdrop
- WS: fixed sprite count limit; removes all the garbled sprites from
  GunPey
- WS: hopefully fixed sprite priority with screen 2
- WS: implemented keypad polling; GunPey is now fully playable
- SNES: added Super Disc expansion port device (doesn't do anything,
  just for testing)

Note: WS is hard-coded to vertical orientation right now. But there's
basic code in there for all the horizontal stuff.
2016-03-13 11:22:14 +11:00
Tim Allen
570eb9c5f5 Update to v097r20 release.
byuu says:

Changelog:
- WS: fixed a major CPU bug where I was using the wrong bits for
  ModR/M's memory mode
- WS: added grayscale PPU emulation (exceptionally buggy)

GunPey now runs, as long as you add:

    eeprom name=save.ram size=0x800

to the manifest after importing with icarus.

Right now, you can't control the game due to missing keypad polling.
There's also a lot of glitchiness with the sprites. Seems like they're
not getting properly cleared sometimes or something.

Also, the PPU emulation is totally unrealistic bullshit. I decode and
evaluate every single tile and sprite on every single pixel of output.
No way in hell the hardware could ever come close to that. The speed's
around 500fps without the insane sprite evaluations, and around 90fps
with it. Obviously, I'll fix this in time.

Nothing else seems to run that I've tried. Not even far enough to
display any output whatsoever. Tried Langrisser Millenium, Rockman
& Forte and Riviera. I really need to update icarus to try and encode
eeprom/sram sizes, because that's going to break a lot of stuff if it's
missing.
2016-03-13 11:22:14 +11:00
Tim Allen
7dc62e3a69 Update to v097r19 release.
byuu says:

Changelog:
- fixed nall/windows/guard.hpp
- fixed hiro/(windows,gtk)/header.hpp
- fixed Famicom PPU OAM reads (mask the correct bits when writing)
  [hex_usr]
- removed the need for (system := system) lines from higan/GNUmakefile
- added "All" option to filetype dropdown for ROM loading
  - allows loading GBC games in SGB mode (and technically non-GB(C)
    games, which will obviously fail to do anything)
- loki can load and play game folders now (command-line only) (extremely
  unimpressive; don't waste your time :P)
  - the input is extremely hacked in as a quick placeholder; not sure
    how I'm going to do mapping yet for it
2016-03-13 11:22:14 +11:00
Tim Allen
fc7d5991ce Update to v097r18 release.
byuu says:

Changelog:
- fixed SNES sprite priority regression from r17
- added nall/windows/guard.hpp to guard against global namespace
  pollution (similar to nall/xorg/guard.hpp)
- almost fixed Windows compilation (still accuracy profile only, sorry)
- finished porting all of gba/ppu's registers over to the new .bit,.bits
  format ... all GBA registers.cpp files gone now
- the "processors :=" line in the target-$(ui)/GNUmakefile is no longer
  required
  - processors += added to each emulator core
  - duplicates are removed using the new nall/GNUmakefile's $(unique)
    function
- SFC core can be compiled without the GB core now
  - "-DSFC_SUPERGAMEBOY" is required to build in SGB support now (it's
    set in target-tomoko/GNUmakefile)
- started once again on loki (higan/target-loki/) [as before, loki is
  Linux/BSD only on account of needing hiro::Console]

loki shouldn't be too horrendous ... I hope. I just have the base
skeleton ready for now. But the code from v094r08 should be mostly
copyable over to it. It's just that it's about 50KiB of incredibly
tricky code that has to be just perfect, so it's not going to be quick.
But at least with the skeleton, it'll be a lot easier to pick away at it
as I want.

Windows compilation fix: move hiro/windows/header.hpp line 18 (header
guard) to line 16 instead.
2016-03-13 11:22:14 +11:00
Tim Allen
29be18ce0c Update to v097r17 release.
byuu says:

Changelog:
- ruby: if DirectSoundCreate fails (no sound device present), return
  false from init instead of crashing
- nall: improved edge case return values for
  (basename,pathname,dirname,...)
- nall: renamed file_system_object class to inode
- nall: varuint_t replaced with VariadicNatural; which contains
  .bit,.bits,.byte ala Natural/Integer
- nall: fixed boolean compilation error on Windows
- WS: popa should not restore SP
- GBA: rewrote the CPU/APU cores to use the .bit,.bits functions;
  removed registers.cpp from each

Note that the GBA changes are extremely major. This is about five hours
worth of extremely delicate work. Any slight errors could break
emulation in extremely bad ways. Let's hold off on extensive testing
until the next WIP, after I do the same to the PPU.

So far ... endrift's SOUNDCNT_X I/O test is failing, although that code
didn't change, so clearly I messed up SOUNDCNT_H somehow ...

To compile on Windows:

1. change nall/string/platform.hpp line 47 to

    return slice(result, 0, 3);

2. change ruby/video.wgl.cpp line 72 to

    auto lock(uint32_t*& data, uint& pitch, uint width, uint height) -> bool {

3. add this line to the very top of hiro/windows/header.cpp:

    #define boolean FuckYouMicrosoft
2016-03-13 11:22:14 +11:00
Tim Allen
810cbdafb4 Update to v097r16 release.
byuu says:

Changelog:
- sfc/ppu/sprite updated to use new .bit(s) functions; masked sizes
  better; added valid flags instead of using magic numbers
- ws/ppu updates to use new .bit(s) functions
- ws/ppu: added line compare interrupt support
- added ws/eeprom; emulation of WS/WSC internal EEPROM and cartridge
  EEPROM (1kbit - 16kbit supported)
- added basic read/write handlers for remaining WS/WSC PPU registers

WS EEPROM emulation is basically a direct copy of trap15's code. Still
some unknown areas in there, but hopefully it's enough to get further
into games that depend on EEPROM support. Note that you'll have to
manually add the eeprom line to the manifest for now, as icarus doesn't
know how to detect EEPROM/sizes yet.

I figured the changes to the SNES PPU sprites would slow it down a tad,
but it actually sped it up. Most of the impact from the integer classes
are gone now.
2016-03-13 11:22:10 +11:00
Tim Allen
4b29f4bad7 Update to v097r15 release.
byuu says:

Changelog:
- higan now uses Natural<Size>/Integer<Size> for its internal types
- Super Famicom emulation now uses uint24 instead of uint for bus
  addresses (it's a 24-bit bus)
- cleaned up gb/apu MMIO writes
- cleaned up sfc/coprocessor/msu1 MMIO writes
- ~3% speed penalty

I've wanted to do that 24-bit bus thing for so long, but have always
been afraid of the speed impact. It's probably going to hurt
balanced/performance once they compile again, but it wasn't significant
enough to harm the accuracy core's frame rate, thankfully. Only lost one
frame per second.

The GBA core handlers are clearly going to take a lot more work. The
bit-ranges will make it substantially easier to handle, though. Lots of
32-bit registers where certain values span multiple bytes, but we have
to be able to read/write at byte-granularity.
2016-02-16 20:32:49 +11:00
Tim Allen
ef65bb862a Update to 20160215 release.
byuu says:

Got it. Wow, that didn't hurt nearly as much as I thought it was going
to.

Dropped from 127.5fps to 123.5fps to use Natural/Integer for
(u)int(8,16,32,64).

That's totally worth the cost.
2016-02-16 20:27:55 +11:00
Tim Allen
0d0af39b44 Update to v097r14 release.
byuu says:

This is a few days old, but oh well.

This WIP changes nall,hiro,ruby,icarus back to (u)int(8,16,32,64)_t.

I'm slowly pushing for (u)int(8,16,32,64) to use my custom
Integer<Size>/Natural<Size> classes instead. But it's going to be one
hell of a struggle to get that into higan.
2016-02-16 20:11:58 +11:00
Tim Allen
6c83329cae Update to v097r13 release.
byuu says:

I refactored my schedulers. Added about ten lines to each scheduler, and
removed about 100 lines of calling into internal state in the scheduler
for the FC,SFC cores and about 30-40 lines for the other cores. All of
its state is now private.

Also reworked all of the entry points to static auto Enter() and auto
main(). Where Enter() handles all the synchronization stuff, and main()
doesn't need the while(true); loop forcing another layer of indentation
everywhere.

Took a few hours to do, but totally worth it. I'm surprised I didn't do
this sooner.

Also updated icarus gmake install rule to copy over the database.
2016-02-09 22:51:12 +11:00
Tim Allen
32a95a9761 Update to v097r12 release.
byuu says:

Nothing WS-related this time.

First, I fixed expansion port device mapping. On first load, it was
mapping the expansion port device too late, so it ended up not taking
effect. I had to spin out the logic for that into
Program::connectDevices(). This was proving to be quite annoying while
testing eBoot (SNES-Hook simulation.)

Second, I fixed the audio->set(Frequency, Latency) functions to take
(uint) parameters from the configuration file, so the weird behavior
around changing settings in the audio panel should hopefully be gone
now.

Third, I rewrote the interface->load,unload functions to call into the
(Emulator)::System::load,unload functions. And I have those call out to
Cartridge::load,unload. Before, this was inverted, and Cartridge::load()
was invoking System::load(), which I felt was kind of backward.

The Super Game Boy really didn't like this change, however. And it took
me a few hours to power through it. Before, I had the Game Boy core
dummying out all the interface->(load,save)Request calls, and having the
SNES core make them for it. This is because the folder paths and IDs
will be different between the two cores.

I've redesigned things so that ICD2's Emulator::Interface overloads
loadRequest and saveRequest, and translates the requests into new
requests for the SuperFamicom core. This allows the Game Boy code to do
its own loading for everything without a bunch of Super Game Boy special
casing, and without any awkwardness around powering on with no cartridge
inserted.

This also lets the SNES side of things simply call into higher-level
GameBoy::interface->load,save(id, stream) functions instead of stabbing
at the raw underlying state inside of various Game Boy core emulation
classes. So things are a lot better abstracted now.
2016-02-08 14:17:59 +11:00
Tim Allen
a89a3da77a Update to v097r11 release.
byuu says:

Alright, well interrupts are in. At least Vblank is.

I also fixed a bug in vector() indexing, MoDRM mod!=3&&reg==6 using SS
instead of DS, opcodes a0-a3 allowing segment override, and added the
"irq_disable" stuff to the relevant opcodes to suppress IRQs after
certain instructions.

But unfortunately ... still no go on Riviera. It's not reading any
unmapped ports, and although it enables Vblank IRQs and they set port
$b4's status bit, the game never sets the IE flag, so no interrupts ever
actually fire. The game does indeed appear to be sitting in a rather
huge loop, which is probably dependent upon some RAM variable being set
from the Vblank IRQ, but I don't know how I'm supposed to be triggering
it.

... I'm really quite stumped here >_>
2016-02-05 08:18:06 +11:00
Tim Allen
7a748e093e Update to v097r10 release.
byuu says:

All 256 instructions implemented fully. Fixed a major bug with
instructions that both read and write to ModRM with displacement.
Riviera now runs into an infinite loop ... possibly crashed, possibly
waiting on interrupts or in to return something. Added a bunch of PPU
settings registers, but nothing's actually rendering with them yet.
2016-02-04 21:29:08 +11:00
Tim Allen
d158c8f293 Update to v097r09 release.
244 of 256 opcodes implemented now, although the interrupt triggering
portions are missing from them still. Much better handling of prefixes
now.

I definitely have a newfound hatepreciation for x86 now >_>
2016-02-03 21:24:58 +11:00
Tim Allen
71bda4144a Update to v097r08 release.
byuu says:

Up to 211 opcodes implemented, with the caveat that the four opcodes
that make up group 3 and group 4 don't do anything yet. Both groups seem
to have some "illegal" instructions in them, so that'll be "fun".

I have a new mechanic in place for opcode prefixes, but it could use
some work still. I also only have it working to override ModRM mem
addressing, but of course it does it in a lot of other places like the
string operations.

Making it about 5.5 million instructions into Gunpey now, but of course
that doesn't mean much. Could be going off the rails at any point due to
CPU bugs or unimplemented ports. Riviera's still crashing.
2016-02-03 21:07:50 +11:00
Tim Allen
ad51f1478e Update to v097r07 release.
byuu says:

26 hours in, 173 instructions implemented. Although the four segment
prefix opcodes don't actually do anything yet. There's less than 256
actual instructions on the 80186, not sure of the exact count.

Gunpey gets around ~8,200 instructions in before hitting an unsupported
opcode (loop). Riviera goes off the rails on a retf and ends up
executing an endless stream of bad opcodes in RAM =( Both games hammer
the living shit out of the in/out ports pretty much immediately.
2016-02-02 21:51:17 +11:00
Tim Allen
d0ddd87e9c Update to v097r06 release.
byuu says:

Man, the 80186 is taking a lot longer to implement than I thought it
would. So far I'm 18 hours into this emulator. Whereas I had Super Mario
Bros fully playable (no sound) in 12 hours for the NES >_>

I refactored all the byte/word variant functions to single functions
that take a size parameter. Cuts the amount of code in half.

Also implemented repz/repnz + movsb/movsw, so Riviera now gets 299
instructions in before dying. Nobody really bothers to explain how the
CPU actually implements these instructions, but I think I have it right:
ignore non-string opcodes that follow rep, invoke the string operations
inside the rep opcodes to prevent interrupts from triggering between the
two (which will be even more fun for segment selector overrides ...)

The next opcode needed is 0xC7, which ... throws ModRM on its head. In
this mode, ModRM is only used to determine the target operand (and it
doesn't use the middle bits for that at all), and the source is an
immediate that follows it. Gonna have to waste a few more hours thinking
about how best to handle that.

Also, disabled HiDPI for higan as well on OS X.
2016-01-31 18:59:44 +11:00
Tim Allen
605a8aa3e9 Update to v097r05 release.
byuu says:

More V30MZ implemented, a lot more to go.

icarus now supports importing WS and WSC games. It expects them to have
the correct file extension, same for GB and GBC.

> Ugh, apparently HiDPI icarus doesn't let you press the check boxes.

I set the flag value in the plist to false for now. Forgot to do it for
higan, but hopefully I won't forget before release.
2016-01-30 17:40:35 +11:00
Tim Allen
a8323d0d2b Update to v097r04 release.
byuu says:

Lots of improvements. We're now able to start executing some V30MZ
instructions. 32 of 256 opcodes implemented so far.

I hope this goes without saying, but there's absolutely no point in
loading WS/WSC games right now. You won't see anything until I have the
full CPU and partial PPU implemented.

ROM bank 2 works properly now, the I/O map is 16-bit (address) x 16-bit
(data) as it should be*, and I have a basic disassembler in place
(adding to it as I emulate new opcodes.)

(* I don't know what happens if you access an 8-bit port in 16-bit mode
or vice versa, so for now I'm just treating the handlers as always being
16-bit, and discarding the upper 8-bits when not needed.)
2016-01-28 22:39:49 +11:00
Tim Allen
d7998b23ef Update to v097r03 release.
byuu says:

So, this WIP starts work on something new for higan. Obviously, I can't
keep it a secret until it's ready, because I want to continue daily WIP
releases, and of course, solicit feedback as I go along.
2016-01-27 22:31:39 +11:00
Tim Allen
344e63d928 Update to v097r02 release.
byuu says:

Note: balanced/performance profiles still broken, sorry.

Changelog:
- added nall/GNUmakefile unique() function; used on linking phase of
  higan
- added nall/unique_pointer
- target-tomoko and {System}::Video updated to use
  unique_pointer<ClassName> instead of ClassName* [1]
- locate() updated to search multiple paths [2]
- GB: pass gekkio's if_ie_registers and boot_hwio-G test ROMs
- FC, GB, GBA: merge video/ into the PPU cores
- ruby: fixed ~AudioXAudio2() typo

[1] I expected this to cause new crashes on exit due to changing the
order of destruction of objects (and deleting things that weren't
deleted before), but ... so far, so good. I guess we'll see what crops
up, especially on OS X (which is already crashing for unknown reasons on
exit.)

[2] right now, the search paths are: programpath(), {configpath(),
"higan/"}, {localpath(), "higan/"}; but we can add as many more as we
want, and we can also add platform-specific versions.
2016-01-25 22:27:18 +11:00
Tim Allen
f1ebef2ea8 Update to v097r01 release.
byuu says:

A minor WIP to get us started.

Changelog:
- System::Video merged to PPU::Video
- System::Audio merged to DSP::Audio
- System::Configuration merged to Interface::Settings
- created emulator/emulator.cpp and accompanying object file for shared
  code between all cores

Currently, emulator.cpp just holds a videoColor() function that takes
R16G16B16, performs gamma/saturation/luma adjust, and outputs
(currently) A8R8G8B8. It's basically an internal function call for cores
to use when generating palette entries. This code used to exist inside
ui-tomoko/program/interface.cpp, but we have to move it internal for
software display emulation. But in the future, we could add other useful
cross-core functionality here.
2016-01-23 18:29:34 +11:00
Tim Allen
1fdd0582fc Update to v097 release.
byuu says:

This release features improvements to all emulation cores, but most
substantially for the Game Boy core. All of blargg's test ROMs that pass
in gambatte now either pass in higan, or are off by 1-2 clocks (the
actual behaviors are fully emulated.) I consider the Game Boy core to
now be fairly accurate, but there's still more improvements to be had.

Also, what's sure to be a major feature for some: higan now has full
support for loading and playing ordinary ROM files, whether they have
copier headers, weird extensions, or are inside compressed archives. You
can load these games from the command-line, from the main Library menu
(via Load ROM Image), or via drag-and-drop on the main higan window. Of
course, fans of game folders and the library need not worry: that's
still there as well.

Also new, you can drop the (uncompressed) Game Boy Advance BIOS onto the
higan main window to install it into the correct location with the
correct file name.

Lastly, this release technically restores Mac OS X support. However,
it's still not very stable, so I have decided against releasing binaries
at this time. I'd rather not rush this and leave a bad first impression
for OS X users.

Changelog (since v096):
- higan: project source code hierarchy restructured; icarus directly
  integrated
- higan: added software emulation of color-bleed, LCD-refresh,
  scanlines, interlacing
- icarus: you can now load and import ROM files/archives from the main
  higan menu
- NES: fixed manifest parsing for board mirroring and VRC pinouts
- SNES: fixed manifest for Star Ocean
- SNES: fixed manifest for Rockman X2,X3
- GB: enabling LCD restarts frame
- GB: emulated extra OAM STAT IRQ quirk required for GBVideoPlayer
  (Shonumi)
- GB: VBK, BGPI, OBPI are readable
- GB: OAM DMA happens inside PPU core instead of CPU core
- GB: fixed APU length and sweep operations
- GB: emulated wave RAM quirks when accessing while channel is enabled
- GB: improved timings of several CPU opcodes (gekkio)
- GB: improved timings of OAM DMA refresh (gekkio)
- GB: CPU uses open collector logic; return 0xFF for unmapped memory
  (gekkio)
- GBA: fixed sequencer enable flags; fixes audio in Zelda - Minish Cap
  (Jonas Quinn)
- GBA: fixed disassembler masking error (Lioncash)
- hiro: Cocoa support added; higan can now be compiled on Mac OS X 10.7+
- nall: improved program path detection on Windows
- higan/Windows: moved configuration data from %appdata% to
  %localappdata%
- higan/Linux,BSD: moved configuration data from ~/.config/higan to
  ~/.local/higan
2016-01-17 19:59:25 +11:00
Tim Allen
12df278c5b Update to v096r08 release.
byuu says:

Changelog:
- FC: scanline emulation support added
- SFC: balanced profile compiles again
- SFC: performance profile compiles again
- GB,GBC: more fixes to pass blargg's 07, 08, 11 APU tests
- tomoko: added input loss { pause, allow-input } options
- tomoko: refactored settings video menu options to { Video Scale, Video
  Emulation, Video Shader }
- icarus: connected { About, Preferences, Quit } application menu options
2016-01-15 21:28:51 +11:00
Tim Allen
cec33c1d0f Update to v096r07 release.
byuu says:

Changelog:
- configuration files are now stored in localpath() instead of configpath()
- Video gamma/saturation/luminance sliders are gone now, sorry
- added Video Filter->Blur Emulation [1]
- added Video Filter->Scanline Emulation [2]
- improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn]

[1] For the Famicom, this does nothing. For the Super Famicom, this
performs horizontal blending for proper pseudo-hires translucency. For
the Game Boy, Game Boy Color, and Game Boy Advance, this performs
interframe blending (each frame is the average of the current and
previous frame), which is important for things like the GBVideoPlayer.

[2] Right now, this only applies to the Super Famicom, but it'll come to
the Famicom in the future. For the Super Famicom, this option doesn't
just add scanlines, it simulates the phosphor decay that's visible in
interlace mode. If you observe an interlaced game like RPM Racing on
a real SNES, you'll notice that even on perfectly still screens, the
image appears to shake. This option emulates that effect.

Note 1: the buffering right now is a little sub-optimal, so there will
be a slight speed hit with this new support. Since the core is now
generating native ARGB8888 colors, it might as well call out to the
interface to lock/unlock/refresh the video, that way it can render
directly to the screen. Although ... that might not be such a hot idea,
since the GBx interframe blending reads from the target buffer, and that
tends to be a catastrophic option for performance.

Note 2: the balanced and performance profiles for the SNES are
completely busted again. This WIP took 6 1/2 hours, and I'm exhausted.
Very much not looking forward to working on those, since those two have
all kinds of fucked up speedup tricks for non-interlaced and/or
non-hires video modes.

Note 3: if you're on Windows and you saved your system folders somewhere
else, now'd be a good time to move them to %localappdata%/higan
2016-01-15 21:07:57 +11:00
Tim Allen
3414c8c8df Update to v096r06 release.
byuu says:

This WIP finally achieves the vision I've had for icarus.

I also fixed a mapping issue with Cx4 that, oddly enough, only caused
the "2" from the Mega Man X2 title screen to disappear.

[Editor's note - "the vision for icarus" was described in a separate,
public forum post: http://board.byuu.org/phpbb3/viewtopic.php?p=20584
Quoting for posterity:

    icarus is now a full-fledged part of higan, and will be bundled with
    each higan WIP as well. This will ensure that in the future, the
    exact version of icarus you need to run higan will be included right
    along with it. As of this WIP, physical manifest files are now truly
    and entirely optional.

    From now on, you can associate your ROM image files with higan's
    main binary, or drop them directly on top of it, to load and play
    your games.

    Furthermore, there are two new menu options that appear under the
    library menu when icarus is present:

    - "Load ROM File ..." => gives you a single-file selection dialog to
      import (and if possible) run the game
    - "Import ROM Files ..." => gives you a multi-file import dialog
      with checkboxes to pull in multiple games at once

    Finally, as before, icarus can generate manifest.bml files for
    folders that lack them.

    For people who like the game folder and library system, nothing's
    changed. Keep using higan as you have been.

    For people who hate it, you can now use higan like your classic
    emulators. Treat the "Library->{System Name}" entries as your
    "favorites" list: the games you actually play. Treat the
    "Library->Load ROM" as your standard open file dialog in other
    emulators. And finally, treat "Advanced->Game Library" as your save
    data path for cheat codes, save states, save RAM, etc.

]
2016-01-15 21:07:37 +11:00
Tim Allen
82ec876302 Update to v096r05 release.
byuu says:

Changelog:
- GB: re-enabling the LCD resets the display to LY=0,LX=0 [1]
- GB: emulated new findings (as of today!) for a DMG quirk that triggers
  an extra OAM STAT IRQ when Vblank STAT IRQs are off
- GB: made VBK, BGPI, OBPI readable
- GB: fixed APU length operations
- GB: fixed APU sweep operations
- NES: fixed cartridge/ -> board/ manifest lookups for mirroring/pinous
- hiro/Cocoa: added endrift's plist keys

Fixed:
- Astro Rabby is fully playable, even the title screen works correctly
- Bomb Jack is fully playable
- Kirby's Dream Land 2 intro scrolling first scanline of Rick is now fixed
- GBVideoPlayer functions correctly [2]
- Shin Megami Tensei: Devichil series regression fixed

[1] doesn't pass oam_bug-2/1-lcd_sync; because it seems to want
LY=0,LX>0, and I can't step the PPU in a register write as it's not
a state machine; the effect is emulated, it just starts the frame a tiny
bit sooner. blargg's testing is brutal, you can't be even one cycle off
or the test will fail.

[2] note that you will need the GBC Display Emulation shader from
hunterk's repository, or it will look like absolute shit. The
inter-frame blending is absolutely critical here.
2016-01-12 22:08:34 +11:00
Tim Allen
72b6a8b32e Update to v096r04 release.
byuu says:

Changelog:
- fixed S-DD1 RAM writes (Star Ocean audio fixed)
- applied all of the DMG test ROM fixes discussed earlier; passes many
  more test ROMs now
- at least until the GBVideoPlayer is working: for debugging purposes,
  CPU/PPU single-step now instead of sync just-in-time (~30% slower)
- fixed OS X crash on NSTextView (hopefully, would be very odd if not)

Unfortunately passing these test ROMs caused my favorite GB/GBC game to
break all of its graphics =(
Shin Megami Tensei - Devichil - Kuro no Sho (Japan) is all garbled now.
I'm really quite bummed by this ... but I guess I'll go through and
revert r04's fixes one at a time until I find what's causing it.

On the plus side, Astro Rabby is playable now. Still acts weird when
pressing B/A on the first screen, but the start button will start the
game.

EDIT: got it. Shin Megami Tensei - Devichil requires FF4F (VBK) to be
readable. Before, it was always returning 0x00. With my return 0xFF
patch, that broke. But it should be returning the VBK value, which also
fixes it. Also need to handle FF68/FF6A reads. Was really hoping that'd
help GBVideoPlayer too, but nope. It doesn't read any of those three
registers.
2016-01-11 21:31:30 +11:00
Tim Allen
653bb378ee Update to v096r03 release.
byuu says:

Changelog:
- fixed icarus to save settings properly
- fixed higan's full screen toggle on OS X
- increased "Add Codes" button width to avoid text clipping
- implemented cocoa/canvas.cpp
- added 1s delay after mapping inputs before re-enabling the window
  (wasn't actually necessary, but already added it)
- fixed setEnabled(false) on Cocoa's ListView and TextEdit widgets
- updated nall::programpath() to use GetModuleFileName on Windows
- GB: system uses open collector logic, so unmapped reads return 0xFF,
  not 0x00 (passes blargg's cpu_instrs again) [gekkio]
2016-01-08 20:23:46 +11:00
Tim Allen
0b923489dd Update to 20160106 OS X Preview for Developers release.
byuu says:

New update. Most of the work today went into eliminating hiro::Image
from all objects in all ports, replacing with nall::image. That took an
eternity.

Changelog:
- fixed crashing bug when loading games [thanks endrift!!]
- toggling "show status bar" option adjusts window geometry (not
  supposed to recenter the window, though)
- button sizes improved; icon-only button icons no longer being cut off
2016-01-07 19:17:15 +11:00
Tim Allen
4d193d7d94 Update to v096r02 (OS X Preview for Developers) release.
byuu says:

Warning: this is not for the faint of heart. This is a very early,
unpolished, buggy release. But help testing/fixing bugs would be greatly
appreciated for anyone willing.

Requirements:
- Mac OS X 10.7+
- Xcode 7.2+

Installation Commands:

    cd higan
    gmake -j 4
    gmake install
    cd ../icarus
    gmake -j 4
    gmake install

(gmake install is absolutely required, sorry. You'll be missing key
files in key places if you don't run it, and nothing will work.)

(gmake uninstall also exists, or you can just delete the .app bundles
from your Applications folder, and the Dev folder on your desktop.)

If you want to use the GBA emulation, then you need to drop the GBA BIOS
into ~/Emulation/System/Game\ Boy\ Advance.sys\bios.rom

Usage:
You'll now find higan.app and icarus.app in your Applications folders.
First, run icarus.app, navigate to where you keep your game ROMs. Now
click the settings button at the bottom right, and check "Create
Manifests", and click OK. (You'll need to do this every time you run
icarus because there's some sort of bug on OSX saving the settings.) Now
click "Import", and let it bring in your games into ~/Emulation.

Note: "Create Manifests" is required. I don't yet have a pipe
implementation on OS X for higan to invoke icarus yet. If you don't
check this box, it won't create manifest.bml files, and your games won't
run at all.

Now you can run higan.app. The first thing you'll want to do is go to
higan->Preferences... and assign inputs for your gamepads. At the very
least, do it for the default controller for all the systems you want to
emulate.

Now this is very important ... close the application at this point so
that it writes your config file to disk. There's a serious crashing bug,
and if you trigger it, you'll lose your input bindings.

Now the really annoying part ... go to Library->{System} and pick the
game you want to play. Right now, there's a ~50% chance the application
will bomb. It seems the hiro::pListView object is getting destroyed, yet
somehow the internal Cocoa callbacks are being triggered anyway. I don't
know how this is possible, and my attempts to debug with lldb have been
a failure :(

If you're unlucky, the application will crash. Restart and try again. If
it crashes every single time, then you can try launching your game from
the command-line instead. Example:

    open /Applications/higan.app \
	--args ~/Emulation/Super\ Famicom/Zelda3.sfc/

Help wanted:
I could really, really, really use some help with that crashing on game
loading. There's a lot of rough edges, but they're all cosmetic. This
one thing is pretty much the only major show-stopping issue at the
moment, preventing a wider general audience pre-compiled binary preview.
2016-01-07 19:17:15 +11:00
Tim Allen
47d4bd4d81 Update to v096r01 release.
byuu says:

Changelog:

- restructured the project and removed a whole bunch of old/dead
  directives from higan/GNUmakefile
- huge amounts of work on hiro/cocoa (compiles but ~70% of the
  functionality is commented out)
- fixed a masking error in my ARM CPU disassembler [Lioncash]
- SFC: decided to change board cic=(411,413) back to board
  region=(ntsc,pal) ... the former was too obtuse

If you rename Boolean (it's a problem with an include from ruby, not
from hiro) and disable all the ruby drivers, you can compile an
OS X binary, but obviously it's not going to do anything.

It's a boring WIP, I just wanted to push out the project structure
change now at the start of this WIP cycle.
2015-12-30 17:54:59 +11:00
Tim Allen
27660505c8 Update to v096 release.
byuu says:

Changelog (since v095):

- higan: absolutely massive amounts of coding style updates; probably
  150 hours of work here
- higan: manifest format updated for much greater consistency and
  simplicity
- higan: wrote popen() replacement to suppress console flashing when
  loading games via icarus
- icarus: now includes external database with mapping information for
  all verified games
- icarus: added support for importing Campus Challenge '92 and Powerfest
  '94
- icarus: merged settings.bml with higan; changing library path in one
  affects the other now
- SFC: added MSU1 audio resume support
- SFC: added new expansion port device (eBoot); simulation of SNES-Boot
  hardware
- SFC: expansion port device can now be selected from system menu
- SFC: updated handling of open bus (thanks to Exophase for the design
  idea)
- SFC: "BS-X Satellaview" library folder renamed to "BS Memory"
- GBA: fixed 8-bit SRAM reading/writing
- GBA: PRAM is 16-bits wide
- GBA: VRAM OBJ 8-bit writes are ignored
- GBA: BGnCNT unused bits are writable
- GBA: BG(0,1)CNT can't set d13
- GBA: BLDALPHA is readable (fixes many games including Donkey Kong
  Country)
- GBA: DMA masks &~1/Half, &~3/Word
- GBA: fixed many other I/O register reads; gets perfect score on
  endrift's I/O tests
- GBA: fixed caching of r(d) to pass armwrestler tests (Jonas Quinn)
- GBA: blocked DMA to/from BIOS region (Cydrak)
- GBA: fixed sign-extend and rotate on ldrs instructions (Cydrak)
- tomoko: added "Ignore Manifests" option to advanced settings panel
- tomoko: re-added support for ruby/quark video shaders
- tomoko: improved aspect correction behavior
- tomoko: added new tool, "Manifest Viewer" (mostly useful for
  developers)
- ruby: fixed mouse capture clipping on Windows (Cydrak)
- ruby: won't crash when using OpenGL 3.2 Linux driver with only OpenGL
  2.0 available
- ruby: added Linux fallback OpenGL 2.0 driver (not compiled in by
  default)
- ruby: added preliminary WASAPI driver (not compiled in by default, due
  to bugginess)
- hiro: fixed the appearance of Button and ListView::CheckButton on
  Windows classic
- hiro: added missing return values from several functions (fixes
  crashes with Clang)
2015-12-21 23:21:31 +11:00
Tim Allen
702b657e75 Update to v095r18 release.
byuu says:

Changelog:
- replaced popen() with execvp() / CreateProcess()
- suppressed (hid) controllers with no mappable inputs from the input
  settings panel

This gets rid of the window flashing when loading games with
higan+icarus. And hiding of empty devices should be a huge usability
improvement, especially since "None" was appearing at the top of the
list before for the SNES.
2015-12-21 20:16:47 +11:00
Tim Allen
0253db8685 Update to higan and icarus v095r17 release.
byuu says:

higan supports Event mapping again.

Further, icarus can now detect Event ROMs and MSU1 games.

Event ROMs must be named "program.rom", "slot-(1,2,3).rom" MSU1 games
must contain "msu1.rom"; and tracks must be named "track-#.pcm"

When importing the CC'92, PF'94 ROMs, the program.rom and
slot-(1,2,3).rom files must be concatenated. The DSP firmware can
optionally be separate, but I'd recommend you go ahead and merge it all
to one file. Especially since that common "higan DSP pack" floating
around on the web left out the DSP1 ROMs (only has DSP1B) for god knows
what reason.

There is no support for loading "game.sfc+game.msu+game-*.pcm", because
I'm not going to support trying to pull in all of those files through
importing. Games will have to be distributed as game folders to use
MSU1. The MSU1 icarus support is simply so your game folders won't
require an unstable manifest.bml file to be played. So once they're in
there, they are good for life.

Note: the Event sizes in icarus' SFC heuristics are wrong for appended
firmware. Change from 0xXX8000 to 0xXX2000 and it works fine. Will be
fixed in r18.

Added Sintendo's flickering fixes. The window one's a big help for
regular controls, but the ListView double buffering does nothing for me
on Windows 7 :( Fairly sure I know why, but too lazy to try and fix that
now.

Also fixes the mMenu thing.
2015-12-20 13:53:40 +11:00
Tim Allen
2a4eb1cfc8 Update to higan and icarus v095r16 release.
byuu says (in the WIP forum):

    Changelog:
    - satellaviewcartridge/SatellaviewCartridge is now bsmemory/BSMemory
    - Emulation/BS-X Satellaview/ is now Emulation/BS Memory/
    - masking is in for MCC's mcu (awful hack in the code, but that's
      temporary)
    - BS Memory types are now "flash" or "mrom"
    - fixed loading Same Game - Tengai Hen
    - icarus fixed up a lot; can load database entries for any supported
      media type now (only the SFC DB exists currently)

    mMenu::remove() fix will be in the next WIP.

byuu says (in the public beta thread):

    Changelog:
    - GBA emulation accuracy improved quite a bit
    - video shaders are supported once again
    - icarus shares settings.bml with higan; changing library path in
      one now affects the other
    - icarus manifest generation now uses my SNES game dumping database
      for perfect mapping of US games
    - major overhaul to manifest file format. As long as you have
      v095-style folders without manifest.bml, you will be fine
      - if not, go to higan->settings->configuration->advanced and check
	"Ignore Manifests" before loading your first game
    - new "Manifest Viewer" tool (not really meant for regular users;
      more of a developer tool)
    - experimental (but disabled in the binary) WASAPI driver. Help
      stabilizing it would be *greatly* appreciated!
    - lots of other stuff
2015-12-19 21:42:18 +11:00
Tim Allen
bd628de3cf Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.

byuu says about r13:

    I'm not going to be posting WIPs for r13 and above for a while.

    The reason is that I'm working on the major manifest overhaul I've
    discussed previously on the icarus subforum.

    I'm recreating my boards database from scratch using the map files
    and the new map analyzer. The only games that will load are ones
    I've created board definitions for, and updated
    sfc/cartridge/markup.cpp to parse. Once I've finished all the
    boards, then I'll update the heuristics.

    Then finally, I'll sync the syntax changes over to the fc, gb, gba
    cores.

    Once that's done, I'll start posting WIPs again, along with a new
    build of icarus.

    But I'll still post changelogs as I work through things.

    Changelog (r13):
    - preservation: created new database-builder tool (merges
      region-specific databases with boards)
    - icarus: support new, external database format
      (~/.config/icarus/Database/(Super Famicom.bml, ...)
    - added 1A3B-(10,11,12); 1A3B-20

byuu says about r14:

    r14 work:

    I successfully created mappings for every board used in the US set.

    I also updated icarus' heuristics to use the new mappings, and
    created ones there for the boards that are only in the JP set.

    Then I patched icarus to support pulling games out of the database
    when it's used on a game folder to generate a manifest file.

    Then I updated a lot of code in higan/sfc to support the new mapping
    syntax. sfc/cartridge/markup.cpp is about half the size it used to
    be with the new mappings, and I was able to kill off both map/id and
    map/select entirely.

    Then I updated all four emulated systems (and both subsystems) to
    use "board" as the root node, and harmonized their syntax (made them
    all more consistent with each other.)

    Then I added a manifest viewer to the tools window+menu. It's kind
    of an advanced user feature, but oh well. No reason to coddle people
    when the feature is very useful for developers. The viewer will show
    all manifests in order when you load multi-cart games as well.

    Still not going to call any syntax 100% done right now, but
    thankfully with the new manifest-free folders, nobody will have to
    do anything to use the new format. Just download the new version and
    go.

    The Super Famicom Event stuff is currently broken (CC92/PF94
    boards). That's gonna be fun to support.

byuu says about r15:

    EDIT: small bug in icarus with heuristics. Edit
    core/super-famicom.cpp line 27:

	if(/*auto*/ markup = cartridge.markup) {

    Gotta remove that "auto" so that it returns valid markup.

    Resolved the final concerns I had with the new manifest format.

    Right now there are two things that are definitely broken: MCC (BS-X
    Town cart) and Event (CC '92 and PF'94).
    And there are a few things that are untested: SPC7110, EpsonRTC,
    SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 20:02:06 +11:00
Tim Allen
2c53d5fbc0 Update to v095r12 release.
byuu says:

Got it. They broke in r05.

Changelog:
- fixed typo in sfc/cpu/timing.cpp that was breaking coprocessor games
  with clocks
- updated sfc/coprocessor/hitachidsp to not access Bus directly
2015-12-15 20:30:26 +11:00
Tim Allen
f2a416aea9 Update to v095r11 release.
byuu says:

Changelog:
- SFC: "uint8 read(uint addr)" -> "uint8 read(uint addr, uint8 data)"
- hiro: mHorizontalLayout::setGeometry() return value
- hiro/GTK: ListView,TreeView::setFocused() does not grab focus of first
  item

Notes:
- nall/windows/utf8.hpp needs using uint = unsigned; at the top to
  compile
- sfc/balanced, sfc/performance won't compile yet

Seems Cx4 games broke a while back. Not from this WIP, either. I'll go
back and find out what's wrong now.
2015-12-14 20:41:06 +11:00
Tim Allen
78d49d3873 Update to v095r10 release.
byuu says:

Changelog:

- int_t<bits> replaced with Integer<bits>
- uint_t<bits> replaced with Natural<bits>
- fixed "Synchronize Audio" menu option that broke recently
- all of sfc/performance ported to "auto function() -> return;" syntax

With this WIP, all of higan is finally ported over to the new function
declaration syntax. Thank the gods.

There's still going to be periodic disruption for diffs from porting
over signed->int, unsigned->uint, and whatever we come up with for the
new Natural<> and Integer<> classes. But the worst of it's behind us
now.
2015-12-07 08:11:41 +11:00
Tim Allen
65a3306ad5 Update to v095r09 release.
byuu says:

Changelog:

- all of fc/ ported to "auto function() -> return;" syntax
  - (includes all of cartridge/board and cartridge/chip as well; even
    though they're all deprecated)
- sfc balanced profile ported to "auto function() -> return;" syntax
- sfc balanced and performance profiles compile again
- Linux always gets -ldl
- removed arch=x86 logic from nall/GNUmakefile, as TDM/GCC64 can't
  produce bug-free 32-bit binaries anyway

The only code that continues to use the old function syntax is the SFC
performance core, obscure parts of nall that higan doesn't use, and the
pieces of code that weren't written by me (blargg's SFC-DSP, Ryphecha's
sinc resampler, and OV2's xaudio2 header file.)

I was too burned out to finish it tonight. The above was about four
hours straight of non-stop typing. Really can't wait to be done with
this once and for all.
2015-12-05 16:44:49 +11:00
Tim Allen
a219f9c121 Update to v095r08 release.
byuu says:

Changelog:
- added preliminary WASAPI driver (it's really terrible, though. Patches
  most welcome.)
- all of processor/ updated to auto fn() -> ret syntax
- all of gb/ updated to auto fn() -> ret syntax

If you want to test the WASAPI driver, then edit ui-tomoko/GNUmakefile,
and replace audio.xaudio2 with audio.wasapi Note that the two drivers
are incompatible and cannot co-exist (yet. We can probably make it work
in the future.)

All that's left for the auto fn() -> ret syntax is the NES core and the
balanced/performance SNES components. This is kind of a big deal because
this syntax change causes diffs between WIPs to go crazy. So the sooner
we get this done and out of the way, the better. It's also nice from
a consistency standpoint, of course.
2015-11-21 18:36:48 +11:00
Tim Allen
6adfe71836 Update to icarus 20151117.
byuu says:

This release adds a settings dialog that lets you control the library
path, optionally generate manifest.bml files, and optionally bypass the
internal games database (so far this is only the US SNES set.)

Also, the settings.bml file can exist in the same folder as the binary
now (portable mode). Plus it can share the same config file as
higan/tomoko itself does. This will allow you to change the library
location in either program and have it affect the other program as well.
It's a bit hackish, but it works >_>

Note: don't use this with higan v095.06 or earlier, or bad things will
happen.
2015-11-19 20:27:56 +11:00
Tim Allen
41c478ac4a Update to v095r07 release.
byuu says:

Changelog:
- entire GBA core ported to auto function() -> return; syntax
- fixed GBA BLDY bug that was causing flickering in a few games
- replaced nall/config usage with nall/string/markup/node
  - this merges all configuration files to a unified settings.bml file
- added "Ignore Manifests" option to the advanced setting tab
  - this lets you keep a manifest.bml for an older version of higan; if
    you want to do regression testing

Be sure to remap your controller/hotkey inputs, and for SNES, choose
"Gamepad" from "Controller Port 1" in the system menu. Otherwise you
won't get any input. No need to blow away your old config files, unless
you want to.
2015-11-16 19:38:05 +11:00
Tim Allen
40f4b91000 Update to v095r06 release.
byuu says:

Changelog:
- fixed I/O register reads; perfect score on endrift's I/O tests now
- fixed mouse capture clipping on Windows [Cydrak]
- several hours of code maintenance work done on the SFC core

All higan/sfc files should now use the auto fn() -> ret; syntax. Haven't
converted all unsigned->uint yet. Also, probably won't do sfc/alt as
that's mostly just speed hack stuff.

Errata:
- forgot auto& instead of just auto on SuperFamicom::Video::draw_cursor,
  which makes Super Scope / Justifier crash. Will be fixed in the next
  WIP.
2015-11-14 11:52:51 +11:00
Tim Allen
6d9f43a37b Update to v095r05 release.
byuu says:

Changelog:
- GBA: lots of emulation improvements
- PPU PRAM is 16-bits wide
- DMA masks &~1/Half, &~3/Word
- VRAM OBJ 8-bit writes are ignored
- OAM 8-bit writes are ignored
- BGnCNT unused bits are writable*
- BG(0,1)CNT can't set the d13
- BLDALPHA is readable (fixes Donkey Kong Country, etc)
- SNES: lots of code cleanups
- sfc/chip => sfc/coprocessor
- UI: save most recent controller selection

GBA test scores: 1552/1552, 37/38, 1020/1260

(* forgot to add the value to the read function, so endrift's I/O tests
for them will fail. Fixed locally.)

Note: SNES is the only system with multiple controller/expansion port
options, and as such is the only one with a "None" option. Because it's
shared by the controller and expansion port, it ends up sorted first in
the list. This means that on your first run, you'll need to go to Super
Famicom->Controller Port 1 and select "Gamepad", otherwise input won't
work.

Also note that changing the expansion port device requires loading a new
cart. Unlike controllers, you aren't meant to hotplug expansion port
devices.
2015-11-12 21:15:03 +11:00
Tim Allen
d1ffd59c29 Update to v095r04 release.
Changelog:
- S-SMP core code style updated
- S-SMP loads reset vector from IPLROM ($fffe-ffff)
- sfc/base => sfc/expansion
- system/input => system/device
- added expansion/eBoot (simulation of defparam's SNES-Boot device)
- expansion port device can now be selected from Super Famicom menu
  option
- improved GBA MROM/SRAM reading

endrift's memory test is up to 1388/1552.

Note: I added the expansion port devices to the same group as controller
ports. I also had to move "None" to the top of the list. Before v096,
I am going to have to add caching of port selections to the
configuration file, check the proper default item in the system menu,
and remove the items with no mappings from the input configuration
window. Lots of work >_>
2015-11-10 22:11:29 +11:00
Tim Allen
0fe55e3f5b Update to v095r03 release and icarus 20151107.
byuu says:

Note: you will need the new icarus (and please use the "no manifest"
system) to run GBA games with this WIP.

Changelog:
- fixed caching of r(d) to pass armwrestler tests [Jonas Quinn]
- DMA to/from GBA BIOS should fail [Cydrak]
- fixed sign-extend and rotate on ldrs instructions [Cydrak]
- fixed 8-bit SRAM reading/writing [byuu]
- refactored GBA/cartridge
  - cartridge/rom,ram.type is now cartridge/mrom,sram,eeprom,flash
  - things won't crash horribly if you specify a RAM size larger than
    the largest legal size in the manifest
  - specialized MROM / SRAM classes replace all the shared read/write
    functions that didn't work right anyway
- there's a new ruby/video.glx2 driver, which is not enabled by default
  - use this if you are running Linux/BSD, but don't have OpenGL 3.2 yet
  - I'm not going to support OpenGL2 on Windows/OS X, because these OSes
    don't ship ancient video card drivers
- probably more. What am I, clairvoyant? :P

For endrift's tests, this gets us to 1348/1552 memory and 1016/1260
timing. Overall, this puts us back in second place. Only no$ is ahead
on memory, but bgba is even more ahead on timing.
2015-11-10 22:11:29 +11:00
Tim Allen
b42ab2fcb3 Update to v095r02 release.
byuu says:

Aspect correction is fixed now. Works way better than in v095 official.

It's still force-enabled in fullscreen mode. The idea of disabling it is
that it looks bad at 2x scale. But when you're fullscreen with a minimum
of 4x scale, there's no reason not to enable it.

It won't turn on at all for GB/C/A anymore. And I dropped the cute
attempt at making the aspect prettier on 2560x1600 monitors, so it'll be
the stock 8:7 across the board now for S/NES.

Also, the aspect correction will affect the window even when a game's
not loaded now, so the size won't bounce around as you change games in
windowed mode between GB/C/A and S/NES.

...

I also enhanced the ruby/glx driver. It won't crash if OpenGL 3.2 isn't
available anymore (fails safely ... had to capture the Xlib error
handler to suppress that), and it defaults to the MESA glXSwapInterval
before the SGI version. Because apparently the MESA version defines the
SGI version, but makes it a no-op. What. The. Fuck. right? But whatever,
reordering the enumerations fixes the ability to toggle Vsync on AMD
GPUs now.

...

Video shaders are back again. If you are using the OpenGL driver, you'll
see a "Video Shaders" menu beneath the "Video Filters" menu (couldn't
merge it with the filters due to hiro now constructing menu ordering
inside the header files. This works fine though.)

You want either "higan.exe" + "Video Shaders/" or "~/.local/bin/tomoko"
+ "~/.local/tomoko/Video Shaders/"
2015-11-10 22:07:34 +11:00
Tim Allen
8476a12deb Update to v095r01 release (open beta).
byuu says:

Changelog:
- added MSU1 resume support
- updated sfc/dsp, sfc/controller to match my coding style
- fixed hiro/Windows Button and ListView::CheckButton in Windows Classic
  mode
2015-10-10 13:16:12 +11:00
Tim Allen
b0e862613b Update to v095 release.
byuu says:

After 20 months of development, higan v095 is released at long last!

The most notable feature is vastly improved Game Boy Advance emulation.
With many thanks to endrift, Cydrak, Jonas Quinn and jchadwick, this
release contains substantially improved CPU timings and many bugfixes.
Being one of only two GBA emulators to offer ROM prefetch emulation,
higan is very near mGBA in terms of accuracy, and far ahead of all
others. As a result of these fixes, compatibility is also much higher
than in v094.

There are also several improvements to SNES emulation. Most
significantly is support for mid-scanline changes to the background mode
in the accuracy profile.

Due to substantial changes to the user interface library used by higan,
this release features yet again a brand-new UI. With the exception of
video shaders and NSS DIP switch selection, it is at feature-parity with
the previous UI. It also offers some new features that v094 lacked.

The cheat code database has also been updated to the latest version by
mightymo.
2015-10-08 22:04:42 +11:00
Tim Allen
b113ecb5a3 Deleting ananke and shaders.
ananke has been superseded by icarus.

The new tomoko UI does not support shaders, and if it ever does it will
probably use another format, so not much point keeping the old files
around.
2015-10-08 22:02:22 +11:00
Tim Allen
bc5ad4a1cd Update to icarus_20151002.
byuu says:

- fixes checkboxes (-again- again [*again*])
- won't check folders with select all / unselect all
- won't crash anymore if the SNES ROM image is too small (Saturday Night
  Slam Masters was crashing it before due to DB size error)
- corrected heuristics for Sufami Turbo base cart (mirrors the
  absurdities of the real cart precisely, since it's one of a kind)
- corrected a few DB issues (BS-X name + PSRAM (again [*again*]), SNSM,
  LAH) (_again_)
  - these are temporary. Monkey patched in the generated .hpp source
    rather than the actual DB
  - not going to fix the SFT sizes because I want to verify what
    happened there first
2015-10-03 16:25:39 +10:00
Tim Allen
1a90e206e0 Update to v094r44b release (open beta).
byuu says:

With any luck, this will be the final WIP before v095. If all looks
good, this will be identical to v095. But if we hit some major issues,
I'll try and fix those first.

The most notable part of this release is probably Jonas Quinn's fix for
the unmapped regions of the GBA memory map. This allows games like Mario
& Luigi and Zelda: Minish Cap to (hopefully) be fully playable now.

icarus now supports my game database, so all games I've dumped will be
emulated with bit-perfect memory maps and native-language game titles.
2015-10-01 20:04:30 +10:00
Tim Allen
483fc81356 Update to v094r44 release.
byuu says:

Changelog:
- return open bus instead of mirroring addresses on the bus (fixes
  Mario&Luigi, Minish Cap, etc) [Jonas Quinn]
- add boolean flag to load requests for slotted game carts (fixes slot
  load prompts)
- rename BS-X Town cart from psram to ram
- icarus: add support for game database

Note: I didn't rename "bsx" to "mcc" in the database for icarus before
uploading that. But I just fixed it locally, so it'll be in the next
WIP. For now, make it create the manifest for you and then rename it
yourself. I did fix the PSRAM size to 256kbit.
2015-10-01 20:00:28 +10:00
Tim Allen
0c87bdabed Update to v094r43 release.
byuu says:

Updated to compile with all of the new hiro changes. My next step is to
write up hiro API documentation, and move the API from alpha (constantly
changing) to beta (rarely changing), in preparation for the first stable
release (backward-compatible changes only.)

Added "--fullscreen" command-line option. I like this over
a configuration file option. Lets you use the emulator in both modes
without having to modify the config file each time.

Also enhanced the command-line game loading. You can now use any of
these methods:

    higan /path/to/game-folder.sfc
    higan /path/to/game-folder.sfc/
    higan /path/to/game-folder.sfc/program.rom

The idea is to support launchers that insist on loading files only.

Technically, the file can be any name (manifest.bml also works); the
only criteria is that the file actually exists and is a file, and not
a directory. This is a requirement to support the first version (a
directory lacking the trailing / identifier), because I don't want my
nall::string class to query the file system to determine if the string
is an actual existing file or directory for its pathname() / dirname()
functions.

Anyway, every game folder I've made so far has program.rom, and that's
very unlikely to change, so this should be fine.

Now, of course, if you drop a regular "game.sfc" file on the emulator,
it won't even try to load it, unless it's in a folder that ends in .fc,
.sfc, etc. In which case, it'll bail out immediately by being unable to
produce a manifest for what is obviously not really a game folder.
2015-08-30 12:08:26 +10:00
Tim Allen
c45633550e Update to v094r42 release.
byuu says:

I imagine you guys will like this WIP very much.

Changelog:
- ListView check boxes on Windows
- ListView removal of columns on reset (changing input dropdowns)
- DirectSound audio duplication on latency change
- DirectSound crash on 20ms latency
- Fullscreen window sizing in multi-monitor setups
- Allow joypad bindings of hotkeys
- Allow triggers to be mapped (Xbox 360 / XInput / Windows only)
- Support joypad rumble for Game Boy Player
- Video scale settings modified from {1x,2x,3x} to {2x,3x,4x}
- System menu now renames to active emulation core
- Added fast forward hotkey

Not changing for v095:
- not adding input focus settings yet
- not adding shaders yet

Not changing at all:
- not implementing maximize
2015-08-24 19:42:11 +10:00
Tim Allen
7081f46e45 Added icarus 20150821. 2015-08-21 21:29:53 +10:00
Tim Allen
213879771e Update to v094r41 release (open beta).
byuu says:

Changelog (since the last open beta):
- icarus is now included. icarus is used to import game files/archives
  into game paks (folders)
- SNES: mid-scanline BGMODE changes now emulated correctly (used only by
  atx2.smc Anthrox Demo)
- GBA: fixed a CPU bug that was causing dozens of games to have
  distorted audio
- GBA: fixed default FlashROM ID; should allow much higher compatibility
- GBA: now using Cydrak's new, much improved, GBA color emulation filter
  (still a work-in-progress)
- re-added command-line loading support for game paks (not for game
  files/archives, sorry!)
- Qt port now compiles and runs again (may be a little buggy;
  Windows/GTK+ ports preferred)
- SNES performance profile now compiles and runs again
- much more
2015-08-21 20:57:03 +10:00
Tim Allen
4344b916b6 Update to v094r40 release.
byuu says:

Changelog:
- updated to newest hiro API
- SFC performance profile builds once again
- hiro: Qt port completed

Errata 1: the hiro/Qt target won't run tomoko just yet. Starts by
crashing inside InputSettings because hiro/Qt isn't forcefully selecting
the first item added to a ComboButton just yet. Even with a monkey patch
to get around that, the UI is incredibly unstable. Lots of geometry
calculation bugs, and a crash when you try and access certain folders in
the browser dialog. Lots of work left to be done there, sadly.

Errata 2: the hiro/Windows port has black backgrounds on all ListView
items. It's because I need to test for unassigned colors and grab the
default Windows brush colors in those cases.

Note: alternating row colors on multi-column ListView widgets is gone
now. Not a bug. May add it back later, but I'm not sure. It doesn't
interact nicely with per-cell background colors.

Things left to do:

First, I have to fix the Windows and Qt target bugs.

Next, I need to go through and revise the hiro API even more (nothing
too major.)

Next, I need to update icarus to use the new hiro API, and add support
for the SFC games database.

Next, I have to rewrite my TSV->BML cheat code tool.

Next, I need to post a final WIP of higan+icarus publicly and wait a few
days.

Next, I need to fix any bugs reported from the final WIP that I can.

Finally, I should be able to release v095.
2015-08-18 20:18:00 +10:00
Tim Allen
0271d6a12b Update to v094r39 release.
byuu says:

Changelog:
- SNES mid-scanline BGMODE fixes finally merged (can run
  atx2.zip{mode7.smc}+mtest(2).sfc properly now)
- Makefile now discards all built-in rules and variables
- switch on bool warning disabled for GCC now as well (was already
  disabled for Clang)
- when loading a game, if any required files are missing, display
  a warning message box (manifest.bml, program.rom, bios.rom, etc)
- when loading a game (or a game slot), if manifest.bml is missing, it
  will invoke icarus to try and generate it
  - if that fails (icarus is missing or the folder is bad), you will get
    a warning telling you that the manifest can't be loaded

The warning prompt on missing files work for both games and the .sys
folders and their files. For some reason, failing to load the DMG/CGB
BIOS is causing a crash before I can display the modal dialog. I have no
idea why, and the stack frame backtrace is junk.

I also can't seem to abort the failed loading process. If I call
Program::unloadMedia(), I get a nasty segfault. Again with a really
nasty stack trace. So for now, it'll just end up sitting there emulating
an empty ROM (solid black screen.) In time, I'd like to fix that too.

Lastly, I need a better method than popen for Windows. popen is kind of
ugly and flashes a console window for a brief second even if the
application launched is linked with -mwindows. Not sure if there even is
one (I need to read the stdout result, so CreateProcess may not work
unless I do something nasty like "> %tmp%/temp") I'm also using the
regular popen instead of _wpopen, so for this WIP, it won't work if your
game folder has non-English letters in the path.
2015-08-04 19:02:04 +10:00
Tim Allen
1b0b54a690 Update to v094r38 release.
byuu says:

I'll post more detailed changes later, but basically:
- fixed Baldur's Gate bug
- guess if no flash ROM ID present (fixes Magical Vacation, many many
  others)
- nall cleanups
- sfc/cartridge major cleanups
- bsxcartridge/"bsx" renamed to mcc/"mcc" after the logic chip it uses
  (consistency with SGB/ICD2)
- ... and more!
2015-08-04 19:01:59 +10:00
Tim Allen
092cac9073 Update to v094r37 release.
byuu says:

Changelog:
- synchronizes lots of nall changes
- changes displayed program title from tomoko to higan(*)
- browser dialog sort is case-insensitive
- .sys folders look at user-selected library path; no longer hard-coded

Tried to get rid of the file modes from the Windows browser dialog, but
it was being a bitch so I left it on for now.

- The storage locations and binary still use tomoko. I'm not really sure
  what to do here. The idea is there may be more than one "higan" UI in
  the future, but I don't want people to go around calling the entire
  program by the UI name. For official Windows releases, I can rename
  the binaries to "higan-{profile}.exe", and by putting the config files
  with the binary, they won't ever see the tomoko folder. Linux is of
  course trickier.

Note: Windows users will need to edit hiro/components.hpp and comment
out these lines:

 #define Hiro_Console
 #define Hiro_IconView
 #define Hiro_SourceView
 #define Hiro_TreeView

I forgot to do that, and too lazy to upload another WIP.
2015-07-14 19:32:43 +10:00
Tim Allen
ecb35cac33 Update to v094r36 release (open beta).
byuu says:

Changelog:
- GBA emulation accuracy has been substantially improved [Cydrak]
- GBA ldm bug fixed [jchadwick]
- SNES SuperFX timing has been improved [AWJ, ARM9, qwertymodo]
- SNES accuracy profile is now ~8% faster than before
- you no longer need to copy the .sys profile folders to
  ~/Emulation/System
    - you still need to put bios.rom (GBA BIOS) into Game Boy
      Advance.sys to use GBA emulation!!
- you no longer need to pre-configure inputs before first use
- loading games / changing window size won't recenter window
- checkboxes in cheat editor update correctly
- can't type into state manager description textbox on an empty slot
- typing in state manager description box works correctly; and updates
  list view correctly
- won't show files that match game extensions anymore (only game folders
  show up)
- libco Win64 port fixes with FPU^H^H^H XMM registers
- libco ARM port now available; so you too can play at 15fps on an RPi2!
  [jessedog3, Cydrak]
- controller selection will check the default item in the menu now on
  game load
- as usual, a whole lot of other stuff I'm forgetting

Known issues:
- type-ahead find does not work in list views (eg game selection
  dialog); I don't know how to fix this
- there's no game file importer yet
- there's no shader support yet
- there's no profiler available for the timing panel, you need to adjust
  values manually for now
2015-07-02 20:24:56 +10:00
Tim Allen
28a14198cb Update to v094r35 release.
byuu says:

GBA timings are *almost* perfect now. Off by 1-3 cycles on each test,
sans a few DMA ones that seem to not run at all according to the numbers
(crazy.)
2015-07-01 20:58:42 +10:00
Tim Allen
7ff7f64482 Update to v094r34 release.
byuu says:

Fixes SuperFX fmult, lmult timings; rambr, bramr and clsr assignment
masking. Implements true GBA ROM prefetch (buggy, lower test score, but
runs Mario & Luigi without crashing on battles anymore.)
2015-06-28 18:44:56 +10:00
Tim Allen
4c9266d18f Update to v094r33 release.
byuu says:

Small WIP, just fixes the timings for GSU multiply.

However, the actual product may still be wrong when CLSR and MS0 are
both set. Since I wasn't 'corrupting' the value in said case before,
then this behavior can only be better than before.

Turned the (cache,memory)_access_timing into functions that compute the
values; and pulled "clockspeed" into GSU.

Also, I'm thinking it might be kind of pointless to have clockspeed at
all. Supposedly even the Mario Chip can run at 21.48MHz anyway.
Enforcing 10.74MHz mode seems kind of silly. If we change it to just be
a "default value for CLSR", then we can just inline the memory access
tests without the need for the access_timing functions (literally just
clsr?2:1 then)

Slight compilation bug: go to processor/gsu/registers.hpp:33 and add

    reg16_t() = default;

I missed it due to a partial recompile. Too lazy to upload another WIP
just for that.

Probably not worth doing much SuperFX testing just yet, as it looks like
they're doing some other tests at the moment on NESdev.
2015-06-27 12:38:47 +10:00
Tim Allen
169e400437 Update to v094r32 release.
byuu says:

Lots more timing improvements to GBA emulation. We're now ahead of
everything but mGBA.

Mario & Luigi is still hanging in battles, so I guess my prefetch
simulation isn't as good as Cydrak's previous attempt, no surprise.
2015-06-27 12:38:08 +10:00
Tim Allen
ea02f1e36a Update to v094r31 release.
byuu says:

This WIP scores 448/920 tests passed.

Gave a shot at ROM prefetch that failed miserably (ranged from 409 to
494 tests passed. Nowhere near where it would be if it were implemented
correctly.)

Three remaining issues:
- ROM prefetch
- DMA timing
- timers (I suspect it's a 3-clock delay in starting, not a 3-clock into
  the future affair)

Probably only going to be able to get the timers working without heroic
amounts of effort.

MUL timing is fixed to use idle cycles.
STMIA is fixed to set sequential at the right moments.
DMA priority support is added, so DMA 0 can interrupt DMA 1 mid-transfer.

In other news ...

I'm calling gtk_widget_destroy on the GtkWindow now, so hopefully those
Window_configure issues go away.

I realize I was leaking Display* handles in the X-video driver while
I was looking at it, so I fixed those.

I added DT_NOPREFIX so the Windows ListView will show & characters
correctly now.
2015-06-25 19:52:32 +10:00
Tim Allen
310ff4fa3b Update to v094r30 release.
byuu says:

This WIP does substantially better on endrift's GBA timing tests. Still
not perfect, though. But hopefully enough to get me out of dead last
place. I also finally fixed the THUMB-mode ldmia bug that jchadwick
reported.

So, GBA emulation should be improved quite a bit, hopefully.
2015-06-24 23:21:24 +10:00
Tim Allen
83f684c66c Update to v094r29 release.
byuu says:

Note: for Windows users, please go to nall/intrinsics.hpp line 60 and
correct the typo from "DISPLAY_WINDOW" to "DISPLAY_WINDOWS" before
compiling, otherwise things won't work at all.

This will be a really major WIP for the core SNES emulation, so please
test as thoroughly as possible.

I rewrote the 65816 CPU core's dispatcher from a jump table to a switch
table. This was so that I could pass class variables as parameters to
opcodes without crazy theatrics.

With that, I killed the regs.r[N] stuff, the flag_t operator|=, &=, ^=
stuff, and all of the template versions of opcodes.

I also removed some stupid pointless flag tests in xcn and pflag that
would always be true.

I sure hope that AWJ is happy with this; because this change was so that
my flag assignments and branch tests won't need to build regs.P into
a full 8-bit variable anymore.

It does of course incur a slight performance hit when you pass in
variables by-value to functions, but it should help with binary size
(and thus cache) by reducing a lot of extra functions. (I know I could
have used template parameters for some things even with a switch table,
but chose not to for the aforementioned reasons.)

Overall, it's about a ~1% speedup from the previous build. The CPU core
instructions were never a bottleneck, but I did want to fix the P flag
building stuff because that really was a dumb mistake v_v'
2015-06-22 23:31:49 +10:00
Tim Allen
e0815b55b9 Update to v094r28 release.
byuu says:

This WIP substantially restructures the ruby API for the first time
since that project started.

It is my hope that with this restructuring, destruction of the ruby
objects should now be deterministic, which should fix the crashing on
closing the emulator on Linux. We'll see I guess ... either way, it
removed two layers of wrappers from ruby, so it's a pretty nice code
cleanup.

It won't compile on Windows due to a few issues I didn't see until
uploading the WIP, too lazy to upload another. But I fixed all the
compilation issues locally, so it'll work on Windows again with the next
WIP (unless I break something else.)

(Kind of annoying that Linux defines glActiveTexture but Windows
doesn't.)
2015-06-20 15:44:05 +10:00
Tim Allen
20cc6148cb Update to v094r27 release.
byuu says:

Added AWJ's fixes for alt/cpu (Tetris Attack framelines issue) and
alt/dsp (Thread::clock reset)

Added fix so that the taskbar entry appears when the application first
starts on Windows.

Fixed checkbox toggling inside of list views on Windows.

Updated nall/image to properly protect variables that should not be
written externally.

New Object syntax for hiro is in.

Fixed the backwards-typing on Windows with the state manager.
NOTE: the list view isn't redrawing when you change the description
text. It does so on the cheat editor because of the resizeColumns call;
but that shouldn't be necessary. I'll try and fix this for the next WIP.
2015-06-18 20:48:53 +10:00
Tim Allen
a21ff570ee Update to v094r26 release (open beta).
byuu says:

Obviously, this is a fairly major WIP. It's the first public release in
17 months. The entire UI has been rewritten (for the 74th time), and is
now internally called tomoko. The official releases will be named higan
(both the binaries and title bar.)

Missing features from v094:

- ananke is missing (this means you will need v094 to create game
  folders to be loaded)
- key assignments are limited to one physical button = one mapping (no
  multi-mapping)
- shader support is missing
- audio/video profiling is missing
- DIP switch window is missing (used by NSS Actraiser with a special
  manifest; that's about it)
- alternate paths for game system folders and configuration BML files

There's some new stuff, but not much. This isn't going to be an exciting
WIP in terms of features. It's more about being a brand new release with
the brand new hiro port and its shared memory model. The goal is to get
these WIPs stable, get v095 out, and then finally start improving the
actual emulation again after that.
2015-06-16 20:30:04 +10:00
Tim Allen
bb3c69a30d Update to v094r25 release.
byuu says:

Windows port should run mostly well now, although exiting fullscreen
breaks the application in a really bizarre way. (clicking on the window
makes it sink to background rather than come to the foreground o_O)

I also need to add the doModalChange => audio.clear() thing for the
accursed menu stuttering with DirectSound.

I also finished porting all of the ruby drivers over to the newer API
changes from nall.

Since I can't compile the Linux or OS X drivers, I have no idea if there
are any typos that will result in compilation errors. If so, please let
me know where they're at and I'll try and fix them. If they're simple,
please try and fix them on your end to test further if you can.

I'm hopeful the udev crash will be gone now that nall::string checks for
null char* values passed to its stringify function. Of course, it's
a problem it's getting a null value in the first place, so it may not
work at all.

If you can compile on Linux (or by some miracle, OS X), please test each
video/audio/input driver if you don't mind, to make sure there's no
"compiles okay but still typos exist" bugs.
2015-06-16 20:30:04 +10:00
Tim Allen
f0c17ffc0d Update to v094r24 release.
byuu says:

Finally!! Compilation works once again on Windows.

However, it's pretty buggy. Modality isn't really working right, you can
still poke at other windows, but when you select ListView items, they
redraw as empty boxes (need to process WM_DRAWITEM before checking
modality.)

The program crashes when you close it (probably a ruby driver's term()
function, that's what it usually is.)

The Layout::setEnabled(false) call isn't working right, so you get that
annoying chiming sound and cursor movement when mapping keyboard keys to
game inputs.

The column sizing seems off a bit on first display for the Hotkeys tab.

And probably lots more.
2015-06-16 20:30:04 +10:00
Tim Allen
314aee8c5c Update to v094r23 release.
byuu says:

The library window is gone, and replaced with
hiro::BrowserWindow::openFolder(). This gives navigation capabilities to
game loading, and it also completes our slotted cart selection code. As
an added bonus, it's less code this way, too.

I also set the window size to consistent sizes between all emulated
systems, so that switching between SFC and GB don't cause the window
size to keep changing, and so that the scaling size is consistent (eg at
normal scale, GB @ 3x is closer to SNES @ 2x.) This means black borders
in GB/GBA mode, but it doesn't look that bad, and it's not like many
people ever use these modes anyway.

Finally, added the placeholder tabs for video, audio and timing. I don't
intend to add the timing calculator code to v095 (it might be better as
a separate tool), but I'll add the ability to set video/audio rates, at
least.

Glitch 1: despite selecting the first item in the BrowserDialog list, if
you press enter when the window appears, it doesn't activate the item
until you press an arrow key first.

Glitch 2: in Game Boy mode, if you set the 4x window size, it's not
honoring the full requested height because the viewport is smaller than
the window. 8+ years of trying to get GTK+ and Qt to simply set the god
damned window size I ask for, and I still can't get them to do it
reliably.

Remaining issues:
- finish configuration panels (video, audio, timing)
- fix ruby driver compilation on Windows
- add DIP switch selection window (NSS) [I may end up punting this one
  to v096]
2015-06-16 20:29:47 +10:00
Tim Allen
7bf4cff946 Update to v094r22 release.
byuu says:

I fixed the hiro layout enable bug, so when you go to assign joypad
input, the window disables itself so your input doesn't mess with the
controls.

I added "reset" to the hotkeys, in case you feel like clearing all of
them at once.

I added device selection support and the ability to disable audio
synchronization (run > 60fps) to the ruby/OSS driver. This is exposed in
tomoko's configuration file.

I added checks to stringify so that assigning null char* strings to
nall::string won't cause crashes anymore (technically the crash was in
strlen(), which doesn't check for null strings, but whatever ... I'll do
the check myself.)

I hooked up BrowserDialog::folderSelect() to loading slotted media for
now. Tested it by loading a Game Boy game successfully through the Super
Game Boy. Definitely want to write a custom window for this though, that
looks more like the library dialog.

Remaining issues:
- finish slotted cart loader (SGB, BSX, ST)
- add DIP switch selection window (NSS) [I may end up punting this one
  to v096]
- add more configuration panels (video, audio, timing)
2015-05-30 21:40:07 +10:00
Tim Allen
99b2b4b57c Update to v094r21 release.
byuu says:

This updates ruby to return shared_pointer<HID::Device> objects instead
of HID::Device* objects. It also fixes an ID bug where joypads were
starting at ID# 2+, but mice were also set to ID# 2. I also revised
nall/hid a lot, with getters and setters instead of stabbing at internal
state. I didn't yet patch nall::string to safely consume nullptr const
char* values, though.
2015-05-24 19:44:28 +10:00
Tim Allen
4e0223d590 Update to v094r20 release.
byuu says:

Main reason for this WIP was because of all the added lines to hiro for
selective component disabling. May as well get all the diff-noise apart
from code changes.

It also merges something I've been talking to Cydrak about ... making
nall::string::(integer,decimal) do built-in binary,octal,hex decoding
instead of just failing on those. This will have fun little side effects
all over the place, like being able to view a topic on my forum via
"forum.byuu.org/topic/0b10010110", heh.

There are two small changes to higan itself, though. First up, I fixed
the resampler ratio when loading non-SNES games. Tested and I can play
Game Boy games fine now. Second, I hooked up menu option hiding for
reset and controller selection. Right now, this works like higan v094,
but I'm thinking I might want to show the "Device -> Controller" even if
that's all that's there. It kind of jives nicer with the input settings
window to see the labels there, I think. And if we ever do add more
stuff, it'll be nice that people already always expect that menu there.

Remaining issues:
* add slotted cart loader (SGB, BSX, ST)
* add DIP switch selection window (NSS)
* add timing configuration (video/audio sync)
2015-05-23 15:37:08 +10:00
Tim Allen
458775a481 Update to v094r19 release.
byuu says:

The input port menu was hooked up.

Alternate input support was added, although I wasn't able to test rumble
support because SDL doesn't support that, and I don't have XInput or
udev drivers on FreeBSD. This one's going to be tricky. Maybe I can test
via cross-compiling on Windows/GTK.

Added mouse capture hotkey, and auto capture/release on toggling
fullscreen (as a bonus it hides the mouse cursor.)

Added all possible video and input drivers to ruby for BSD systems.

Remaining issues before we can release v095:
- add slotted cart loader (SGB, BSX, ST)
- add DIP switch selection window (NSS)
- add timing configuration (video/audio sync)
- hide inapplicable options from system menu (eg controller ports and
  reset button from handheld systems)
2015-05-23 15:29:18 +10:00
Tim Allen
fc8eba133d Update to v094r18 release.
byuu says:

Okay yeah, lots of SNES coprocessor games were horribly broken. They
should be fixed now with the below changes:

Old syntax:

    auto programROM = root["rom[0]/name"].text();
    auto dataROM = root["rom[1]/name"].text();
    load_memory(root["ram[0]"]);

New syntax:

    auto rom = root.find("rom");
    auto ram = root.find("ram");
    auto programROM = rom(0)["name"].text();
    auto dataROM = rom(1)["name"].text();
    load_memory(ram(0));

Since I'm now relying on the XShm driver, which is multi-threaded, I'm
now compiling higan with -fopenmp. On FreeBSD, this requires linking
with -Wl,-rpath=/usr/local/lib -Wl,-rpath=/usr/local/lib/gcc49 to get
the right version of GOMP.

This gives a pretty nice speed boost for XShm, I go from around 101fps
to 111fps at 4x scale on the accuracy profile. The combination of
inlining the accuracy-PPU and parallelizing the XShm renderer about
evenly compensates now for the ~20% CPU overclock I gave up a while ago.

The WIP also has some other niceties from the newer version of nall.
Most noticeably, cheat code database searching is now instantaneous. No
more 3-second stall.
2015-05-16 17:37:13 +10:00
Tim Allen
39ca8a2fab Update to v094r17 release.
byuu says:

This updates higan to use the new Markup::Node changes. This is a really
big change, and one slight typo anywhere could break certain classes of
games from playing.

I don't have ananke hooked up again yet, so I don't have the ability to
test this much. If anyone with some v094 game folders wouldn't mind
testing, I'd help out a great deal.

I'm most concerned about testing one of each SNES special chip game.
Most notably, systems like the SA-1, HitachiDSP and NEC-DSP were using
the fancier lookups, eg node["rom[0]/name"], which I had to convert to
a rather ugly node["rom"].at(0)["name"], which I'm fairly confident
won't work. I'm going to blame that on the fumes from the shelves I just
stained >.> Might work with node.find("rom[0]/name")(0) though ...? But
so ugly ... ugh.

That aside, this WIP adds the accuracy-PPU inlining, so the accuracy
profile should run around 7.5% faster than before.
2015-05-16 17:36:22 +10:00
Tim Allen
c335ee9d80 Update to v094r16 release.
byuu says:

Finished the cheat code system, it'll now load and save cheats.bml to
disk.

Also hooked up overscan masking. But for now you can only configure the
amount it clips via the configuration file, since I don't have a video
settings dialog anymore.

And that's the last of the low-hanging fruit. The remaining items are
all going to be a pain in the ass for one reason or another.

Short-term:
- add input port changing support
- add other input types (mouse-based, etc)

Long-term:
- add slotted cart loader (SGB, BSX, ST)
- add DIP switch selection window (NSS)
- add timing configuration (video/audio sync)

Not planned:
- video color adjustments (will allow emulated color vs raw color; but
  no more sliders)
- pixel shaders
- ananke integration (will need to make a command-line version to get my
  games in)
- fancy audio adjustment controls (resampler, latency, volume)
- input focus settings
- localization support (not enough users)
- window geometry memory
- anything else not in higan v094
2015-04-21 21:58:59 +10:00
Tim Allen
2eb50fd70b Update to v094r15 release.
byuu says:

Implemented the cheat database dialog, and most of the cheat editor
dialog. I still have to handle loading and saving the cheats.bml file
for each game. I wanted to finish it today, but I burned out. It's a ton
of really annoying work to support cheat codes. There's also some issue
with the width calculation for the "code(s)" column in hiro/GTK.

Short-term:
- add input port changing support
- add other input types (mouse-based, etc)
- finish cheat codes

Long-term:
- add slotted cart loader (SGB, BSX, ST)
- add DIP switch selection window (NSS)
- add overscan masking
- add timing configuration (video/audio sync)

Not planned:
- video color adjustments (will allow emulated color vs raw color; but
  no more sliders)
- pixel shaders
- ananke integration (will need to make a command-line version to get my
  games in)
- fancy audio adjustment controls (resampler, latency, volume)
- input focus settings
- localization support (not enough users)
- window geometry memory
- anything else not in higan v094
2015-04-21 21:54:07 +10:00
Tim Allen
89d578bc7f Update to v094r14 release.
byuu says:

Man, over five weeks have passed without so much as touching the
codebase ... time is advancing so fast it's positively frightening. Oh
well, little by little, and we'll get there eventually.

Changelog:
- added save state slots (1-5 in the menu)
- added hotkeys settings dialog + mapping system
- added fullscreen toggle (with a cute aspect correction trick)

About three hours of work here.

Short-term:
- add input port changing support
- add other input types (mouse-based, etc)
- add cheat codes
- add timing configuration (video/audio sync)

Long-term:
- add slotted cart loader (SGB, BSX, ST)
- add DIP switch selection window (NSS)
- add cheat code database
- add state manager
- add overscan masking

Not planned:
- video color adjustments (will allow emulated color vs raw color; but
  no more sliders)
- pixel shaders
- ananke integration (will need to make a command-line version to get my
  games in)
- fancy audio adjustment controls (resampler, latency, volume)
- input focus settings
- relocating game library (not hard, just don't feel like it)
- localization support (not enough users)
- window geometry memory
- anything else not in higan v094
2015-04-13 21:16:33 +10:00
Tim Allen
b4ba95242f Update to v094r13 release.
byuu says:

This version polishes up the input dialogue (reset, erase, disable
button when item not focused, split device ID from mapping name), adds
color emulation toggle, and add dummy menu items for remaining features
(to be filled in later.)

Also, it now compiles cleanly on Windows with GTK.

I didn't test with TDM-GCC-32, because for god knows what reason, the
32-bit version ships with headers from Windows 95 OSR2 only. So I built
with TDM-GCC-64 with arch=x86.

And uh, apparently, moving or resizing a window causes a Visual C++
runtime exception in the GTK+ DLLs. This doesn't happen with trance or
renshuu built with TDM-GCC-32. So, yeah, like I said, don't use -m32.
2015-03-07 21:21:47 +11:00
Tim Allen
a1b2fb0124 Update to v094r12 release.
byuu says:

Changelog:
* added driver selection
* added video scale + aspect correction settings
* added A/V sync + audio mute settings
* added configuration file
* fixed compilation bugs under Windows and Linux
* fixed window sizing
* removed HSU1
* the system menu stays as "System", because "Game Boy Advance" was too
  long a string for the smallest scale size
* some more stuff

You guys probably won't be ecstatic about the video sizing options, but
it's basically your choice of 1x, 2x or 4x scale with optional aspect
correction. 3x was intentionally skipped because it looks horrible on
hires SNES games. The window is resized and recentered upon loading
games. The window doesn't resize otherwise. I never really liked the way
v094 always left you with black screen areas and left you with
off-centered window positions.

I might go ahead and add the pseudo-fullscreen toggle that will jump
into 4x mode (respecting your aspect setting.)

Short-term:
* add input port changing support
* add other input types (mouse-based, etc)
* add save states
* add cheat codes
* add timing configuration (video/audio sync)
* add hotkeys (single state)

We can probably do a new release once the short-term items are
completed.

Long-term:
* add slotted cart loader (SGB, BSX, ST)
* add DIP switch selection window (NSS)
* add cheat code database
* add state manager
* add overscan masking

Not planned:
* video color adjustments (will allow emulated color vs raw color; but
  no more sliders)
* pixel shaders
* ananke integration (will need to make a command-line version to get my
  games in)
* fancy audio adjustment controls (resampler, latency, volume)
* input focus settings
* relocating game library (not hard, just don't feel like it)
* localization support (not enough users)
* window geometry memory
* anything else not in higan v094
2015-03-03 21:26:44 +11:00
Tim Allen
4a069761f9 Update to v094r11 release.
byuu says:

I've hooked up the input subsystem, and the input manager to assign
hotkeys.

So far I only have digital buttons working (keyboard only), and I'm not
planning on supporting input groups again (mapping multiple physical
buttons to one emulated button), but it's progress. As with the rest of
tomoko, the code's a lot more compact. The nice thing about redoing code
so many times is that each time you get a little bit better at it.

The input configuration is saved to ~/.config/tomoko/settings.bml (just
realized that I'm an idiot and need to rename it to input.bml)

Also hooked up game saves and cartridge unloading. Active controller
changing isn't hooked up yet, and I'll probably do it differently.

Oh, and I declared the ruby lines for other platforms.

Still need to add Cydrak's Windows compilation fixes. I am nothing if
not lazy :P
2015-03-03 21:26:44 +11:00
Tim Allen
80c1c9c2ef Update to v094r10 release.
byuu says:

This starts the tomoko UI. So far I have basic library loading and
video+audio output. Basically just enough to take the below screenshot.
(aside from Library, the menus are empty stubs.)

The .sys (system) game folders are now going under ~/Emulation/System,
to avoid needing root privileges to stick them into /usr/share. The game
library now shows all bootable media types, and the drop-down subtype is
gone. I'm going to display a separate modal dialog for loading slotted
games this time around. Much cleaner this way, less clutter.

tomoko's starting off a lot cleaner than ethos was, and I'm scaling back
the number of abstracted classes. What was Utility, Interface, etc are
now being merged all into Program. Of course, the real hell is the input
system. That has so many layers of bullshit that there's really no sane
way to write it.
2015-03-03 21:26:44 +11:00
Tim Allen
a512d14628 Update to v094r09 release.
byuu says:

This will easily be the biggest diff in the history of higan. And not in
a good way.

* target-higan and target-loki have been blown away completely
* nall and ruby massively updated
* phoenix replaced with hiro (pretty near a total rewrite)
* target-higan restarted using hiro (just a window for now)
* all emulation cores updated to compile again
* installation changed to not require root privileges (installs locally)

For the foreseeable future (maybe even permanently?), the new higan UI
will only build under Linux/BSD with GTK+ 2.20+. Probably the most
likely route for Windows/OS X will be to try and figure out how to build
hiro/GTK on those platforms, as awful as that would be. The other
alternative would be to produce new UIs for those platforms ... which
would actually be a good opportunity to make something much more user
friendly.

Being that I just started on this a few hours ago, that means that for
at least a few weeks, don't expect to be able to actually play any
games. Right now, you can pretty much just compile the binary and that's
it. It's quite possible that some nall changes didn't produce
compilation errors, but will produce runtime errors. So until the UI can
actually load games, we won't know if anything is broken. But we should
mostly be okay. It was mostly just trim<1> -> trim changes, moving to
Hash::SHA256 (much cleaner), and patching some reckless memory copy
functions enough to compile.

Progress isn't going to be like it was before: I'm now dividing my time
much thinner between studying and other hobbies.

My aim this time is not to produce a binary for everyone to play games
on. Rather, it's to keep the emulator alive. I want to be able to apply
critical patches again. And I would also like the base of the emulator
to live on, for use in other emulator frontends that utilize higan.
2015-02-28 12:52:53 +11:00
Tim Allen
1a7bc6bb87 Update to v094r08 release.
byuu says:

Lots of changes this time around. FreeBSD stability and compilation is
still a work in progress.

FreeBSD 10 + Clang 3.3 = 108fps
FreeBSD 10 + GCC 4.7 = 130fps

Errata 1: I've been fighting that god-damned endian.h header for the
past nine WIPs now. The above WIP isn't building now because FreeBSD
isn't including headers before using certain types, and you end up with
a trillion error messages. So just delete all the endian.h includes from
nall/intrinsics.hpp to build.

Errata 2: I was trying to match g++ and g++47, so I used $(findstring
g++,$(compiler)), which ends up also matching clang++. Oops. Easy fix,
put Clang first and then else if g++ next. Not ideal, but oh well. All
it's doing for now is declaring -fwrapv twice, so you don't have to fix
it just yet. Probably just going to alias g++="g++47" and do exact
matching instead.

Errata 3: both OpenGL::term and VideoGLX::term are causing a core dump
on BSD. No idea why. The resources are initialized and valid, but
releasing them crashes the application.

Changelog:
- nall/Makefile is more flexible with overriding $(compiler), so you can
  build with GCC or Clang on BSD (defaults to GCC now)
- PLATFORM_X was renamed to PLATFORM_XORG, and it's also declared with
  PLATFORM_LINUX or PLATFORM_BSD
  - PLATFORM_XORG probably isn't the best name ... still thinking about
    what best to call LINUX|BSD|SOLARIS or ^(WINDOWS|MACOSX)
- fixed a few legitimate Clang warning messages in nall
- Compiler::VisualCPP is ugly as hell, renamed to Compiler::CL
- nall/platform includes nall/intrinsics first. Trying to move away from
  testing for _WIN32, etc directly in all files. Work in progress.
- nall turns off Clang warnings that I won't "fix", because they aren't
  broken. It's much less noisy to compile with warnings on now.
- phoenix gains the ability to set background and foreground colors on
  various text container widgets (GTK only for now.)
- rewrote a lot of the MSU1 code to try and simplify it. Really hope
  I didn't break anything ... I don't have any MSU1 test ROMs handy
- SNES coprocessor audio is now mixed as sclamp<16>(system_sample
  + coprocessor_sample) instead of sclamp<16>((sys + cop) / 2)
  - allows for greater chance of aliasing (still low, SNES audio is
    quiet), but doesn't cut base system volume in half anymore
- fixed Super Scope and Justifier cursor colors
- use input.xlib instead of input.x ... allows Xlib input driver to be
  visible on Linux and BSD once again
- make install and make uninstall must be run as root again; no longer
  using install but cp instead for BSD compatibility
- killed $(DESTDIR) ... use make prefix=$DESTDIR$prefix instead
- you can now set text/background colors for the loki console via (eg):
 - settings.terminal.background-color 0x000000
 - settings.terminal.foreground-color 0xffffff
2014-02-24 20:39:09 +11:00
Tim Allen
ecc651c88b Update to v094r07 release.
byuu says:

Changelog for loki:
- added command aliases (match with * [sorry, regex lib isn't available
  everywhere yet], replace with {1}+)
- added command hotkeys
- added window geometry saving
- added save state support
- added power/reset commands
- added an input manager, so you can remap keys (limiting it to the
  keyboard for now though)

The combination of aliases and hotkeys really makes things shine. Save
states will temporarily disable your breakpoints (run/step are
technically temporary breakpoints) so as to ensure the state is captured
at a good time. In practice, this should pose about as much of a problem
as higan desyncing and breaking when capturing states ... should be
exceedingly rare to ever even notice this behavior at all, with 99.9% of
state captures happening in half an instruction boundary. But still,
keep it in mind, as you might see the CPU step one instruction ahead.
Tracing and usage map functionality is still enabled during state
synchronization.

So at this point, I have 100% of the essential stuff in. All that's left
now is to add polish / wishlist features like bass and mosaic
integration.
2014-02-09 17:05:58 +11:00
Tim Allen
3016e595f0 Update to v094r06 release.
byuu says:

New terminal is in. Much nicer to use now. Command history makes a major
difference in usability.

The SMP is now fully traceable and debuggable. Basically they act as
separate entities, you can trace both at the same time, but for the most
part running and stepping is performed on the chip you select.

I'm going to put off CPU+SMP interleave support for a while. I don't
actually think it'll be too hard. Will get trickier if/when we support
coprocessor debugging.

Remaining tasks:
- aliases
- hotkeys
- save states
- window geometry

Basically, the debugger's done. Just have to add the UI fluff.

I also removed tracing/memory export from higan. It was always meant to
be temporary until the debugger was remade.
2014-02-09 17:05:58 +11:00
Tim Allen
423a6c6bf8 Update to v094r05 release.
byuu says:

Commands can be prefixed with: (cpu|smp|ppu|dsp|apu|vram|oam|cgram)/ to
set their source. Eg "vram/hex 0800" or "smp/breakpoints.append execute
ffc0"; default is cpu.

These overlap a little bit in odd ways, but that's just the way the SNES
works: it's not a very orthogonal system. CPU is both a processor and
the main bus (ROM, RAM, WRAM, etc), APU is the shared memory by the
SMP+DSP (eg use it to catch writes from either chip); PPU probably won't
ever be used since it's broken down into three separate buses (VRAM,
OAM, CGRAM), but DSP could be useful for tracking bugs like we found in
Koushien 2 with the DSP echo buffer corrupting SMP opcodes. Technically
the PPU memory pools are only ever tripped by the CPU poking at them, as
the PPU doesn't ever write.

I now have run.for, run.to, step.for, step.to. The difference is that
run only prints the next instruction after running, whereas step prints
all of the instructions along the way as well. run.to acts the same as
"step over" here. Although it's not quite as nice, since you have to
specify the address of the next instruction.

Logging the Field/Vcounter/Hcounter on instruction listings now, good
for timing information.

Added in the tracer mask, as well as memory export, as well as
VRAM/OAM/CGRAM/SMP read/write/execute breakpoints, as well as an APU
usage map (it tracks DSP reads/writes separately, although I don't
currently have debugger callbacks on DSP accesses just yet.)

Have not hooked up actual SMP debugging just yet, but I plan to soon.
Still thinking about how I want to allow / block interleaving of
instructions (terminal output and tracing.)

So ... remaining tasks at this point:
- full SMP debugging
- CPU+SMP interleave support
- aliases
- hotkeys
- save states (will be kind of tricky ... will have to suppress
  breakpoints during synchronization, or abort a save in a break event.)
- keep track of window geometry between runs
2014-02-09 17:05:58 +11:00
Tim Allen
10e2a6d497 Update to v094r04 release.
byuu says:

Changelog:
- target-ethos/ is now target-higan/ (will unfortunately screw up diffs
  pretty badly at this point.)
- had a serious bug in nall::optional<T>::operator=, which is now fixed.
- added tracer (no masking just yet, I need to write a nall::bitvector
  class because I don't want to hard-code those anymore.)
- added usage logging (keep track of RWX/EP states for all bus
  addresses.)
- added read/write to poke at memory (hex also works for reading, but
  this one can poke at MMIO regs and is for one address only.)
- added both run.for (# of instructions) and run.to (program counter
  address.)
- added read/write/execute breakpoints with counters for a given
  address, and with an optional compare byte (for read/write modes.)

About the only major things left now for loki is support for trace
masking, memory export, and VRAM/OAM/CGRAM access.
For phoenix/Console, I really need to add a history to up+down arrows,
and I should support left/right insert-at.
2014-02-09 17:05:58 +11:00
Tim Allen
187ba0eec6 Update to v094r02 release.
byuu says:

Changelog:
- ethos: use nall::programpath() instead of realpath(argv[0]) to get
  executable path
- loki: add presentation window
- loki: add terminal window
- loki: add interface to emulation core
- loki: add ruby
- loki: add enough support to run games and save data on exit
    - load game folders via command-line (or drop folder onto binary),
      use "r" to start, "p" to pause ... temporary command names

I'll probably have to say this several times, but for now, loki is only
available on Linux/GTK+, due to the use of the Console widget. Support
for other platforms can come later easily enough.
2014-02-09 17:05:58 +11:00
Tim Allen
c54be74832 Ignore loki binary too. 2014-02-09 17:05:57 +11:00
Tim Allen
04986d2bf7 Update to v094r01 release.
byuu says:

Changelog:
- port: various compilation fixes for OS X [kode54]
- nall: added programpath() function to return path to process binary
  [todo: need to have ethos use this function]
- ruby: XAudio2 will select default game sound device instead of first
  sound device
- ruby: DirectInput device IDs are no longer ambiguous when VID+PID are
  identical
- ruby: OpenGL won't try and terminate if it hasn't been initialized
- gb: D-pad up+down/left+right not masked in SGB mode
- sfc: rewrote ICD2 video rendering to output in real-time, work with
  cycle-based Game Boy renderer
- sfc: rewrote Bus::reduce(), reduces game loading time by about 500ms
- ethos: store save states in {game}/higan/* instead of {game}/bsnes/*
- loki: added target-loki/ (blank stub for now)
- Makefile: purge out/* on make clean
2014-01-28 21:04:58 +11:00
Tim Allen
10464b8c54 Update to v094 release.
byuu says:

This release adds support for game libraries, and substantially improves
Game Boy and Game Boy Color emulation with cycle-based renderers. Many
other changes are also present.

It's very important to note that this release now defaults to optimal
drivers rather than safe drivers. This is particularly important if you
do not have strong OpenGL 3.2 drivers. If performance is bad, go to
Settings -> Configuration -> Advanced, change the video driver, and
restart higan. In the rare case that you have trouble opening higan, you
can edit settings.bml directly and change the setting there. The Windows
safe driver is Direct3D, and the Linux safe driver is XShm.

Also note that although display emulation shaders are now supported,
they have not been included in this release as they are not ready yet.
The support has been built-in anyway, so that they can be tested by
everyone. Once refined, future releases of higan will come with built-in
shaders for each emulated system that simulates the unique display
characteristics of each.

Changelog (since v093):
- sfc: added SA-1 MDR support (fixes SD Gundam G-Next bug)
- sfc: remove random/ and config/, merge to system/ with better
  randomization
- gb: improved color emulation palette contrast
- gbc: do not sort sprites by X-priority
- gbc: allow transparency on BG priority pixels
- gbc: VRAM DMA timing and register fixes
- gbc: block invalid VRAM DMA transfer source and target addresses
- gba: added LCD color emulation (without it, colors are grossly
  over-saturated)
- gba: removed internal frame blending (use shaders to simulate motion
  blur if desired)
- gba: added Game Boy Player support (adds joypad rumble support to
  supported games)
- gba: SOUND_CTL_H is readable
- gb/gbc: PPU renderer is now cycle-based (major accuracy improvement)
- gb/gbc: OAM DMA runs in parallel with the CPU
- gb/gbc: only HRAM can be accessed during OAM DMA
- gb/gbc: fixed serialization of games with SRAM
- gb/gbc: disallow up+down or left+right at the same time
- gb/gbc: added weak hipass filter to remove DC bias
- gb/gbc: STAT OAM+Hblank IRQs only trigger during active display
- gb/gbc: fixed underflow in window clamping
- gb/gbc/gba: audio mixes internally at 2MHz now instead of 4MHz (does
  not affect accuracy)
- gb/gbc/gba: audio volume reduced for consistency with other systems
- fc/sfc/gb/gbc/gba: cheat codes are now stored in universal, decrypted
  format
- ethos: replaced file loader with a proper game library
- ethos: added display emulation shader support
- ethos: added color emulation option to video settings
- ethos: program icon upgraded from 48x48 to 512x512
- ethos: settings and tools windows now use tab frames (less wasted
  screen space)
- ethos: default to optimal (video, audio, input) drivers instead of
  safest drivers
- ethos: input mapping system completely rewritten to support
  hotplugging and unique device mappings
- ruby: added fixes for OpenGL 3.2 on AMD graphics cards
- ruby: quark shaders now support user settings inside of manifest
- ruby: quark shaders can use integral textures (allows display
  emulation shaders to work with raw colors)
- ruby: add joypad rumble support
- ruby: XInput (Xbox 360) controllers now support hotplugging
- ruby: added Linux udev joypad driver with hotplug support
- phoenix: fixed a rare null pointer dereference issue on Windows
- port: target -std=c++11 instead of -std=gnu++11 (do not rely on GNU
  C++ extensions)
- port: added out-of-the-box compilation support for BSD/Clang 3.3+
- port: applied a few Debian upstream patches
- cheats: updated to mightymo's 2014-01-02 release; decrypted all Game
  Genie codes
2014-01-20 19:55:17 +11:00
Tim Allen
fe85679321 Update to v093r13 release.
byuu says:

This WIP removes nall/input.hpp entirely, and implements the new
universal cheat format for FC/SFC/GB/GBC/SGB.

GBA is going to be tricky since there's some consternation around
byte/word/dword overrides.

It's also not immediately obvious to me how to implement the code search
in logarithmic time, due to the optional compare value.

Lastly, the cheat values inside cheats.bml seem to be broken for the
SFC. Likely there's a bug somewhere in the conversion process. Obviously
I'll have to fix that before v094.

I received no feedback on the universal cheat format. If nobody adds
anything before v094, then I don't want to hear any complaining about
the formatting :P
2014-01-13 20:35:46 +11:00
Tim Allen
2b81b630cb Update to v093r12a release.
byuu says:

Not an official WIP (a WIP WIP? A meta-WIP?), just throwing in the new
fullscreen code, and I noticed that OpenGL colors in 30-bit mode are all
fucked up now for some strange reason. So I'm just using this snapshot
to debug the issue.
2014-01-05 20:59:17 +11:00
Tim Allen
3ce1d19f7a Update to v093r12 release.
byuu says:

I've completely redone the ethos InputManager and ruby to work on
HID::Device objects instead of one giant scancode pool.

Currently only the udev driver supports the changes to ruby, so only
Linux users will be able to compile and run this WIP build.

The nice thing about the new system is that it's now possible to
uniquely identify controllers, so if you swap out gamepads, you won't
end up with it working but with all the mappings all screwed up. Since
higan lets you map multiple physical inputs to one emulated input, you
can now configure your keyboard and multiple gamepads to the same
emulated input, and then just use whatever controller you want.

Because USB gamepad makers failed to provide unique serial#s with each
controller, we have to limit the mapping to specific USB ports.
Otherwise, we couldn't distinguish two otherwise identical gamepads. So
basically your computer USB ports act like real game console input port
numbers. Which is kind of neat, I guess.

And the really nice thing about the new system is that we now have the
capability to support hotplugging input devices. I haven't yet added
this to any drivers, but I'm definitely going to add it to udev for v094
official.

Finally, with the device ID (vendor ID + product ID) exposed, we gain
one last really cool feature that we may be able to develop more in the
future. Say we created a joypad.bml file to include with higan. In it,
we'd store the Xbox 360 controller, and pre-defined button mappings for
each emulated system. So if higan detects you have an Xbox 360
controller, you can just plug it in and use it. Even better, we can
clearly specify the difference between triggers and analog axes, and
name each individual input. So you'd see "Xbox 360 Gamepad #1: Left
Trigger" instead of higan v093's "JP0::Axis2.Hi"

Note: for right now, ethos' input manager isn't filtering the device IDs
to look pretty. So you're going to see a 64-bit hex value for a device
ID right now instead of something like Joypad#N for now.
2013-12-23 22:43:51 +11:00
Tim Allen
73be2e729c Update to v093r11 release.
byuu says:

Changelog:
- GBA: SOUND_CTL_H is readable, fixes sound effects in Mario&Luigi
  Superstar Saga [Cydrak] (note: game is still unplayable due to other
  bugs)
- phoenix/Windows: workaround for Win32 API ListView bug, fixes slot
  loading behavior
- ruby: added udev driver for Linux with rumble support, and added
  rumble support to existing RawInput driver for XInput and DirectInput
- ethos: added new "Rumble" mapping to GBA input assignment, use it to
  tell higan which controller to rumble (clear it to disable rumble)
- GBA: Game Boy Player rumble is now fully emulated
- core: added new normalized raw-color palette mode for Display
  Emulation shaders

The way rumble was added to ethos was somewhat hackish. The support
doesn't really exist in nall.

I need to redesign the entire input system, but that's not a change
I want to make so close to a release.
2013-12-21 21:45:58 +11:00
Tim Allen
84fab07756 Update to v093r10 release.
byuu says:

Changelog:
- Game Boy (Color): STAT OAM+HBlank IRQs only trigger during LY=0-143
  with display enabled
  - fixes backgrounds and text in Wacky Races
- Game Boy (Color): fixed underflow in window clamping
  - fixes Wacky Races, Prehistorik Man, Alleyway, etc
- Game Boy (Color): LCD OAM DMA was running too slow
  - fixes Shin Megami Tensei - Devichil - Kuro no Sho
- Game Boy Advance: removed built-in frame blending; display emulation
  shaders will handle this going forward
- Game Boy Advance: added Game Boy Player emulation
  - currently the screen is tinted red during rumble, no actual gamepad
    rumble support yet
  - this is going to be slow, as we have to hash the frame to detect the
    GBP logo, it'll be optional later on
- Emulator::Interface::Palette can now output a raw palette (for Display
  Emulation shaders only)
  - color channels are not yet split up, it's just the raw packed value
2013-12-20 22:40:39 +11:00
Tim Allen
926a39d701 Update to v093r09 release.
byuu says:

Changelog:
- GB/C OAM DMA now runs in parallel with the CPU
- CPU can only access HRAM during OAM DMA
- fixed SGB mode again
- brand new config files will default to the optimal drivers now
  (OpenGL, etc) instead of the safest
- hopefully fixed remaining Windows UI issues
2013-12-14 17:25:12 +11:00
Tim Allen
1361820dd8 Update to v093r08 release.
byuu says:

Changelog:
- Game Boy and Game Boy Color now have a weak hipass filter to remove DC
  bias (or whatever)
- Game Boy and Game Boy Color now have cycle-based PPU renderers instead
  of scanline-based renderers
- improved Game Boy color emulation palette contrast
- fixed GTK+ ListView selection bug
- fixed a typo when saving states (should say "Saved to slot N", not
  "Save to slot N")
2013-12-11 22:19:17 +11:00
Tim Allen
0f78acffd7 Update to v093r07 release.
byuu says:

Changelog:
- importing a game won't show message box on success
- importing a game will select the game that was imported in the list
  - caveat: GTK+ port doesn't seem to be removing focus from item 0 even
    though the selection is on item 2
- Game Boy audio reduced in volume by 50%
- Game Boy Advance audio reduced in volume by 50%
- Game Boy internally mixes audio at 2MHz now
- Game Boy Advance's Game Boy audio hardware internally mixes audio at
  2MHz now
- Game Boy Color doesn't sort sprites by X-coordinate
- Game Boy Color allows transparency on BGpriority pixels
  - caveat: this seems to allow sprites to appear on top of windows
- Game Boy Color VRAM DMA transfers 16 bytes in 8 clocks (or 16 clocks
  in double speed mode)
- Game Boy Color VRAM DMA masks low 4-bits of source and destination
  address
- Game Boy Color VRAM DMA only allows reads from ROM or RAM
- Game Boy Color VRAM DMA only allows writes to VRAM
- fixed a bug in dereferencing a nullptr from pObject::find(), should
  fix crash when pressing enter key on blank windows
- fixed Windows RadioItem selection
- Game Boy Advance color emulation code added
2013-12-10 23:12:54 +11:00
Tim Allen
35f1605829 Update to v093r06 release.
byuu says:

Changelog:
- Windows port should compile out-of-the-box
- InputManager::scancode[] initialized at startup
- Library menu shows item for each bootable media type (notably Game Boy
  Color)
- Display Emulation menu selection fix
- LibraryManager load button works now
- Added hotkey to show library manager (defaults to L)
- Added color emulation to video settings (missing on GBA for now)
- SFC loading SGB without GB cartridge no longer segfaults
- GB/GBC system.load() after cartridge.load()
- GB/GBC BG-over-OAM fix
- GB/GBC disallow up+down and left+right
2013-12-07 20:12:37 +11:00
Tim Allen
ed4e87f65e Update to v093r05 release.
byuu says:

Library concept has been refined as per the general forum discussion.
2013-12-03 21:01:59 +11:00
Tim Allen
b4f18c3b47 Update to v093r04 release.
byuu says:

This version replaces the old folder-browser with a proper game library.
2013-11-28 21:32:53 +11:00
Tim Allen
68eaf53691 Update to v093r03 release.
byuu says:

Updated to support latest phoenix changes.
Converted Settings and Tools to TabFrame views.

Errata:
- phoenix/Windows ComboButton wasn't calling parent
  pWidget::setGeometry() [fixed locally]
- TRACKBAR_CLASS draws COLOR_3DFACE for the background even when its
  parent is a WC_TABCONTROL
2013-11-28 21:29:01 +11:00
Tim Allen
8c0b0fa4ad Update to v093r02 release.
byuu says:

Changelog:
- nall: fixed major memory leak in string class
- ruby: video shaders support #define-based settings now
- phoenix/GTK+: support > 256x256 icons for window / task bar / alt-tab
- sfc: remove random/ and config/, merge into system/
- ethos: delete higan.png (48x48), replace with higan512.png (512x512)
  as new higan.png
- ethos: default gamma to 100% (no color adjustment)
- ethos: use "Video Shaders/Display Emulation/" instead of "Video
  Shaders/Emulation/"
- use g++ instead of g++-4.7 (g++ -v must be >= 4.7)
- use -std=c++11 instead of -std=gnu++11
- applied a few patches from Debian upstream to make their packaging job
  easier

So because colors are normalized in GLSL, I won't be able to offer video
shaders absolute color literals. We will have to perform basic color
conversion inside the core.

As such, the current plan is to create some sort of Emulator::Settings
interface. With that, I'll connect an option for color correction, which
will be on by default. For FC/SFC, that will mean gamma correction
(darker / stronger colors), and for GB/GBC/GBA, it will mean simulating
the weird brightness levels of the displays. I am undecided on whether
to use pea soup green for the GB or not. By not doing so, it'll be
easier for the display emulation shader to do it.
2013-11-09 22:45:54 +11:00
Tim Allen
66f136718e Update to v093r01 release.
byuu says:

Changelog:
- added SA-1 MDR; fixes bug in SD Gundam G-Next where the main
  battleship was unable to fire
- added out-of-the-box support for any BSD running Clang 3.3+ (FreeBSD
  10+, notably)
- added new video shader, "Display Emulation", which changes the shader
  based on the emulated system
- fixed the home button to go to your default library path
- phoenix: Windows port won't send onActivate unless an item is selected
  (prevents crashing on pressing enter in file dialog)
- ruby: removed vec4 position from out Vertex {} (helps AMD cards)
- shaders: updated all shaders to use texture() instead of texture2D()
  (helps AMD cards)

The "Display Emulation" option works like this: when selected, it tries
to load "<path>/Video Shaders/Emulation/<systemName>.shader/"; otherwise
it falls back to the blur shader. <path> is the usual (next to binary,
then in <config>/higan, then in /usr/share/higan, etc); and <systemName>
is "Famicom", "Super Famicom", "Game Boy", "Game Boy Color", "Game Boy
Advance"

To support BSD, I had to modify the $(platform) variable to
differentiate between Linux and BSD.
As such, the new $(platform) values are:
win -> windows
osx -> macosx
x -> linux or bsd

I am also checking uname -s instead of uname -a now. No reason to
potentially match the hostname to the wrong OS type.
2013-10-21 22:45:39 +11:00
Tim Allen
4e2eb23835 Update to v093 release.
byuu says:

Changelog:
- added Cocoa target: higan can now be compiled for OS X Lion
  [Cydrak, byuu]
- SNES/accuracy profile hires color blending improvements - fixes
  Marvelous text [AWJ]
- fixed a slight bug in SNES/SA-1 VBR support caused by a typo
- added support for multi-pass shaders that can load external textures
  (requires OpenGL 3.2+)
- added game library path (used by ananke->Import Game) to
  Settings->Advanced
- system profiles, shaders and cheats database can be stored in "all
  users" shared folders now (eg /usr/share on Linux)
- all configuration files are in BML format now, instead of XML (much
  easier to read and edit this way)
- main window supports drag-and-drop of game folders (but not game files
  / ZIP archives)
- audio buffer clears when entering a modal loop on Windows (prevents
  audio repetition with DirectSound driver)
- a substantial amount of code clean-up (probably the biggest
  refactoring to date)

One highly desired target for this release was to default to the optimal
drivers instead of the safest drivers, but because AMD drivers don't
seem to like my OpenGL 3.2 driver, I've decided to postpone that. AMD
has too big a market share. Hopefully with v093 officially released, we
can get some public input on what AMD doesn't like.
2013-08-18 13:21:14 +10:00
Tim Allen
c74865e171 Update to v092r10 release.
byuu says:

Changelog:
- you can now drop game folders (not game files, sorry) onto higan's
  main window to load them
- audio buffer will clear on Windows when entering modal loop (entering
  menu, moving or resizing window)
  - this prevents DirectSound driver's audio repetition
- ruby defaults to the optimal driver for each platform, rather than the
  safest driver, now
- added Cydrak's gl_Position.zw change to ruby
- added fixes for all the changes to nall, ruby, phoenix over the past
  three months
2013-07-29 19:42:45 +10:00
Tim Allen
29ea5bd599 Update to v092r09 release.
byuu says:

This will be another massive diff from the previous version.

All of higan was updated to use the new foo& bar syntax, and I also
updated switch statements to be consistent as well (but not in the
disassemblers, was starting to get an RSI just from what I already did.)

phoenix/{windows, cocoa, qt} need to be updated to use "string foo"
instead of "const string& foo", and after that, the major diffs should
be finished.

This archive is the first time I'm posting my copy-on-write,
size+capacity nall::string class, so any feedback on that is welcome as
well.
2013-05-05 19:21:30 +10:00
Tim Allen
75dab443b4 Update to v092r08 release.
byuu says:

Changelog:
- fixed cartridge load window focus on Windows
- lots of updates to nall, ruby and phoenix
- ethos and Emulator::Interface updated from "foo &bar" to "foo& bar"
  syntax (work-in-progress)

Before I had mixed the two ways to declare variables/arguments all over
the place, so the goal is to unify them all for consistency. So the
changelog for this release will be massive (750KB >.>) due to the syntax
change. Yeah, that's what I spent the last three days working on ...
2013-05-02 21:25:45 +10:00
Tim Allen
177e222ca7 Update to v092r07 release.
byuu says:

- OpenGL should work on OS X now; it uses VAOs and VBOs, and is fully
  OpenGL 3.2 core compliant
- all configuration files are now stored in BML format, instead of CFG
  format (half the size, much more readable)
- some old nall libraries that were never used have been removed
- make install works with or without root now (copies core files to
  /usr/share/higan [non-configurable])
- make install also works on OS X (copies to /Library/Application
  Support/higan)
2013-04-14 18:52:47 +10:00
Tim Allen
0d75524791 Update to v092r06 release.
byuu says:

Changelog:
- added support for ruby shader folders (place in "Video Shaders/")
- higan now also looks in your shared folder for configuration files and
  system media folders
- added CFBundleExecutable key to OS X Info.plist

Shared folder locations:
- Windows XP: C:\Documents and Settings\All Users\Application Data\higan
- Windows 7: C:\ProgramData\higan
- OS X: /Library/Application Support/higan
- Linux: /etc/higan

Evaluation order:
- look for item in binary folder: if found, use this folder
- look for item in user folder: if found, use this folder
- look for item in shared folder: if found, use this folder
- create item in user folder

For people repackaging higan for other distros: you should chmod 777
/etc/higan. Failure to do so could result in higan breaking. No, I will
not copy the files from the shared path to the user path.
2013-04-09 23:31:46 +10:00
Tim Allen
5b4bbf5045 Update to v092r05 release.
byuu says:

This release should be polished enough for a general release.

This release should be polished enough for a general release.

Anyone with a real, clean Mac up for posting compiled binaries?
Preferably compile with "make profile=balanced" In fact, I'd like it if
someone were willing to host a "higan for Mac" page, with binaries of
each of the latest releases. Only really needed for major official
releases, but it'd be preferable to have the builds updated as soon as
possible after I post new builds.

Changelog:
- no more keyboard chimes when pressing keys
- status bar added, fully functional
- Label::minimumSize() takes frame into account (but note a few places
  hard-code raw Font::size(), so a few text labels are still clipped)
- resizing the main window looks smooth regardless of whether a game is
  running or not
  - currently, resizing the window pauses the emulation. Allowing it to
    run the main loop was lagging out the window resize process too much
    to be worth it

Additional OS X integration enhancements:
- closing the main window unloads the current game, but does not quit
  the application (quit via the main menu or the dock menu)
- clicking the icon in the dock will (re)display the main menu
2013-03-21 23:59:01 +11:00
Tim Allen
fdd3ea490e Update to v092r04 release.
byuu says:

This is the first release with full support for OS X, although it's
certainly still very buggy.

Known issues:
- window status bars are still unsupported (they just don't show up)
- you get the bad keypress chime when you use the keyboard
- window geometry and font metrics aren't perfect (bit of clipping here
  and there)
- list view headers that aren't auto-sized are sometimes too short (file
  browser)
- input assignment is really rough (assigning a key also moves around in
  the list or beeps at you)

Custom OS X integration support so far:
- 512x512 ICNS application icon: will look razor-sharp even on a retina
  display
- basic Info.plist added to application bundle
- program menu about, preferences, quit all connected
- Settings->Configuration removed (use higan->Preferences instead)
- global menubar

To compile and use this, you'll need:
- Xz Utils (to extract .tar.xz)
- Xcode 4.6
- Lion 10.7.4 or newer

    mkdir higan_v092r04
    tar -xJf higan_v092r04.tar.xz -C higan_v092r04
    cd higan_v092r04
    make -j 2

ananke is missing, and I haven't updated purify yet, so you'll have to
move game folders from Windows or Linux over, or make them by hand (a
not so enjoyable experience, to say the least.)
2013-03-19 19:48:50 +11:00
Tim Allen
b7c212de7e Update to v092r03 release.
byuu says:

This release adds the phoenix/Cocoa port, and rewrites a lot of the
higan user interface to work with all of the new changes (like blocking
in the main run loop and in modal windows.)

It doesn't yet modify the compilation flags to actually build on OS
X yet, and even then, we don't really have ruby drivers, so there'd be
no video, audio or input.

Two months between a single WIP point release ... for the first six
years, I never went more than a month without a full official release.
I guess I should be happy that it's become so refined, but I sure do
miss those halcyon days of exciting progress.
2013-03-16 00:11:33 +11:00
Tim Allen
d9400084c2 Update to v092r02 release.
byuu says:

Changelog:
- merged AWJ's hires color blending improvements (most notably: fixes
  Marvelous' text)
- created sfc/base/ to store base unit (expansion port device) emulation
- synchronized the markup of Satellaview and Sufami Turbo cartridge
  slots in the board markup
- fixed "Initializing ..." typo in timing settings

If at all possible, I'd really like to have heavy testing of games that
use hires graphics to check for any regressions.
I trust AWJ's code, and all of the test ROMs I have thrown at it all
appear to work great. But better safe than sorry. Same deal for any core
changes, it's a lot better to catch it now than after v093 is released.
2013-01-23 19:28:35 +11:00
Tim Allen
bbc33fe05f Update to higan v092r01, ananke v02r01 and purify v03r01 releases.
byuu says:

higan changelog:
- compiler is set to g++-4.7, subst(cc,++) rule is gone, C files compile
  with $(compiler) -x c
- make throws an error when you specify an invalid profile or compile on
  an unsupported platform (instead of hanging forever)
- added unverified.png to resources (causes too big of a speed hit to
  actually check for folder/unverified file ... so disabled for now)
- fixed default browser paths for Game Boy, Sufami Turbo and BS-X
  Satellaview (have to delete paths.cfg to see this)
- browser home button seeks to configpath()/higan/library.cfg
- settings->driver is now settings->advanced, and it adds game library
  path setting and profile information
- emulation cores now load manifest files internally, manifest.bml is
  not required for a game folder to be recognized by higan as such
- BS-X Satellaview and Sufami Turbo slot cartridge handling moved out of
  sfc/chip and into sfc/slot
- Video::StartFullScreen only sets fullscreen when a game is specified
  on the command-line

purify and ananke changelog:
- library output path shown in purify window
- added button to change library path
- squelch firmware warning windows to prevent multi-threading crash, but
  only via purify (they show up in higan still)
2013-01-21 23:27:15 +11:00
Tim Allen
65c4011bec Update to purify v03 release.
byuu says:

This release has an updated version of ananke. If you replace the higan
v092 ananke.dll with this new one, it will fix the SGB+TG3000+ToP+DKJM2
loading issues.
2013-01-21 19:57:04 +11:00
Tim Allen
a7c35a65b4 Update to ananke v01r01 release.
This version fixes a problem where ananke would leave out the
'information' section (that is, the game name) when converting a game to
a game folder, resulting in a folder named " (!)".

It also includes the latest version of nall.
2013-01-19 22:23:42 +11:00
Tim Allen
ba660600ad Update to purify v02r01 release.
Because byuu's Win32 compiler does not yet support the C++11 std::thread
API, he wrote his own portable wrapper library, so now the new purify
works on Windows too.
2013-01-19 22:20:25 +11:00
Tim Allen
b6575ca02a Update to purify v02 release.
byuu says:

purify has been rewritten. It now resembles the older snespurify, and
lets you import multiple game files+archives and regenerate manifests
for multiple game folders. It is also recursive.

So you can now import all of your games for all systems at once, or you
can update all of your bsnes v091 game folders to the new higan v092
format at once.

Caveats:

First, I am now using std::thread, so that the GUI doesn't freeze.
Instead, you get a nice progress bar. Unfortunately, I was mislead and
TDM/GCC 4.7 still does not have std::thread support. So ... sorry, but
I can't compile purify for Windows. I am sick and tired of not being
able to write multi-threaded code, so fuck it. If anyone can get it to
build on Windows, whether that be by using Windows threads, hacking in
std::thread support, skipping threading all together, whatever ...
that'll be great. Otherwise, sorry, purify is Linux only until MinGW can
get its god damned shit together and offers threading support.

Second, there's no way to regenerate Famicom (NES) manifests, because we
discard the iNES header. We are going to need a database for that. So,
all I can suggest is that if you use bsnes/higan, keep all your iNES
images around to re-import as new releases come out.

Third, when you purify game folders, it will back up the ROM and RAM
files only. Your save states, cheat codes, debug logs, etc will be wiped
out. There's a whole lot of reasons for this, the most pertinent is that
it's meant to clean up the folder to a pristine state. It also fixes the
game folder name, etc. So ... sorry, but this is how it works. New
releases rarely if ever allow old save states to work anyway.

Lastly, I am not going to have purify contain infinite backward
compatibility for updating manifests. You will want to keep up with
purifying the collection, otherwise you'll have to grab older purify
copies and convert your way along. Although hopefully the format won't
be so volatile and this won't be necessary very often.
2013-01-17 22:21:00 +11:00
Tim Allen
8d88337e28 Update to ananke v01 release.
byuu says:

This updated anake fixes all of the reported game issues thus far.
2013-01-17 22:20:53 +11:00
Tim Allen
6ac67c260b Update to v092 hotfix release.
byuu says:

For higan:
- I fixed the data ROM/RAM initialization for the Cx4, which would
  periodically cause a crash.
- I also moved the Satellaview MaskROM vs FlashROM detection into the
  Satellaview manifests, so Same Game - Character Data works now.
- I also re-added the driver filter to the video shaders, so the D3D
  driver won't show OGL shaders and vice versa.

For ananke:
- You can now generate the other SGB images by putting sgb.rom in the
  same folder as the BIOS images.
- I fixed the markup in the database and via heuristics for 5MB+ games
  (DKJM2, ToP)
- Sufami Turbo and BS-X Satellaview generate BML now instead of XML when
  using heuristics.
2013-01-15 21:51:49 +11:00
Tim Allen
032e924495 Update to v092 release.
In the release thread, byuu says:

    The first official release of higan has been posted. higan is the
    new name for bsnes, and it continues with the latter's version
    numbering.

    Note that as of now, bsnes still exists. It's a module distributed
    inside of higan. bsnes is now specific to my SNES emulator.

    Due to last minute changes to the emulator interface, and missing
    support in ananke, I wasn't able to include Cydrak's Nintendo DS
    emulator dasShiny in this build, but I hope to do so in the next
    release.

    http://code.google.com/p/higan/downloads/list

    For both new and experienced users, please read the higan user guide
    first:

    http://byuu.org/higan/user-guide

In the v091 WIP thread, byuu says:

    r15->r16:
    - BS-X MaskROM handling (partial ... need to split bsx/flash away
      from sfc/chip, restructure code - it requires tagging the base
      cart markup for now, but it needs to parse the slotted cart
      markup)
    - phoenixflags / phoenixlink += -m32
    - nall/sort stability
    - if(input.poll(scancode[activeScancode]) == false) return;
    - MSU1 / USART need to use interface->path(1)
    - MSU1 needs to use Markup::Document, not XML::Document
    - case-insensitive folder listings
    - remove nall/emulation/system.hpp files (move to ananke)
    - remove rom/ram id= checks with indexing
    X have cores ask for manifest.bml (skipped for v092's release, too
      big a change)
    - rename compatibility profile to balanced (so people don't assume
      it has better compatibility than accuracy)
2013-01-14 23:15:21 +11:00
Tim Allen
b389d17c9a Update to v091r15 release.
byuu says:

Changelog:
- all media types always show base name in the title now (eg Super Game
  Boy + Mega Man II)
- Game Boy loading via ananke has been fixed
- phoenix is dynamically linked on Windows now (needed for ananke)
- Linux port shows the higan program icon (once you install the program
  to get the bitmap into /usr/local/share/pixmaps)
- paths.cfg defaults to "userpath()/Emulation/System Name/" when it is
  created from scratch

[Later, after the v092 release, byuu posted this additional changelog:
    - new compilation rules for win32
    - OS::setName
    - default to ~/Emulation/media.name for paths.cfg
]
2013-01-14 23:14:44 +11:00
Tim Allen
d59ae34e12 Update to higan v091r14 and ananke v00r03 releases.
byuu says:

higan changelog:
- generates title displayed in emulator window by asking the core
- core builds title solely from "information/title" ... if it's not
  there, you don't get a title at all
- sub-system load menu is gone ... since there are multiple revisions of
  the SGB, this never really worked well anyway
- to load an SGB, BS-X or ST cartridge, load the base cartridge first
- "File->Load Game" moved to "Load->Import Game" ... may cause a bit of
  confusion to new users, but I don't like having a single-item menu,
  we'll just have to explain it to new users
- browser window redone to look like ananke
  - home button here goes to ~/Emulation rather than just ~ like ananke,
    since this is the home of game folders
  - game folder icon is now the executable icon for the Tango theme
    (orange diamond), meant to represent a complete game rather than
    a game file or archive

ananke changelog:
- outputs GBC games to "Game Boy Color/" instead of "Game Boy/"
- adds the file basename to "information/title"

Known issues:
- using ananke to load a GB game trips the Super Famicom SGB mode and
  fails (need to make the full-path auto-detection ignore non-bootable
  systems)
- need to dump and test some BS-X media before releasing
- ananke lacks BS-X Satellaview cartridge support
- v092 isn't going to let you retarget the ananke/higan game folder path
  of ~/Emulation, you will have to wait for a future version if that
  bothers you so greatly

[Later, after the v092 release, byuu posted this additional changelog:
    - kill laevateinn
    - add title()
    - add bootable, remove load
    - combine file, library
    - combine [][][] paths
    - fix SFC subtype handling XML->BML
    - update file browser to use buttons
    - update file browser keyboard handling
    - update system XML->BML
    - fix sufami turbo hashing
    - remove Cartridge::manifest
]
2013-01-14 23:13:48 +11:00
Tim Allen
85f2e9a6d4 Update to ananke v00r02 release.
byuu says:

This should be basically final now.

Works with all media types (nes, sfc, gb, gbc, gba, bs, st), strips
headers, can use internal or external firmware, imports saves on first
run.

Added a custom file dialog. It seems both GTK+ and Windows XP have
(un)intelligent file sorting, which puts eg "ActRaiser 2 (NA)" before
"ActRaiser (NA)". So, screw 'em.
2012-12-26 17:46:57 +11:00
Tim Allen
019fc1a2c6 Update to v091r13 release, and ananke v00r01.
byuu says (about higan):

- dropped release/ root node for individual games (still there in
  ananke's database.)
- Memory export uses smarter names (vram.rwm -> video.ram, etc.)
- cheat database moved from XML to BML (3.1MB to 1.9MB file size.)
- cheat codes moved from XML to BML
- resource manifest moved from XML to BML

What can I say, I like consistency. But I'll leave the shaders alone
until I get around to shader folders.

byuu says (about ananke):

Works with higan v091r13. Only does SNES stuff so far.
2012-12-26 17:46:57 +11:00
Tim Allen
84e98833ca Update to v091r11 release.
byuu says:

This release refines HSU1 support as a bidirectional protocol, nests SFC
manifests as "release/cartridge" and "release/information" (but release/
is not guaranteed to be finalized just yet), removes the database
integration, and adds support for ananke.

ananke represents inevitability. It's a library that, when installed,
higan can use to load files from the command-line, and also from a new
File -> Load Game menu option.

I need to change the build rules a bit for it to work on Windows (need
to make phoenix a DLL, basically), but it works now on Linux.

Right now, it only takes *.sfc file names, looks them up in the included
database, converts them to game folders, and returns the game folder
path for higan to load.

The idea is to continue expanding it to support everything we can that
I don't want in the higan core:
- load *.sfc, *.smc, *.swc, *.fig files
- remove SNES copier headers
- split apart merged firmware files
- pull in external firmware files (eg dsp1b.rom - these are staying
  merged, just as SPC7110 prg+dat are merged)
- load *.zip and *.7z archives
- prompt for selection on multi-file archives
- generate manifest files based on heuristics
- apply BPS patches

The "Load" menu option has been renamed to "Library", to represent games
in your library. I'm going to add some sort of suffix to indicate
unverified games, and use a different folder icon for those (eg
manifests built on heuristics rather than from the database.)

So basically, to future end users:
File -> Load Game will be how they play games.
Library -> (specific system) can be thought of as an infinitely-sized
    recent games list.

purify will likely become a simple stub that invokes ananke's functions.
No reason to duplicate all that code.
2012-12-26 17:46:57 +11:00
Tim Allen
d4751c5244 Update to v091r10 release.
byuu says:

This release adds HSU1 support, and fixes the reduce() memory mapping
function.
2012-12-26 17:46:57 +11:00
Tim Allen
ab345ff20c Update to v091r09 release.
[r07 and r08 were not posted to the WIP thread. -Ed.]

byuu says:

I'd appreciate it if you guys wouldn't mind testing out the database
functionality.

Save this file as database.bml (remove the date) inside
~/.config/higan/Super Famicom.sfc/ or %APPDATA%/higan/Super Famicom.sfc/

    http://byuu.org/snes/database/database_2012-10-21.bml

Now load any of the 20 games in the database from the file dialog. They
need to be named *.sfc, have no copier header, and have firmware
appended (for Mario Kart only so far.)

If anyone actually does test it, please let me know how it goes for you
and what you think. Note that future versions of higan will have the
database.bml file included with the release.
2012-12-26 17:46:57 +11:00
Tim Allen
c495c132a7 Update to v091r06 release.
byuu says:

This release adds initial database support.

The way it works is you can now load game folders as you always have, or
you can load a game file. If you load a game file, it tries to create
a game folder for you by looking up the file's sha256 in a database. If
it can't find it, sorry, the game won't play. I'm not hooking up the
oldschool "make up a manifest" code here. The easiest way to handle this
is to get me every game so I can dump it and add it to the database :D

The database entries are complete entries that can be copied directly.
So it describes the board, the information, file layout, etc. That'll be
what comes with higan releases in the future.

Internally, I'm separating the information and board descriptions, and
will use a tool to merge the two together.

Here's a current database copy, with one game in it. Still hammering out
some details, but it's mostly how it's going to look.

    cartridge region=NTSC
	board type=1CB5B-20
	    superfx revision=2
		rom name=program.rom size=0x200000
		ram name=save.rwm size=0x8000
		map id=io address=00-3f,80-bf:3000-32ff
		map id=rom address=00-3f:8000-ffff mask=0x8000
		map id=rom address=40-5f:0000-ffff
		map id=ram address=00-3f,80-bf:6000-7fff size=0x2000
		map id=ram address=70-71:0000-ffff
	information
	    name:   Super Mario World 2 - Yoshi's Island (SNS) (1.1)
	    title:  Super Mario World 2: Yoshi's Island
	    sha256: bd763c1a56365c244be92e6cffefd318780a2a19eda7d5baf1c6d5bd6c1b3e06
	    board:  SHVC-1CB5B-20
	    rom:    0x200000
	    ram:    0x8000
	layout
	    file name=program.rom size=0x200000
2012-12-26 17:46:57 +11:00
Tim Allen
ef746bbda4 Update to v091r05 release.
[No prior releases were posted to the WIP thread. -Ed.]

byuu says:

Super Famicom mapping system has been reworked as discussed with the
mask= changes. offset becomes base, mode is gone. Also added support for
comma-separated fields in the address fields, to reduce the number of
map lines needed.

    <?xml version="1.0" encoding="UTF-8"?>
    <cartridge region="NTSC">
      <superfx revision="2">
	<rom name="program.rom" size="0x200000"/>
	<ram name="save.rwm" size="0x8000"/>
	<map id="io" address="00-3f,80-bf:3000-32ff"/>
	<map id="rom" address="00-3f:8000-ffff" mask="0x8000"/>
	<map id="rom" address="40-5f:0000-ffff"/>
	<map id="ram" address="00-3f,80-bf:6000-7fff" size="0x2000"/>
	<map id="ram" address="70-71:0000-ffff"/>
      </superfx>
    </cartridge>

Or in BML:

    cartridge region=NTSC
      superfx revision=2
	rom name=program.rom size=0x200000
	ram name=save.rwm size=0x8000
	map id=io address=00-3f,80-bf:3000-32ff
	map id=rom address=00-3f:8000-ffff mask=0x8000
	map id=rom address=40-5f:0000-ffff
	map id=ram address=00-3f,80-bf:6000-7fff size=0x2000
	map id=ram address=70-71:0000-ffff

As a result of the changes, old mappings will no longer work. The above
XML example will run Super Mario World 2: Yoshi's Island. Otherwise,
you'll have to write your own.

All that's left now is to work some sort of database mapping system in,
so I can start dumping carts en masse.

The NES changes that FitzRoy asked for are mostly in as well.

Also, part of the reason I haven't released a WIP ... but fuck it, I'm
not going to wait forever to post a new WIP.

I've added a skeleton driver to emulate Campus Challenge '92 and
Powerfest '94. There's no actual emulation, except for the stuff I can
glean from looking at the pictures of the board. It has a DSP-1 (so
SR/DR registers), four ROMs that map in and out, RAM, etc.

I've also added preliminary mapping to upload high scores to a website,
but obviously I need the ROMs first.
2012-12-26 17:46:57 +11:00
Tim Allen
94b2538af5 Update to higan v091 release.
byuu says:

Basically just a project rename, with s/bsnes/higan and the new icon
from lowkee added in.

It won't compile on Windows because I forgot to update the resource.rc
file, and a path transform command isn't working on Windows.
It was really just meant as a starting point, so that v091 WIPs can flow
starting from .00 with the new name (it overshadows bsnes v091, so
publicly speaking this "shouldn't exist" and will probably be deleted
from Google Code when v092 is ready.)
2012-12-26 17:46:36 +11:00
Tim Allen
7f404e6edb Update to v091 release.
byuu says:

A few issues crept up in the last release, this should take care of
them.

First, it seems that the 32-bit runtime on 64-bit versions of Windows
have 64-bit time functions; whereas true 32-bit Windows does not. This
was causing a DLL error when attempting to load bsnes v090.

Second, when there were more than 2,000 files in the same folder on
Windows, it was lagging the file browser. With OV2's help, I've fixed
that and it'll now load the list instantly.

Lastly, I've included the missing video shaders this time.
2012-08-11 12:18:19 +10:00
3272 changed files with 157227 additions and 283337 deletions

6
.gitignore vendored
View File

@@ -1,3 +1,3 @@
purify/*.o
purify/purify
purify/analyze-gba
higan/profile/WonderSwan.sys/internal.ram
higan/profile/WonderSwan Color.sys/internal.ram
docs_build/

59
.gitlab-ci.yml Normal file
View File

@@ -0,0 +1,59 @@
# NOTE: This file is not part of the official higan source, it's been added
# to help build WIP binaries with minimal fuss.
image: debian:stable
linux-x86_64-binaries:
script:
- apt-get update && apt-get -y install build-essential libgtk2.0-dev libpulse-dev mesa-common-dev libgtksourceview2.0-dev libcairo2-dev libsdl1.2-dev libxv-dev libao-dev libopenal-dev libudev-dev mkdocs
- make -C icarus compiler=g++
- make -C higan compiler=g++
- LC_ALL=C.UTF-8 mkdocs build
- mkdir higan-nightly
- cp -a icarus/out/icarus higan-nightly/icarus
- cp -a icarus/Database higan-nightly/
- cp -a higan/out/higan higan-nightly/higan
- cp -a higan/systems/* higan-nightly/
- cp -a shaders "higan-nightly/Video Shaders"
- cp -a docs_build higan-nightly/docs
- cp -a GPLv3.txt higan-nightly/
artifacts:
paths:
- higan-nightly/*
windows-x86_64-binaries:
# This is a normal Windows cross-compile process, except that
# nall::chrono tries to use clock_gettime on Windows even
# though it's a POSIX function, and for some weird reason mingw has
# clock_gettime() in the pthread library.
script:
- apt-get update && apt-get -y install build-essential mingw-w64 mkdocs
- sed -i -e 's/-lole32/& -static -lpthread/' nall/GNUmakefile
- make -C icarus platform=windows compiler="x86_64-w64-mingw32-g++ -static-libgcc -static-libstdc++" windres="x86_64-w64-mingw32-windres"
- make -C higan platform=windows compiler="x86_64-w64-mingw32-g++ -static-libgcc -static-libstdc++" windres="x86_64-w64-mingw32-windres"
- LC_ALL=C.UTF-8 mkdocs build
- mkdir higan-nightly
- cp -a icarus/out/icarus higan-nightly/icarus.exe
- cp -a icarus/Database higan-nightly/
- cp -a higan/out/higan higan-nightly/higan.exe
- cp -a higan/systems/* higan-nightly/
- cp -a shaders "higan-nightly/Video Shaders"
- cp -a docs_build higan-nightly/docs
- cp -a GPLv3.txt higan-nightly/
artifacts:
paths:
- higan-nightly/*
libretro-test:
script:
- apt-get update && apt-get -y install build-essential git
# git refuses to even attempt a merge if you haven't told it who you are,
# even if you use --no-commit. *sigh*
- EMAIL=fake-email@example.com git merge origin/libretro
- make -C higan compiler=g++ binary=library target=libretro
- mkdir libretro-nightly
- cp -a higan/out/higan_sfc_libretro.so libretro-nightly/
- cp -a GPLv3.txt libretro-nightly/
artifacts:
paths:
- libretro-nightly/*

9
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,9 @@
Contributing to higan
=====================
If you would like to propose a change to higan,
you should create an account on the [official forums][f],
go to the "Projects" forum and the "higan" sub-forum,
and post your idea in a new topic there.
[f]: https://board.byuu.org/

674
GPLv3.txt Normal file
View File

@@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

44
LICENSE.txt Normal file
View File

@@ -0,0 +1,44 @@
----------------------------------------------------------------------
higan - Suite of videogame console emulators
icarus - Game library importer for higan
Copyright © 2004-2017 byuu
https://byuu.org/
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, specifically version 3 of the License
and no other version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
----------------------------------------------------------------------
----------------------------------------------------------------------
hiro - User interface toolkit
libco - C cooperative threading library
nall - C++ template library
ruby - Hardware abstraction layer
Copyright © 2006-2017 byuu
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all
copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
----------------------------------------------------------------------

48
README.md Normal file
View File

@@ -0,0 +1,48 @@
The unofficial higan repository
===============================
higan emulates a number of classic video-game consoles of the 1980s and 1990s,
allowing you to play classic games on a modern general-purpose computer.
This repository includes
the source-code for
stable and WIP releases of higan,
starting during the development of v068.
It also includes community-maintained documentation.
Basically,
apart from `.gitignore` files,
anything in the
[higan](higan/),
[hiro](hiro/),
[icarus](icarus/),
[libco](libco/),
[nall](nall/),
[ruby](ruby/),
or [shaders](shaders/)
directories should be exactly as it appeared in official releases.
Everything else has been added for various reasons.
Official higan resources
------------------------
- [Official homepage](https://byuu.org/emulation/higan/)
- [Official forum](https://board.byuu.org/viewforum.php?f=4)
Unofficial higan resources
--------------------------
- Documentation for
[the current stable version][stadocs]
- [Source code repository](https://gitlab.com/higan/higan/)
archives official higan releases
and WIP snapshots
since approximately v067r21
- [Latest WIP build for Windows][wipwin]
- Documentation for
[the latest WIP version][wipdocs]
[wipwin]: https://gitlab.com/higan/higan/-/jobs/artifacts/master/download?job=windows-x86_64-binaries
[stadocs]: https://higan.readthedocs.io/
[wipdocs]: https://higan.readthedocs.io/en/latest/

294
README.txt Normal file
View File

@@ -0,0 +1,294 @@

higan - "Now you're playing with fire!"
=======================================
higan is a multi-system emulator that began development on October 14th, 2004.
It currently plays games for the following systems:
* Nintendo Famicom (NES), Super Famicom (SNES)
* Nintendo Game Boy, Game Boy Color + Game Boy Advance
* Sega Master System, Game Gear + Mega Drive (Genesis)
* NEC PC Engine (TurboGrafx) + SuperGrafx
* Bandai WonderSwan + WonderSwan Color
Supported Systems
-----------------
* FreeBSD 10+
* Windows 7, 8, 10
* Linux 3.2+
* OS X 10.7 Lion or above
You'll need a fast CPU, with clock speed being vastly more important.
Dual-core is perfectly adequate, since higan doesn't make significant use
of more than one core.
For Intel, you're looking at a 3.5 GHz Haswell architecture or better,
whilst AMD users will want a similarly specced Ryzen build.
Controller Setup
----------------
First, you'll want to configure your controllers. Choose Settings -> Input and
pick the system you'd like to configure. If you have two players, or a special
game (eg. Mario Paint), you can pick the controller port and device here.
To assign inputs, double click the name and press the stick or button on your
controller. You can have multiple assignments, for example both keyboard and
joypad. The Erase button clears the assignments for one input; Reset clears
them all in one go.
(Normally you only need to do this once. But because of how USB works,
it's impossible to tell identical controllers apart. This means if you move
one to another port, it counts as a new device, and you'll have to reassign
the buttons or move it back.)
Loading Games
-------------
After this you can go to Library -> Load ROM File and select a game. higan
adds it to your library, and it should start immediately. (Game Boy Advance
titles need one more step; please see the FAQ below.)
To add games en masse, you can use Library -> Import ROM Files. This opens
icarus, where you can choose a folder of ROMs, then select the ones you want
to import.
In both cases, if you choose a system under the Library submenus, all games
added will show up in a file browser under the Emulation folder in your user
profile. The path can be changed under Settings -> Advanced if desired.
Controller Ports
----------------
If you're emulating a console, you need to plug the controllers in, since
there's no connection by default.
Usually this means selecting eg. Super Famicom -> Controller Port 1 -> Gamepad,
for example. However, some games require other peripherals like the SNES Mouse.
Troubleshooting & FAQ
---------------------
Q: What's the Library?
A: higan loads folders containing all the files needed to run the game.
Odds are you have PC games and music albums organised the same way.
This does mean that to play the games, you have to import them first.
If you're familiar with iTunes or Steam, you already know how this works!
Q: Importing vs. loading? What's the difference?
A: The "Library -> Load ROM File" menu is a shortcut. It adds the game to your
library, then opens it without the manual import process.
However, if you have lots of games to add at once, you'll want
"Import ROM Files" instead.
Q: Why's higan say I'm missing a file ("Game Boy Advance.sys/bios.rom")?
A: This is the ROM for the startup screen you see when you switch on the
Game Boy Advance. Games require it to run, but like other ROMs, it's
copyrighted and therefore not provided with higan.
Having acquired a copy, you'll have to drop it in the requested folder,
then rename it to bios.rom.
Q: Where are the games imported? Where did all my save files go?
A: Check the path under Settings -> Advanced. On Windows it'll probably be
something like C:\Users\<name>\Emulation, organised by system. The saves
are typically named save.ram.
Q: Where can I find the settings?
A: There's a few possible locations for settings.bml.
1) In the same folder as the higan executable.
2) In the older location if you previously installed higan:
C:\Users\<name>\AppData\Roaming\higan (Windows)
/home/<name>/.config/higan (BSD, Linux)
3) In the new location (created if the others aren't found):
C:\Users\<name>\AppData\Local\higan (Windows)
/home/<name>/.local/share/higan (BSD, Linux)
/Users/<name>/Library/Application Support/higan (Mac)
higan checks these in order, so you can make a portable install if you like.
(macOS normally hides the Library folder. To open it, switch to Finder,
hold the Option key and select Go -> Library from the menu.)
Q: I set up my gamepads, but they don't work!
A: Try configuring the ports found in the system menu (eg.
Super Famicom -> Controller Port 1 -> Gamepad). Like a real console,
fresh higan installs come without any controllers plugged in.
Q: I upgraded higan, why do I get a black screen? What's "Ignore Manifests?"
A: higan looks at a file called "manifest.bml" to get the information needed
to run each game. However, the format has changed over time, making older
manifests incompatible with newer higan releases.
If you tick "Settings -> Advanced -> Ignore Manifests," you might find this
resolves the problem. This can be useful for developers and testers.
However, it breaks a few titles that require manifests to work!
Should you find yourself in this situation, consider removing manifest.bml.
(By default, no manifests are created; higan looks at the files in the
game folder, and with the help of a database, tries to regenerate the
correct one each time you load the game.)
Q: I have "Ignore Manifests" ticked, but the game won't run?
A: A few games have especially quirky setups that require manifests for
the time being, so you'll need to untick this option:
* Far East of Eden: Tengai Makyou Zero (English translation only)
* Campus Challenge '92
* PowerFest '94
Q: Why's the audio lag, stutter, distort, or sound robotic?
A: If you have an Atom, certain Celeron models, or an older AMD processor
(or even an especially old Intel such as a Core 2 Duo)... then these aren't
fast enough, sorry. :(
Try going into the Settings -> Advanced menu, then pick a different audio
driver and restart higan. WASAPI can be fussy on some devices.
Select Settings -> Audio and experiment with the latency. Larger values
should be more reliable, with the downside of laggier game controls.
Occasionally software that hooks into the system or other apps, for example
mouse settings panels, can cause lag and other problems.
Because higan is CPU-intensive and single-threaded, it can interact badly
with video capture which is yet another burden on the system. If you're
trying to stream or broadcast, and you have Windows 7, consider disabling
DWM. Also, look up how to configure hardware encoding (eg. QuickSync).
Q: Can I get smoother video?
A: Try Settings -> Video -> Exclusive mode, then switch to fullscreen. This
currently requires the Direct3D video driver under Settings -> Advanced
in order to work.
(Exclusive fullscreen is pretty experimental at the moment.
There are cases where it fails badly, so save your work!)
Exclusive mode will normally yield what's known as "tearing." If this
bothers you, there's an alternative... albeit one with serious gotchas,
which is why it's hidden away.
Close higan, then open up settings.bml and look for the following:
Video
Driver:Direct3D
Synchronize:false
...
Change false to true, save the file, then start higan and untick
Settings -> Synchronize Audio.
Keep in mind that this setting can and will reduce sound quality, as GPUs
and sound cards in modern PCs generally are not synchronised with each
other. The second big consideration is that your refresh rate needs to
match the game.
PAL and NTSC titles run at 50 Hz and 60 Hz, respectively. This applies to
all console systems. Of the handhelds: Game Boy, Game Boy Color and
Game Boy Advance run at 60 Hz, while WonderSwan runs at 75 Hz.
This means you'll need a monitor that supports these frequencies, set to
the appropriate display mode. Not all of them do. If your refresh rate
doesn't match, games will run at the wrong speed.
Online Resources
----------------
Official homepage + forum:
https://byuu.org/emulation/higan
https://board.byuu.org/viewforum.php?f=4
Unoffical source code repository + documentation:
https://gitlab.com/higan/higan
https://higan.readthedocs.io
Info on game folders and firmware:
https://byuu.org/emulation/higan/game-paks
https://byuu.org/emulation/higan/firmware
Donations:
https://patreon.com/byuu
Commercial use:
https://byuu.org/emulation/higan/licensing
Credits
-------
Original author:
byuu
We'd like to acknowledge many invaluable contributions made to higan
by the following individuals:
Andreas Naive Hendricks266 Overload
Ange Albertini hex_usr p4plus2
anomie jchadwick quequotion
AWJ Jonas Quinn RedDwarf
Bisqwit kode54 Richard Bannister
blargg krom Ryphecha
Łukasz Krawczyk Lioncash segher
Cydrak Lord Nightmare Sintendo
Danish lowkey SuperMikeMan
DMV27 MerryMage tetsuo55
Dr. Decapitator Matthew Callis TmEE
endrift mightymo TRAC
Fatbag Nach wareya
FitzRoy ncbncb zones
gekkio neviksti
GIGO OV2
It's been a long, wild ride... apologies to anyone we've missed!
For more information, please see:
https://board.byuu.org/viewtopic.php?f=4&t=1631&p=41575#p41575
License
-------
higan is provided under the GNU General Public License, version 3.
However, certain libraries may be used under the more permissive ISC license.
Please see LICENSE.txt for details.

View File

@@ -1,111 +0,0 @@
include nall/Makefile
fc := fc
sfc := sfc
gb := gb
gba := gba
nds := nds
profile := accuracy
target := ethos
# options += debugger
# arch := win32
# console := true
# compiler
c := $(compiler) -std=gnu99
cpp := $(subst cc,++,$(compiler)) -std=gnu++0x
flags := -I. -O3 -fomit-frame-pointer
link := -s
objects := libco
# profile-guided optimization mode
# pgo := instrument
# pgo := optimize
ifeq ($(pgo),instrument)
flags += -fprofile-generate
link += -lgcov
else ifeq ($(pgo),optimize)
flags += -fprofile-use
endif
# platform
ifeq ($(platform),x)
flags += -march=native
link += -ldl -lX11 -lXext
else ifeq ($(platform),osx)
else ifeq ($(platform),win)
ifeq ($(arch),win32)
flags += -m32
link += -m32
endif
ifeq ($(console),true)
link += -mconsole
else
link += -mwindows
endif
link += -mthreads -luuid -lkernel32 -luser32 -lgdi32 -lcomctl32 -lcomdlg32 -lshell32 -lole32
link += -Wl,-enable-auto-import -Wl,-enable-runtime-pseudo-reloc
else
unknown_platform: help;
endif
ui := target-$(target)
# implicit rules
compile = \
$(strip \
$(if $(filter %.c,$<), \
$(c) $(flags) $1 -c $< -o $@, \
$(if $(filter %.cpp,$<), \
$(cpp) $(flags) $1 -c $< -o $@ \
) \
) \
)
%.o: $<; $(call compile)
all: build;
obj/libco.o: libco/libco.c libco/*
include $(ui)/Makefile
flags := $(flags) $(foreach o,$(call strupper,$(options)),-D$o)
# targets
clean:
-@$(call delete,obj/*.o)
-@$(call delete,obj/*.a)
-@$(call delete,obj/*.so)
-@$(call delete,obj/*.dylib)
-@$(call delete,obj/*.dll)
-@$(call delete,*.res)
-@$(call delete,*.pgd)
-@$(call delete,*.pgc)
-@$(call delete,*.ilk)
-@$(call delete,*.pdb)
-@$(call delete,*.manifest)
sync:
if [ -d ./libco ]; then rm -r ./libco; fi
if [ -d ./nall ]; then rm -r ./nall; fi
if [ -d ./ruby ]; then rm -r ./ruby; fi
if [ -d ./phoenix ]; then rm -r ./phoenix; fi
cp -r ../libco ./libco
cp -r ../nall ./nall
cp -r ../ruby ./ruby
cp -r ../phoenix ./phoenix
rm -r libco/doc
rm -r libco/test
rm -r nall/test
rm -r ruby/_test
rm -r phoenix/nall
rm -r phoenix/test
archive:
if [ -f bsnes.tar.xz ]; then rm bsnes.tar.xz; fi
tar -cJf bsnes.tar.xz `ls`
help:;

View File

@@ -1,9 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
<assemblyIdentity type="win32" name="bsnes" version="1.0.0.0" processorArchitecture="*"/>
<dependency>
<dependentAssembly>
<assemblyIdentity type="win32" name="Microsoft.Windows.Common-Controls" version="6.0.0.0" processorArchitecture="*" publicKeyToken="6595b64144ccf1df" language="*"/>
</dependentAssembly>
</dependency>
</assembly>

View File

@@ -1,8 +0,0 @@
[Desktop Entry]
Name=bsnes
Comment=SNES emulator
Exec=bsnes
Icon=bsnes
Terminal=false
Type=Application
Categories=Game;Emulator;

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.3 KiB

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,137 +0,0 @@
#ifndef EMULATOR_HPP
#define EMULATOR_HPP
namespace Emulator {
static const char Name[] = "bsnes";
static const char Version[] = "090";
static const char Author[] = "byuu";
static const char License[] = "GPLv3";
}
#include <nall/platform.hpp>
#include <nall/algorithm.hpp>
#include <nall/directory.hpp>
#include <nall/dl.hpp>
#include <nall/dsp.hpp>
#include <nall/endian.hpp>
#include <nall/file.hpp>
#include <nall/function.hpp>
#include <nall/priority-queue.hpp>
#include <nall/property.hpp>
#include <nall/random.hpp>
#include <nall/serializer.hpp>
#include <nall/sha256.hpp>
#include <nall/stdint.hpp>
#include <nall/string.hpp>
#include <nall/utility.hpp>
#include <nall/varint.hpp>
#include <nall/vector.hpp>
#include <nall/stream/memory.hpp>
#include <nall/stream/vector.hpp>
using namespace nall;
#include "interface.hpp"
//debugging function hook:
//no overhead (and no debugger invocation) if not compiled with -DDEBUGGER
//wraps testing of function to allow invocation without a defined callback
template<typename T> struct hook;
template<typename R, typename... P> struct hook<R (P...)> {
function<R (P...)> callback;
R operator()(P... p) const {
#if defined(DEBUGGER)
if(callback) return callback(std::forward<P>(p)...);
#endif
return R();
}
hook() {}
hook(const hook &hook) { callback = hook.callback; }
hook(void *function) { callback = function; }
hook(R (*function)(P...)) { callback = function; }
template<typename C> hook(R (C::*function)(P...), C *object) { callback = {function, object}; }
template<typename C> hook(R (C::*function)(P...) const, C *object) { callback = {function, object}; }
template<typename L> hook(const L& function) { callback = function; }
hook& operator=(const hook& hook) { callback = hook.callback; return *this; }
};
#if defined(DEBUGGER)
#define privileged public
#else
#define privileged private
#endif
typedef int1_t int1;
typedef int2_t int2;
typedef int3_t int3;
typedef int4_t int4;
typedef int5_t int5;
typedef int6_t int6;
typedef int7_t int7;
typedef int8_t int8;
typedef int9_t int9;
typedef int10_t int10;
typedef int11_t int11;
typedef int12_t int12;
typedef int13_t int13;
typedef int14_t int14;
typedef int15_t int15;
typedef int16_t int16;
typedef int17_t int17;
typedef int18_t int18;
typedef int19_t int19;
typedef int20_t int20;
typedef int21_t int21;
typedef int22_t int22;
typedef int23_t int23;
typedef int24_t int24;
typedef int25_t int25;
typedef int26_t int26;
typedef int27_t int27;
typedef int28_t int28;
typedef int29_t int29;
typedef int30_t int30;
typedef int31_t int31;
typedef int32_t int32;
typedef int64_t int64;
typedef uint1_t uint1;
typedef uint2_t uint2;
typedef uint3_t uint3;
typedef uint4_t uint4;
typedef uint5_t uint5;
typedef uint6_t uint6;
typedef uint7_t uint7;
typedef uint8_t uint8;
typedef uint9_t uint9;
typedef uint10_t uint10;
typedef uint11_t uint11;
typedef uint12_t uint12;
typedef uint13_t uint13;
typedef uint14_t uint14;
typedef uint15_t uint15;
typedef uint16_t uint16;
typedef uint17_t uint17;
typedef uint18_t uint18;
typedef uint19_t uint19;
typedef uint20_t uint20;
typedef uint21_t uint21;
typedef uint22_t uint22;
typedef uint23_t uint23;
typedef uint24_t uint24;
typedef uint25_t uint25;
typedef uint26_t uint26;
typedef uint27_t uint27;
typedef uint28_t uint28;
typedef uint29_t uint29;
typedef uint30_t uint30;
typedef uint31_t uint31;
typedef uint32_t uint32;
typedef uint_t<33> uint33;
typedef uint64_t uint64;
typedef varuint_t<unsigned> varuint;
#endif

View File

@@ -1,118 +0,0 @@
#ifndef EMULATOR_INTERFACE_HPP
#define EMULATOR_INTERFACE_HPP
namespace Emulator {
struct Interface {
struct Information {
string name;
unsigned width;
unsigned height;
bool overscan;
double aspectRatio;
bool resettable;
struct Capability {
bool states;
bool cheats;
} capability;
} information;
struct Media {
unsigned id;
string name;
string type;
string load;
};
vector<Media> media;
struct Device {
unsigned id;
unsigned portmask;
string name;
struct Input {
unsigned id;
unsigned type; //0 = digital, 1 = analog (relative), 2 = analog (absolute)
string name;
unsigned guid;
};
vector<Input> input;
vector<unsigned> order;
};
struct Port {
unsigned id;
string name;
vector<Device> device;
};
vector<Port> port;
struct Bind {
virtual void loadRequest(unsigned, const string&, const string&) {}
virtual void loadRequest(unsigned, const string&) {}
virtual void saveRequest(unsigned, const string&) {}
virtual uint32_t videoColor(unsigned, uint16_t, uint16_t, uint16_t) { return 0u; }
virtual void videoRefresh(const uint32_t*, unsigned, unsigned, unsigned) {}
virtual void audioSample(int16_t, int16_t) {}
virtual int16_t inputPoll(unsigned, unsigned, unsigned) { return 0; }
virtual unsigned dipSettings(const XML::Node&) { return 0; }
virtual string path(unsigned) { return ""; }
virtual void notify(const string &text) { print(text, "\n"); }
} *bind;
//callback bindings (provided by user interface)
void loadRequest(unsigned id, const string &name, const string &type) { return bind->loadRequest(id, name, type); }
void loadRequest(unsigned id, const string &path) { return bind->loadRequest(id, path); }
void saveRequest(unsigned id, const string &path) { return bind->saveRequest(id, path); }
uint32_t videoColor(unsigned source, uint16_t red, uint16_t green, uint16_t blue) { return bind->videoColor(source, red, green, blue); }
void videoRefresh(const uint32_t *data, unsigned pitch, unsigned width, unsigned height) { return bind->videoRefresh(data, pitch, width, height); }
void audioSample(int16_t lsample, int16_t rsample) { return bind->audioSample(lsample, rsample); }
int16_t inputPoll(unsigned port, unsigned device, unsigned input) { return bind->inputPoll(port, device, input); }
unsigned dipSettings(const XML::Node &node) { return bind->dipSettings(node); }
string path(unsigned group) { return bind->path(group); }
template<typename... Args> void notify(Args&... args) { return bind->notify({std::forward<Args>(args)...}); }
//information
virtual double videoFrequency() = 0;
virtual double audioFrequency() = 0;
//media interface
virtual bool loaded() { return false; }
virtual string sha256() { return ""; }
virtual unsigned group(unsigned id) = 0;
virtual void load(unsigned id, const string &manifest) {}
virtual void save() {}
virtual void load(unsigned id, const stream &memory, const string &markup = "") {}
virtual void save(unsigned id, const stream &memory) {}
virtual void unload() {}
//system interface
virtual void connect(unsigned port, unsigned device) {}
virtual void power() {}
virtual void reset() {}
virtual void run() {}
//time functions
virtual bool rtc() { return false; }
virtual void rtcsync() {}
//state functions
virtual serializer serialize() = 0;
virtual bool unserialize(serializer&) = 0;
//cheat functions
virtual void cheatSet(const lstring& = lstring{}) {}
//utility functions
virtual void paletteUpdate() {}
//debugger functions
virtual bool tracerEnable(bool) { return false; }
virtual void exportMemory() {}
Interface() : bind(nullptr) {}
};
}
#endif

View File

@@ -1,16 +0,0 @@
fc_objects := fc-interface fc-system fc-scheduler fc-input
fc_objects += fc-memory fc-cartridge fc-cpu fc-apu fc-ppu
fc_objects += fc-cheat fc-video
objects += $(fc_objects)
obj/fc-interface.o: $(fc)/interface/interface.cpp $(call rwildcard,$(fc)/interface/)
obj/fc-system.o: $(fc)/system/system.cpp $(call rwildcard,$(fc)/system/)
obj/fc-scheduler.o: $(fc)/scheduler/scheduler.cpp $(call rwildcard,$(fc)/scheduler/)
obj/fc-input.o: $(fc)/input/input.cpp $(call rwildcard,$(fc)/input/)
obj/fc-memory.o: $(fc)/memory/memory.cpp $(call rwildcard,$(fc)/memory/)
obj/fc-cartridge.o: $(fc)/cartridge/cartridge.cpp $(call rwildcard,$(fc)/cartridge/)
obj/fc-cpu.o: $(fc)/cpu/cpu.cpp $(call rwildcard,$(fc)/cpu/)
obj/fc-apu.o: $(fc)/apu/apu.cpp $(call rwildcard,$(fc)/apu/)
obj/fc-ppu.o: $(fc)/ppu/ppu.cpp $(call rwildcard,$(fc)/ppu/)
obj/fc-cheat.o: $(fc)/cheat/cheat.cpp $(call rwildcard,$(fc)/cheat/)
obj/fc-video.o: $(fc)/video/video.cpp $(call rwildcard,$(fc)/video/)

View File

@@ -1,329 +0,0 @@
#include <fc/fc.hpp>
namespace Famicom {
#include "envelope.cpp"
#include "sweep.cpp"
#include "pulse.cpp"
#include "triangle.cpp"
#include "noise.cpp"
#include "dmc.cpp"
#include "serialization.cpp"
APU apu;
const uint8 APU::length_counter_table[32] = {
0x0a, 0xfe, 0x14, 0x02, 0x28, 0x04, 0x50, 0x06, 0xa0, 0x08, 0x3c, 0x0a, 0x0e, 0x0c, 0x1a, 0x0e,
0x0c, 0x10, 0x18, 0x12, 0x30, 0x14, 0x60, 0x16, 0xc0, 0x18, 0x48, 0x1a, 0x10, 0x1c, 0x20, 0x1e,
};
const uint16 APU::ntsc_noise_period_table[16] = {
4, 8, 16, 32, 64, 96, 128, 160, 202, 254, 380, 508, 762, 1016, 2034, 4068,
};
const uint16 APU::pal_noise_period_table[16] = {
4, 7, 14, 30, 60, 88, 118, 148, 188, 236, 354, 472, 708, 944, 1890, 3778,
};
const uint16 APU::ntsc_dmc_period_table[16] = {
428, 380, 340, 320, 286, 254, 226, 214, 190, 160, 142, 128, 106, 84, 72, 54,
};
const uint16 APU::pal_dmc_period_table[16] = {
398, 354, 316, 298, 276, 236, 210, 198, 176, 148, 132, 118, 98, 78, 66, 50,
};
void APU::Main() {
apu.main();
}
void APU::main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
unsigned pulse_output, triangle_output, noise_output, dmc_output;
pulse_output = pulse[0].clock();
pulse_output += pulse[1].clock();
triangle_output = triangle.clock();
noise_output = noise.clock();
dmc_output = dmc.clock();
clock_frame_counter_divider();
signed output = pulse_dac[pulse_output] + dmc_triangle_noise_dac[dmc_output][triangle_output][noise_output];
output = filter.run_hipass_strong(output);
output += cartridge_sample;
output = filter.run_hipass_weak(output);
//output = filter.run_lopass(output);
output = sclamp<16>(output);
interface->audioSample(output, output);
tick();
}
}
void APU::tick() {
clock += 12;
if(clock >= 0 && scheduler.sync != Scheduler::SynchronizeMode::All) co_switch(cpu.thread);
}
void APU::set_irq_line() {
cpu.set_irq_apu_line(frame.irq_pending || dmc.irq_pending);
}
void APU::set_sample(int16 sample) {
cartridge_sample = sample;
}
void APU::power() {
filter.hipass_strong = 0;
filter.hipass_weak = 0;
filter.lopass = 0;
pulse[0].power();
pulse[1].power();
triangle.power();
noise.power();
dmc.power();
}
void APU::reset() {
create(APU::Main, 21477272);
pulse[0].reset();
pulse[1].reset();
triangle.reset();
noise.reset();
dmc.reset();
frame.irq_pending = 0;
frame.mode = 0;
frame.counter = 0;
frame.divider = 1;
enabled_channels = 0;
cartridge_sample = 0;
set_irq_line();
}
uint8 APU::read(uint16 addr) {
if(addr == 0x4015) {
uint8 result = 0x00;
result |= pulse[0].length_counter ? 0x01 : 0;
result |= pulse[1].length_counter ? 0x02 : 0;
result |= triangle.length_counter ? 0x04 : 0;
result |= noise.length_counter ? 0x08 : 0;
result |= dmc.length_counter ? 0x10 : 0;
result |= frame.irq_pending ? 0x40 : 0;
result |= dmc.irq_pending ? 0x80 : 0;
frame.irq_pending = false;
set_irq_line();
return result;
}
return cpu.mdr();
}
void APU::write(uint16 addr, uint8 data) {
const unsigned n = (addr >> 2) & 1; //pulse#
switch(addr) {
case 0x4000: case 0x4004:
pulse[n].duty = data >> 6;
pulse[n].envelope.loop_mode = data & 0x20;
pulse[n].envelope.use_speed_as_volume = data & 0x10;
pulse[n].envelope.speed = data & 0x0f;
break;
case 0x4001: case 0x4005:
pulse[n].sweep.enable = data & 0x80;
pulse[n].sweep.period = (data & 0x70) >> 4;
pulse[n].sweep.decrement = data & 0x08;
pulse[n].sweep.shift = data & 0x07;
pulse[n].sweep.reload = true;
break;
case 0x4002: case 0x4006:
pulse[n].period = (pulse[n].period & 0x0700) | (data << 0);
pulse[n].sweep.pulse_period = (pulse[n].sweep.pulse_period & 0x0700) | (data << 0);
break;
case 0x4003: case 0x4007:
pulse[n].period = (pulse[n].period & 0x00ff) | (data << 8);
pulse[n].sweep.pulse_period = (pulse[n].sweep.pulse_period & 0x00ff) | (data << 8);
pulse[n].duty_counter = 7;
pulse[n].envelope.reload_decay = true;
if(enabled_channels & (1 << n)) {
pulse[n].length_counter = length_counter_table[(data >> 3) & 0x1f];
}
break;
case 0x4008:
triangle.halt_length_counter = data & 0x80;
triangle.linear_length = data & 0x7f;
break;
case 0x400a:
triangle.period = (triangle.period & 0x0700) | (data << 0);
break;
case 0x400b:
triangle.period = (triangle.period & 0x00ff) | (data << 8);
triangle.reload_linear = true;
if(enabled_channels & (1 << 2)) {
triangle.length_counter = length_counter_table[(data >> 3) & 0x1f];
}
break;
case 0x400c:
noise.envelope.loop_mode = data & 0x20;
noise.envelope.use_speed_as_volume = data & 0x10;
noise.envelope.speed = data & 0x0f;
break;
case 0x400e:
noise.short_mode = data & 0x80;
noise.period = data & 0x0f;
break;
case 0x400f:
noise.envelope.reload_decay = true;
if(enabled_channels & (1 << 3)) {
noise.length_counter = length_counter_table[(data >> 3) & 0x1f];
}
break;
case 0x4010:
dmc.irq_enable = data & 0x80;
dmc.loop_mode = data & 0x40;
dmc.period = data & 0x0f;
dmc.irq_pending = dmc.irq_pending && dmc.irq_enable && !dmc.loop_mode;
set_irq_line();
break;
case 0x4011:
dmc.dac_latch = data & 0x7f;
break;
case 0x4012:
dmc.addr_latch = data;
break;
case 0x4013:
dmc.length_latch = data;
break;
case 0x4015:
if((data & 0x01) == 0) pulse[0].length_counter = 0;
if((data & 0x02) == 0) pulse[1].length_counter = 0;
if((data & 0x04) == 0) triangle.length_counter = 0;
if((data & 0x08) == 0) noise.length_counter = 0;
(data & 0x10) ? dmc.start() : dmc.stop();
dmc.irq_pending = false;
set_irq_line();
enabled_channels = data & 0x1f;
break;
case 0x4017:
frame.mode = data >> 6;
frame.counter = 0;
if(frame.mode & 2) clock_frame_counter();
if(frame.mode & 1) {
frame.irq_pending = false;
set_irq_line();
}
frame.divider = FrameCounter::NtscPeriod;
break;
}
}
signed APU::Filter::run_hipass_strong(signed sample) {
hipass_strong += ((((int64)sample << 16) - (hipass_strong >> 16)) * HiPassStrong) >> 16;
return sample - (hipass_strong >> 32);
}
signed APU::Filter::run_hipass_weak(signed sample) {
hipass_weak += ((((int64)sample << 16) - (hipass_weak >> 16)) * HiPassWeak) >> 16;
return sample - (hipass_weak >> 32);
}
signed APU::Filter::run_lopass(signed sample) {
lopass += ((((int64)sample << 16) - (lopass >> 16)) * LoPass) >> 16;
return (lopass >> 32);
}
void APU::clock_frame_counter() {
frame.counter++;
if(frame.counter & 1) {
pulse[0].clock_length();
pulse[0].sweep.clock(0);
pulse[1].clock_length();
pulse[1].sweep.clock(1);
triangle.clock_length();
noise.clock_length();
}
pulse[0].envelope.clock();
pulse[1].envelope.clock();
triangle.clock_linear_length();
noise.envelope.clock();
if(frame.counter == 0) {
if(frame.mode & 2) frame.divider += FrameCounter::NtscPeriod;
if(frame.mode == 0) {
frame.irq_pending = true;
set_irq_line();
}
}
}
void APU::clock_frame_counter_divider() {
frame.divider -= 2;
if(frame.divider <= 0) {
clock_frame_counter();
frame.divider += FrameCounter::NtscPeriod;
}
}
APU::APU() {
for(unsigned amp = 0; amp < 32; amp++) {
if(amp == 0) {
pulse_dac[amp] = 0;
} else {
pulse_dac[amp] = 16384.0 * 95.88 / (8128.0 / amp + 100.0);
}
}
for(unsigned dmc_amp = 0; dmc_amp < 128; dmc_amp++) {
for(unsigned triangle_amp = 0; triangle_amp < 16; triangle_amp++) {
for(unsigned noise_amp = 0; noise_amp < 16; noise_amp++) {
if(dmc_amp == 0 && triangle_amp == 0 && noise_amp == 0) {
dmc_triangle_noise_dac[dmc_amp][triangle_amp][noise_amp] = 0;
} else {
dmc_triangle_noise_dac[dmc_amp][triangle_amp][noise_amp]
= 16384.0 * 159.79 / (100.0 + 1.0 / (triangle_amp / 8227.0 + noise_amp / 12241.0 + dmc_amp / 22638.0));
}
}
}
}
}
}

View File

@@ -1,65 +0,0 @@
struct APU : Thread {
static void Main();
void main();
void tick();
void set_irq_line();
void set_sample(int16 sample);
void power();
void reset();
uint8 read(uint16 addr);
void write(uint16 addr, uint8 data);
void serialize(serializer&);
APU();
struct Filter {
enum : signed { HiPassStrong = 225574, HiPassWeak = 57593, LoPass = 86322413 };
int64 hipass_strong;
int64 hipass_weak;
int64 lopass;
signed run_hipass_strong(signed sample);
signed run_hipass_weak(signed sample);
signed run_lopass(signed sample);
void serialize(serializer&);
} filter;
#include "envelope.hpp"
#include "sweep.hpp"
#include "pulse.hpp"
#include "triangle.hpp"
#include "noise.hpp"
#include "dmc.hpp"
struct FrameCounter {
enum : unsigned { NtscPeriod = 14915 }; //~(21.477MHz / 6 / 240hz)
bool irq_pending;
uint2 mode;
uint2 counter;
signed divider;
void serialize(serializer&);
} frame;
void clock_frame_counter();
void clock_frame_counter_divider();
uint8 enabled_channels;
int16 cartridge_sample;
int16 pulse_dac[32];
int16 dmc_triangle_noise_dac[128][16][16];
static const uint8 length_counter_table[32];
static const uint16 ntsc_dmc_period_table[16];
static const uint16 pal_dmc_period_table[16];
static const uint16 ntsc_noise_period_table[16];
static const uint16 pal_noise_period_table[16];
};
extern APU apu;

View File

@@ -1,117 +0,0 @@
void APU::DMC::start() {
if(length_counter == 0) {
read_addr = 0x4000 + (addr_latch << 6);
length_counter = (length_latch << 4) + 1;
}
}
void APU::DMC::stop() {
length_counter = 0;
dma_delay_counter = 0;
cpu.set_rdy_line(1);
cpu.set_rdy_addr({ false, 0u });
}
uint8 APU::DMC::clock() {
uint8 result = dac_latch;
if(dma_delay_counter > 0) {
dma_delay_counter--;
if(dma_delay_counter == 1) {
cpu.set_rdy_addr({ true, uint16(0x8000 | read_addr) });
} else if(dma_delay_counter == 0) {
cpu.set_rdy_line(1);
cpu.set_rdy_addr({ false, 0u });
dma_buffer = cpu.mdr();
have_dma_buffer = true;
length_counter--;
read_addr++;
if(length_counter == 0) {
if(loop_mode) {
start();
} else if(irq_enable) {
irq_pending = true;
apu.set_irq_line();
}
}
}
}
if(--period_counter == 0) {
if(have_sample) {
signed delta = (((sample >> bit_counter) & 1) << 2) - 2;
unsigned data = dac_latch + delta;
if((data & 0x80) == 0) dac_latch = data;
}
if(++bit_counter == 0) {
if(have_dma_buffer) {
have_sample = true;
sample = dma_buffer;
have_dma_buffer = false;
} else {
have_sample = false;
}
}
period_counter = ntsc_dmc_period_table[period];
}
if(length_counter > 0 && have_dma_buffer == false && dma_delay_counter == 0) {
cpu.set_rdy_line(0);
dma_delay_counter = 4;
}
return result;
}
void APU::DMC::power() {
}
void APU::DMC::reset() {
length_counter = 0;
irq_pending = 0;
period = 0;
period_counter = ntsc_dmc_period_table[0];
irq_enable = 0;
loop_mode = 0;
dac_latch = 0;
addr_latch = 0;
length_latch = 0;
read_addr = 0;
dma_delay_counter = 0;
bit_counter = 0;
have_dma_buffer = 0;
dma_buffer = 0;
have_sample = 0;
sample = 0;
}
void APU::DMC::serialize(serializer &s) {
s.integer(length_counter);
s.integer(irq_pending);
s.integer(period);
s.integer(period_counter);
s.integer(irq_enable);
s.integer(loop_mode);
s.integer(dac_latch);
s.integer(addr_latch);
s.integer(length_latch);
s.integer(read_addr);
s.integer(dma_delay_counter);
s.integer(bit_counter);
s.integer(have_dma_buffer);
s.integer(dma_buffer);
s.integer(have_sample);
s.integer(sample);
}

View File

@@ -1,32 +0,0 @@
struct DMC {
unsigned length_counter;
bool irq_pending;
uint4 period;
unsigned period_counter;
bool irq_enable;
bool loop_mode;
uint8 dac_latch;
uint8 addr_latch;
uint8 length_latch;
uint15 read_addr;
unsigned dma_delay_counter;
uint3 bit_counter;
bool have_dma_buffer;
uint8 dma_buffer;
bool have_sample;
uint8 sample;
void start();
void stop();
uint8 clock();
void power();
void reset();
void serialize(serializer&);
} dmc;

View File

@@ -1,39 +0,0 @@
unsigned APU::Envelope::volume() const {
return use_speed_as_volume ? speed : decay_volume;
}
void APU::Envelope::clock() {
if(reload_decay) {
reload_decay = false;
decay_volume = 0x0f;
decay_counter = speed + 1;
return;
}
if(--decay_counter == 0) {
decay_counter = speed + 1;
if(decay_volume || loop_mode) decay_volume--;
}
}
void APU::Envelope::power() {
}
void APU::Envelope::reset() {
speed = 0;
use_speed_as_volume = 0;
loop_mode = 0;
reload_decay = 0;
decay_counter = 0;
decay_volume = 0;
}
void APU::Envelope::serialize(serializer &s) {
s.integer(speed);
s.integer(use_speed_as_volume);
s.integer(loop_mode);
s.integer(reload_decay);
s.integer(decay_counter);
s.integer(decay_volume);
}

View File

@@ -1,16 +0,0 @@
struct Envelope {
uint4 speed;
bool use_speed_as_volume;
bool loop_mode;
bool reload_decay;
uint8 decay_counter;
uint4 decay_volume;
unsigned volume() const;
void clock();
void power();
void reset();
void serialize(serializer&);
};

View File

@@ -1,57 +0,0 @@
void APU::Noise::clock_length() {
if(envelope.loop_mode == 0) {
if(length_counter > 0) length_counter--;
}
}
uint8 APU::Noise::clock() {
if(length_counter == 0) return 0;
uint8 result = (lfsr & 1) ? envelope.volume() : 0;
if(--period_counter == 0) {
unsigned feedback;
if(short_mode) {
feedback = ((lfsr >> 0) & 1) ^ ((lfsr >> 6) & 1);
} else {
feedback = ((lfsr >> 0) & 1) ^ ((lfsr >> 1) & 1);
}
lfsr = (lfsr >> 1) | (feedback << 14);
period_counter = apu.ntsc_noise_period_table[period];
}
return result;
}
void APU::Noise::power() {
}
void APU::Noise::reset() {
length_counter = 0;
envelope.speed = 0;
envelope.use_speed_as_volume = 0;
envelope.loop_mode = 0;
envelope.reload_decay = 0;
envelope.decay_counter = 0;
envelope.decay_volume = 0;
period = 0;
period_counter = 1;
short_mode = 0;
lfsr = 1;
}
void APU::Noise::serialize(serializer &s) {
s.integer(length_counter);
envelope.serialize(s);
s.integer(period);
s.integer(period_counter);
s.integer(short_mode);
s.integer(lfsr);
}

View File

@@ -1,18 +0,0 @@
struct Noise {
unsigned length_counter;
Envelope envelope;
uint4 period;
unsigned period_counter;
bool short_mode;
uint15 lfsr;
void clock_length();
uint8 clock();
void power();
void reset();
void serialize(serializer&);
} noise;

View File

@@ -1,51 +0,0 @@
void APU::Pulse::clock_length() {
if(envelope.loop_mode == 0) {
if(length_counter) length_counter--;
}
}
uint8 APU::Pulse::clock() {
if(sweep.check_period() == false) return 0;
if(length_counter == 0) return 0;
static const unsigned duty_table[] = { 1, 2, 4, 6 };
uint8 result = (duty_counter < duty_table[duty]) ? envelope.volume() : 0;
if(sweep.pulse_period < 0x008) result = 0;
if(--period_counter == 0) {
period_counter = (sweep.pulse_period + 1) * 2;
duty_counter++;
}
return result;
}
void APU::Pulse::power() {
envelope.power();
sweep.power();
}
void APU::Pulse::reset() {
envelope.reset();
sweep.reset();
length_counter = 0;
duty = 0;
duty_counter = 0;
period = 0;
period_counter = 1;
}
void APU::Pulse::serialize(serializer &s) {
s.integer(length_counter);
envelope.serialize(s);
sweep.serialize(s);
s.integer(duty);
s.integer(duty_counter);
s.integer(period);
s.integer(period_counter);
}

View File

@@ -1,20 +0,0 @@
struct Pulse {
unsigned length_counter;
Envelope envelope;
Sweep sweep;
uint2 duty;
uint3 duty_counter;
uint11 period;
unsigned period_counter;
void clock_length();
bool check_period();
uint8 clock();
void power();
void reset();
void serialize(serializer&);
} pulse[2];

View File

@@ -1,28 +0,0 @@
void APU::serialize(serializer &s) {
Thread::serialize(s);
filter.serialize(s);
pulse[0].serialize(s);
pulse[1].serialize(s);
triangle.serialize(s);
dmc.serialize(s);
frame.serialize(s);
s.integer(enabled_channels);
s.integer(cartridge_sample);
}
void APU::Filter::serialize(serializer &s) {
s.integer(hipass_strong);
s.integer(hipass_weak);
s.integer(lopass);
}
void APU::FrameCounter::serialize(serializer &s) {
s.integer(irq_pending);
s.integer(mode);
s.integer(counter);
s.integer(divider);
}

View File

@@ -1,53 +0,0 @@
bool APU::Sweep::check_period() {
if(pulse_period > 0x7ff) return false;
if(decrement == 0) {
if((pulse_period + (pulse_period >> shift)) & 0x800) return false;
}
return true;
}
void APU::Sweep::clock(unsigned channel) {
if(--counter == 0) {
counter = period + 1;
if(enable && shift && pulse_period > 8) {
signed delta = pulse_period >> shift;
if(decrement) {
pulse_period -= delta;
if(channel == 0) pulse_period--;
} else if((pulse_period + delta) < 0x800) {
pulse_period += delta;
}
}
}
if(reload) {
reload = false;
counter = period + 1;
}
}
void APU::Sweep::power() {
shift = 0;
decrement = 0;
period = 0;
counter = 1;
enable = 0;
reload = 0;
pulse_period = 0;
}
void APU::Sweep::reset() {
}
void APU::Sweep::serialize(serializer &s) {
s.integer(shift);
s.integer(decrement);
s.integer(period);
s.integer(counter);
s.integer(enable);
s.integer(reload);
s.integer(pulse_period);
}

View File

@@ -1,16 +0,0 @@
struct Sweep {
uint8 shift;
bool decrement;
uint3 period;
uint8 counter;
bool enable;
bool reload;
uint11 pulse_period;
bool check_period();
void clock(unsigned channel);
void power();
void reset();
void serialize(serializer&);
};

View File

@@ -1,58 +0,0 @@
void APU::Triangle::clock_length() {
if(halt_length_counter == 0) {
if(length_counter > 0) length_counter--;
}
}
void APU::Triangle::clock_linear_length() {
if(reload_linear) {
linear_length_counter = linear_length;
} else if(linear_length_counter) {
linear_length_counter--;
}
if(halt_length_counter == 0) reload_linear = false;
}
uint8 APU::Triangle::clock() {
uint8 result = step_counter & 0x0f;
if((step_counter & 0x10) == 0) result ^= 0x0f;
if(length_counter == 0 || linear_length_counter == 0) return result;
if(--period_counter == 0) {
step_counter++;
period_counter = period + 1;
}
return result;
}
void APU::Triangle::power() {
reset();
}
void APU::Triangle::reset() {
length_counter = 0;
linear_length = 0;
halt_length_counter = 0;
period = 0;
period_counter = 1;
step_counter = 0;
linear_length_counter = 0;
reload_linear = 0;
}
void APU::Triangle::serialize(serializer &s) {
s.integer(length_counter);
s.integer(linear_length);
s.integer(halt_length_counter);
s.integer(period);
s.integer(period_counter);
s.integer(step_counter);
s.integer(linear_length_counter);
s.integer(reload_linear);
}

View File

@@ -1,21 +0,0 @@
struct Triangle {
unsigned length_counter;
uint8 linear_length;
bool halt_length_counter;
uint11 period;
unsigned period_counter;
uint5 step_counter;
uint8 linear_length_counter;
bool reload_linear;
void clock_length();
void clock_linear_length();
uint8 clock();
void power();
void reset();
void serialize(serializer&);
} triangle;

View File

@@ -1,117 +0,0 @@
//BANDAI-FCG
struct BandaiFCG : Board {
uint8 chr_bank[8];
uint8 prg_bank;
uint2 mirror;
bool irq_counter_enable;
uint16 irq_counter;
uint16 irq_latch;
void main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(irq_counter_enable) {
if(--irq_counter == 0xffff) {
cpu.set_irq_line(1);
irq_counter_enable = false;
}
}
tick();
}
}
unsigned ciram_addr(unsigned addr) const {
switch(mirror) {
case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff);
case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff);
case 2: return 0x0000 | (addr & 0x03ff);
case 3: return 0x0400 | (addr & 0x03ff);
}
}
uint8 prg_read(unsigned addr) {
if(addr & 0x8000) {
bool region = addr & 0x4000;
unsigned bank = (region == 0 ? prg_bank : 0x0f);
return prgrom.read((bank << 14) | (addr & 0x3fff));
}
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
if(addr >= 0x6000) {
switch(addr & 15) {
case 0x00: case 0x01: case 0x02: case 0x03:
case 0x04: case 0x05: case 0x06: case 0x07:
chr_bank[addr & 7] = data;
break;
case 0x08:
prg_bank = data & 0x0f;
break;
case 0x09:
mirror = data & 0x03;
break;
case 0x0a:
cpu.set_irq_line(0);
irq_counter_enable = data & 0x01;
irq_counter = irq_latch;
break;
case 0x0b:
irq_latch = (irq_latch & 0xff00) | (data << 0);
break;
case 0x0c:
irq_latch = (irq_latch & 0x00ff) | (data << 8);
break;
case 0x0d:
//TODO: serial EEPROM support
break;
}
}
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) return ppu.ciram_read(ciram_addr(addr));
addr = (chr_bank[addr >> 10] << 10) | (addr & 0x03ff);
return Board::chr_read(addr);
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) return ppu.ciram_write(ciram_addr(addr), data);
addr = (chr_bank[addr >> 10] << 10) | (addr & 0x03ff);
return Board::chr_write(addr, data);
}
void power() {
reset();
}
void reset() {
for(auto &n : chr_bank) n = 0;
prg_bank = 0;
mirror = 0;
irq_counter_enable = 0;
irq_counter = 0;
irq_latch = 0;
}
void serialize(serializer &s) {
Board::serialize(s);
s.array(chr_bank);
s.integer(prg_bank);
s.integer(mirror);
s.integer(irq_counter_enable);
s.integer(irq_counter);
s.integer(irq_latch);
}
BandaiFCG(XML::Document &document) : Board(document) {
}
};

View File

@@ -1,174 +0,0 @@
#include "bandai-fcg.cpp"
#include "konami-vrc1.cpp"
#include "konami-vrc2.cpp"
#include "konami-vrc3.cpp"
#include "konami-vrc4.cpp"
#include "konami-vrc6.cpp"
#include "konami-vrc7.cpp"
#include "nes-axrom.cpp"
#include "nes-bnrom.cpp"
#include "nes-cnrom.cpp"
#include "nes-exrom.cpp"
#include "nes-fxrom.cpp"
#include "nes-gxrom.cpp"
#include "nes-hkrom.cpp"
#include "nes-nrom.cpp"
#include "nes-pxrom.cpp"
#include "nes-sxrom.cpp"
#include "nes-txrom.cpp"
#include "nes-uxrom.cpp"
#include "sunsoft-5b.cpp"
uint8 Board::Memory::read(unsigned addr) const {
return data[mirror(addr, size)];
}
void Board::Memory::write(unsigned addr, uint8 byte) {
if(writable) data[mirror(addr, size)] = byte;
}
unsigned Board::mirror(unsigned addr, unsigned size) {
unsigned base = 0;
if(size) {
unsigned mask = 1 << 23;
while(addr >= size) {
while(!(addr & mask)) mask >>= 1;
addr -= mask;
if(size > mask) {
size -= mask;
base += mask;
}
mask >>= 1;
}
base += addr;
}
return base;
}
void Board::main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
cartridge.clock += 12 * 4095;
tick();
}
}
void Board::tick() {
cartridge.clock += 12;
if(cartridge.clock >= 0 && scheduler.sync != Scheduler::SynchronizeMode::All) co_switch(cpu.thread);
}
uint8 Board::chr_read(unsigned addr) {
if(chrram.size) return chrram.data[mirror(addr, chrram.size)];
if(chrrom.size) return chrrom.data[mirror(addr, chrrom.size)];
return 0u;
}
void Board::chr_write(unsigned addr, uint8 data) {
if(chrram.size) chrram.data[mirror(addr, chrram.size)] = data;
}
void Board::power() {
}
void Board::reset() {
}
void Board::serialize(serializer &s) {
if(prgram.size) s.array(prgram.data, prgram.size);
if(chrram.size) s.array(chrram.data, chrram.size);
}
Board::Board(XML::Document &document) {
cartridge.board = this;
auto &cartridge = document["cartridge"];
information.type = cartridge["board"]["type"].data;
information.battery = cartridge["prg"]["ram"]["nonvolatile"].data == "true";
auto &prom = cartridge["prg"]["rom"];
auto &pram = cartridge["prg"]["ram"];
auto &crom = cartridge["chr"]["rom"];
auto &cram = cartridge["chr"]["ram"];
prgrom.size = numeral(prom["size"].data);
prgram.size = numeral(pram["size"].data);
chrrom.size = numeral(crom["size"].data);
chrram.size = numeral(cram["size"].data);
if(prgrom.size) prgrom.data = new uint8[prgrom.size]();
if(prgram.size) prgram.data = new uint8[prgram.size]();
if(chrrom.size) chrrom.data = new uint8[chrrom.size]();
if(chrram.size) chrram.data = new uint8[chrram.size]();
if(prom["name"].data) interface->loadRequest(ID::ProgramROM, prom["name"].data);
if(pram["name"].data) interface->loadRequest(ID::ProgramRAM, pram["name"].data);
if(crom["name"].data) interface->loadRequest(ID::CharacterROM, crom["name"].data);
if(cram["name"].data) interface->loadRequest(ID::CharacterRAM, cram["name"].data);
if(pram["name"].data) Famicom::cartridge.memory.append({ID::ProgramRAM, pram["name"].data});
if(cram["name"].data) Famicom::cartridge.memory.append({ID::CharacterRAM, cram["name"].data});
prgram.writable = true;
chrram.writable = true;
}
Board::~Board() {
}
Board* Board::load(const string &manifest) {
XML::Document document(manifest);
string type = document["cartridge"]["board"]["type"].data;
if(type == "BANDAI-FCG" ) return new BandaiFCG(document);
if(type == "KONAMI-VRC-1") return new KonamiVRC1(document);
if(type == "KONAMI-VRC-2") return new KonamiVRC2(document);
if(type == "KONAMI-VRC-3") return new KonamiVRC3(document);
if(type == "KONAMI-VRC-4") return new KonamiVRC4(document);
if(type == "KONAMI-VRC-6") return new KonamiVRC6(document);
if(type == "KONAMI-VRC-7") return new KonamiVRC7(document);
if(type == "NES-AMROM" ) return new NES_AxROM(document);
if(type == "NES-ANROM" ) return new NES_AxROM(document);
if(type == "NES-AN1ROM" ) return new NES_AxROM(document);
if(type == "NES-AOROM" ) return new NES_AxROM(document);
if(type == "NES-BNROM" ) return new NES_BNROM(document);
if(type == "NES-CNROM" ) return new NES_CNROM(document);
if(type == "NES-EKROM" ) return new NES_ExROM(document);
if(type == "NES-ELROM" ) return new NES_ExROM(document);
if(type == "NES-ETROM" ) return new NES_ExROM(document);
if(type == "NES-EWROM" ) return new NES_ExROM(document);
if(type == "NES-FJROM" ) return new NES_FxROM(document);
if(type == "NES-FKROM" ) return new NES_FxROM(document);
if(type == "NES-GNROM" ) return new NES_GxROM(document);
if(type == "NES-MHROM" ) return new NES_GxROM(document);
if(type == "NES-HKROM" ) return new NES_HKROM(document);
if(type == "NES-NROM-128") return new NES_NROM(document);
if(type == "NES-NROM-256") return new NES_NROM(document);
if(type == "NES-PEEOROM" ) return new NES_PxROM(document);
if(type == "NES-PNROM" ) return new NES_PxROM(document);
if(type == "NES-SNROM" ) return new NES_SxROM(document);
if(type == "NES-SXROM" ) return new NES_SxROM(document);
if(type == "NES-TLROM" ) return new NES_TxROM(document);
if(type == "NES-UNROM" ) return new NES_UxROM(document);
if(type == "NES-UOROM" ) return new NES_UxROM(document);
if(type == "SUNSOFT-5B" ) return new Sunsoft5B(document);
return nullptr;
}

View File

@@ -1,46 +0,0 @@
struct Board {
struct Memory {
uint8_t *data;
unsigned size;
bool writable;
inline uint8 read(unsigned addr) const;
inline void write(unsigned addr, uint8 data);
inline Memory(uint8_t *data, unsigned size) : data(data), size(size) {}
inline Memory() : data(nullptr), size(0u), writable(false) {}
inline ~Memory() { if(data) delete[] data; }
};
static unsigned mirror(unsigned addr, unsigned size);
virtual void main();
virtual void tick();
virtual uint8 prg_read(unsigned addr) = 0;
virtual void prg_write(unsigned addr, uint8 data) = 0;
virtual uint8 chr_read(unsigned addr);
virtual void chr_write(unsigned addr, uint8 data);
virtual inline void scanline(unsigned y) {}
virtual void power();
virtual void reset();
virtual void serialize(serializer&);
Board(XML::Document &document);
virtual ~Board();
static Board* load(const string &manifest);
struct Information {
string type;
bool battery;
} information;
Memory prgrom;
Memory prgram;
Memory chrrom;
Memory chrram;
};

View File

@@ -1,40 +0,0 @@
struct KonamiVRC1 : Board {
VRC1 vrc1;
uint8 prg_read(unsigned addr) {
if(addr & 0x8000) return prgrom.read(vrc1.prg_addr(addr));
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
if(addr & 0x8000) return vrc1.reg_write(addr, data);
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) return ppu.ciram_read(vrc1.ciram_addr(addr));
return Board::chr_read(vrc1.chr_addr(addr));
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) return ppu.ciram_write(vrc1.ciram_addr(addr), data);
return Board::chr_write(vrc1.chr_addr(addr), data);
}
void power() {
vrc1.power();
}
void reset() {
vrc1.reset();
}
void serialize(serializer &s) {
Board::serialize(s);
vrc1.serialize(s);
}
KonamiVRC1(XML::Document &document) : Board(document), vrc1(*this) {
}
};

View File

@@ -1,57 +0,0 @@
struct KonamiVRC2 : Board {
struct Settings {
struct Pinout {
unsigned a0;
unsigned a1;
} pinout;
} settings;
VRC2 vrc2;
uint8 prg_read(unsigned addr) {
if(addr < 0x6000) return cpu.mdr();
if(addr < 0x8000) return vrc2.ram_read(addr);
return prgrom.read(vrc2.prg_addr(addr));
}
void prg_write(unsigned addr, uint8 data) {
if(addr < 0x6000) return;
if(addr < 0x8000) return vrc2.ram_write(addr, data);
bool a0 = (addr & settings.pinout.a0);
bool a1 = (addr & settings.pinout.a1);
addr &= 0xfff0;
addr |= (a0 << 0) | (a1 << 1);
return vrc2.reg_write(addr, data);
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) return ppu.ciram_read(vrc2.ciram_addr(addr));
return Board::chr_read(vrc2.chr_addr(addr));
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) return ppu.ciram_write(vrc2.ciram_addr(addr), data);
return Board::chr_write(vrc2.chr_addr(addr), data);
}
void power() {
vrc2.power();
}
void reset() {
vrc2.reset();
}
void serialize(serializer &s) {
Board::serialize(s);
vrc2.serialize(s);
}
KonamiVRC2(XML::Document &document) : Board(document), vrc2(*this) {
settings.pinout.a0 = 1 << decimal(document["cartridge"]["chip"]["pinout"]["a0"].data);
settings.pinout.a1 = 1 << decimal(document["cartridge"]["chip"]["pinout"]["a1"].data);
}
};

View File

@@ -1,57 +0,0 @@
struct KonamiVRC3 : Board {
struct Settings {
bool mirror; //0 = horizontal, 1 = vertical
} settings;
VRC3 vrc3;
void main() {
vrc3.main();
}
uint8 prg_read(unsigned addr) {
if((addr & 0xe000) == 0x6000) return prgram.read(addr & 0x1fff);
if(addr & 0x8000) return prgrom.read(vrc3.prg_addr(addr));
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
if((addr & 0xe000) == 0x6000) return prgram.write(addr & 0x1fff, data);
if(addr & 0x8000) return vrc3.reg_write(addr, data);
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) {
if(settings.mirror == 0) addr = ((addr & 0x0800) >> 1) | (addr & 0x03ff);
return ppu.ciram_read(addr & 0x07ff);
}
return chrram.read(addr);
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) {
if(settings.mirror == 0) addr = ((addr & 0x0800) >> 1) | (addr & 0x03ff);
return ppu.ciram_write(addr & 0x07ff, data);
}
return chrram.write(addr, data);
}
void power() {
vrc3.power();
}
void reset() {
vrc3.reset();
}
void serialize(serializer &s) {
Board::serialize(s);
vrc3.serialize(s);
}
KonamiVRC3(XML::Document &document) : Board(document), vrc3(*this) {
settings.mirror = document["cartridge"]["mirror"]["mode"].data == "vertical" ? 1 : 0;
}
};

View File

@@ -1,61 +0,0 @@
struct KonamiVRC4 : Board {
struct Settings {
struct Pinout {
unsigned a0;
unsigned a1;
} pinout;
} settings;
VRC4 vrc4;
void main() {
return vrc4.main();
}
uint8 prg_read(unsigned addr) {
if(addr < 0x6000) return cpu.mdr();
if(addr < 0x8000) return prgram.read(addr);
return prgrom.read(vrc4.prg_addr(addr));
}
void prg_write(unsigned addr, uint8 data) {
if(addr < 0x6000) return;
if(addr < 0x8000) return prgram.write(addr, data);
bool a0 = (addr & settings.pinout.a0);
bool a1 = (addr & settings.pinout.a1);
addr &= 0xfff0;
addr |= (a1 << 1) | (a0 << 0);
return vrc4.reg_write(addr, data);
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) return ppu.ciram_read(vrc4.ciram_addr(addr));
return Board::chr_read(vrc4.chr_addr(addr));
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) return ppu.ciram_write(vrc4.ciram_addr(addr), data);
return Board::chr_write(vrc4.chr_addr(addr), data);
}
void power() {
vrc4.power();
}
void reset() {
vrc4.reset();
}
void serialize(serializer &s) {
Board::serialize(s);
vrc4.serialize(s);
}
KonamiVRC4(XML::Document &document) : Board(document), vrc4(*this) {
settings.pinout.a0 = 1 << decimal(document["cartridge"]["chip"]["pinout"]["a0"].data);
settings.pinout.a1 = 1 << decimal(document["cartridge"]["chip"]["pinout"]["a1"].data);
}
};

View File

@@ -1,42 +0,0 @@
struct KonamiVRC6 : Board {
VRC6 vrc6;
uint8 prg_read(unsigned addr) {
if((addr & 0xe000) == 0x6000) return vrc6.ram_read(addr);
if(addr & 0x8000) return prgrom.read(vrc6.prg_addr(addr));
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
if((addr & 0xe000) == 0x6000) return vrc6.ram_write(addr, data);
if(addr & 0x8000) {
addr = (addr & 0xf003);
if(prgram.size) addr = (addr & ~3) | ((addr & 2) >> 1) | ((addr & 1) << 1);
return vrc6.reg_write(addr, data);
}
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) return ppu.ciram_read(vrc6.ciram_addr(addr));
return Board::chr_read(vrc6.chr_addr(addr));
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) return ppu.ciram_write(vrc6.ciram_addr(addr), data);
return Board::chr_write(vrc6.chr_addr(addr), data);
}
void serialize(serializer &s) {
Board::serialize(s);
vrc6.serialize(s);
}
void main() { vrc6.main(); }
void power() { vrc6.power(); }
void reset() { vrc6.reset(); }
KonamiVRC6(XML::Document &document) : Board(document), vrc6(*this) {
}
};

View File

@@ -1,47 +0,0 @@
struct KonamiVRC7 : Board {
VRC7 vrc7;
void main() {
return vrc7.main();
}
uint8 prg_read(unsigned addr) {
if(addr < 0x6000) return cpu.mdr();
if(addr < 0x8000) return prgram.read(addr);
return prgrom.read(vrc7.prg_addr(addr));
}
void prg_write(unsigned addr, uint8 data) {
if(addr < 0x6000) return;
if(addr < 0x8000) return prgram.write(addr, data);
return vrc7.reg_write(addr, data);
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) return ppu.ciram_read(vrc7.ciram_addr(addr));
return chrram.read(vrc7.chr_addr(addr));
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) return ppu.ciram_write(vrc7.ciram_addr(addr), data);
return chrram.write(vrc7.chr_addr(addr), data);
}
void power() {
vrc7.power();
}
void reset() {
vrc7.reset();
}
void serialize(serializer &s) {
Board::serialize(s);
vrc7.serialize(s);
}
KonamiVRC7(XML::Document &document) : Board(document), vrc7(*this) {
}
};

View File

@@ -1,51 +0,0 @@
//NES-AMROM
//NES-ANROM
//NES-AN1ROM
//NES-AOROM
struct NES_AxROM : Board {
uint4 prg_bank;
bool mirror_select;
uint8 prg_read(unsigned addr) {
if(addr & 0x8000) return prgrom.read((prg_bank << 15) | (addr & 0x7fff));
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
if(addr & 0x8000) {
prg_bank = data & 0x0f;
mirror_select = data & 0x10;
}
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) return ppu.ciram_read((mirror_select << 10) | (addr & 0x03ff));
return Board::chr_read(addr);
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) return ppu.ciram_write((mirror_select << 10) | (addr & 0x03ff), data);
return Board::chr_write(addr, data);
}
void power() {
}
void reset() {
prg_bank = 0x0f;
mirror_select = 0;
}
void serialize(serializer &s) {
Board::serialize(s);
s.integer(prg_bank);
s.integer(mirror_select);
}
NES_AxROM(XML::Document &document) : Board(document) {
}
};

View File

@@ -1,52 +0,0 @@
//NES-BN-ROM-01
struct NES_BNROM : Board {
struct Settings {
bool mirror; //0 = horizontal, 1 = vertical
} settings;
uint2 prg_bank;
uint8 prg_read(unsigned addr) {
if(addr & 0x8000) return prgrom.read((prg_bank << 15) | (addr & 0x7fff));
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
if(addr & 0x8000) prg_bank = data & 0x03;
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) {
if(settings.mirror == 0) addr = ((addr & 0x0800) >> 1) | (addr & 0x03ff);
return ppu.ciram_read(addr);
}
return Board::chr_read(addr);
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) {
if(settings.mirror == 0) addr = ((addr & 0x0800) >> 1) | (addr & 0x03ff);
return ppu.ciram_write(addr, data);
}
return Board::chr_write(addr, data);
}
void power() {
}
void reset() {
prg_bank = 0;
}
void serialize(serializer &s) {
Board::serialize(s);
s.integer(prg_bank);
}
NES_BNROM(XML::Document &document) : Board(document) {
settings.mirror = document["cartridge"]["mirror"]["mode"].data == "vertical" ? 1 : 0;
}
};

View File

@@ -1,54 +0,0 @@
//NES-CNROM
struct NES_CNROM : Board {
struct Settings {
bool mirror; //0 = horizontal, 1 = vertical
} settings;
uint2 chr_bank;
uint8 prg_read(unsigned addr) {
if(addr & 0x8000) return prgrom.read(addr & 0x7fff);
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
if(addr & 0x8000) chr_bank = data & 0x03;
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) {
if(settings.mirror == 0) addr = ((addr & 0x0800) >> 1) | (addr & 0x03ff);
return ppu.ciram_read(addr & 0x07ff);
}
addr = (chr_bank * 0x2000) + (addr & 0x1fff);
return Board::chr_read(addr);
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) {
if(settings.mirror == 0) addr = ((addr & 0x0800) >> 1) | (addr & 0x03ff);
return ppu.ciram_write(addr & 0x07ff, data);
}
addr = (chr_bank * 0x2000) + (addr & 0x1fff);
Board::chr_write(addr, data);
}
void power() {
}
void reset() {
chr_bank = 0;
}
void serialize(serializer &s) {
Board::serialize(s);
s.integer(chr_bank);
}
NES_CNROM(XML::Document &document) : Board(document) {
settings.mirror = document["cartridge"]["mirror"]["mode"].data == "vertical" ? 1 : 0;
}
};

View File

@@ -1,53 +0,0 @@
struct NES_ExROM : Board {
enum class Revision : unsigned {
EKROM,
ELROM,
ETROM,
EWROM,
} revision;
MMC5 mmc5;
void main() {
mmc5.main();
}
uint8 prg_read(unsigned addr) {
return mmc5.prg_read(addr);
}
void prg_write(unsigned addr, uint8 data) {
mmc5.prg_write(addr, data);
}
uint8 chr_read(unsigned addr) {
return mmc5.chr_read(addr);
}
void chr_write(unsigned addr, uint8 data) {
mmc5.chr_write(addr, data);
}
void scanline(unsigned y) {
mmc5.scanline(y);
}
void power() {
mmc5.power();
}
void reset() {
mmc5.reset();
}
void serialize(serializer &s) {
Board::serialize(s);
mmc5.serialize(s);
}
NES_ExROM(XML::Document &document) : Board(document), mmc5(*this) {
revision = Revision::ELROM;
}
};

View File

@@ -1,91 +0,0 @@
//MMC4
struct NES_FxROM : Board {
enum Revision : unsigned {
FJROM,
FKROM,
} revision;
uint4 prg_bank;
uint5 chr_bank[2][2];
bool mirror;
bool latch[2];
uint8 prg_read(unsigned addr) {
if(addr < 0x6000) return cpu.mdr();
if(addr < 0x8000) return prgram.read(addr);
unsigned bank = addr < 0xc000 ? prg_bank : (uint4)0x0f;
return prgrom.read((bank * 0x4000) | (addr & 0x3fff));
}
void prg_write(unsigned addr, uint8 data) {
if(addr < 0x6000) return;
if(addr < 0x8000) return prgram.write(addr, data);
switch(addr & 0xf000) {
case 0xa000: prg_bank = data & 0x0f; break;
case 0xb000: chr_bank[0][0] = data & 0x1f; break;
case 0xc000: chr_bank[0][1] = data & 0x1f; break;
case 0xd000: chr_bank[1][0] = data & 0x1f; break;
case 0xe000: chr_bank[1][1] = data & 0x1f; break;
case 0xf000: mirror = data & 0x01; break;
}
}
unsigned ciram_addr(unsigned addr) const {
switch(mirror) {
case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical mirroring
case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal mirroring
}
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) return ppu.ciram_read(ciram_addr(addr));
bool region = addr & 0x1000;
unsigned bank = chr_bank[region][latch[region]];
if((addr & 0x0ff8) == 0x0fd8) latch[region] = 0;
if((addr & 0x0ff8) == 0x0fe8) latch[region] = 1;
return Board::chr_read((bank * 0x1000) | (addr & 0x0fff));
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) return ppu.ciram_write(ciram_addr(addr), data);
bool region = addr & 0x1000;
unsigned bank = chr_bank[region][latch[region]];
if((addr & 0x0ff8) == 0x0fd8) latch[region] = 0;
if((addr & 0x0ff8) == 0x0fe8) latch[region] = 1;
return Board::chr_write((bank * 0x1000) | (addr & 0x0fff), data);
}
void power() {
}
void reset() {
prg_bank = 0;
chr_bank[0][0] = 0;
chr_bank[0][1] = 0;
chr_bank[1][0] = 0;
chr_bank[1][1] = 0;
mirror = 0;
latch[0] = 0;
latch[1] = 0;
}
void serialize(serializer &s) {
Board::serialize(s);
s.integer(prg_bank);
s.integer(chr_bank[0][0]);
s.integer(chr_bank[0][1]);
s.integer(chr_bank[1][0]);
s.integer(chr_bank[1][1]);
s.integer(mirror);
s.array(latch);
}
NES_FxROM(XML::Document &document) : Board(document) {
revision = Revision::FKROM;
}
};

View File

@@ -1,61 +0,0 @@
//NES-GNROM
//NES-MHROM
struct NES_GxROM : Board {
struct Settings {
bool mirror; //0 = horizontal, 1 = vertical
} settings;
uint2 prg_bank;
uint2 chr_bank;
uint8 prg_read(unsigned addr) {
if(addr & 0x8000) return prgrom.read((prg_bank << 15) | (addr & 0x7fff));
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
if(addr & 0x8000) {
prg_bank = (data & 0x30) >> 4;
chr_bank = (data & 0x03) >> 0;
}
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) {
if(settings.mirror == 0) addr = ((addr & 0x0800) >> 1) | (addr & 0x03ff);
return ppu.ciram_read(addr & 0x07ff);
}
addr = (chr_bank * 0x2000) + (addr & 0x1fff);
return Board::chr_read(addr);
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) {
if(settings.mirror == 0) addr = ((addr & 0x0800) >> 1) | (addr & 0x03ff);
return ppu.ciram_write(addr & 0x07ff, data);
}
addr = (chr_bank * 0x2000) + (addr & 0x1fff);
Board::chr_write(addr, data);
}
void power() {
}
void reset() {
prg_bank = 0;
chr_bank = 0;
}
void serialize(serializer &s) {
Board::serialize(s);
s.integer(prg_bank);
s.integer(chr_bank);
}
NES_GxROM(XML::Document &document) : Board(document) {
settings.mirror = document["cartridge"]["mirror"]["mode"].data == "vertical" ? 1 : 0;
}
};

View File

@@ -1,48 +0,0 @@
struct NES_HKROM : Board {
MMC6 mmc6;
void main() {
mmc6.main();
}
uint8 prg_read(unsigned addr) {
if((addr & 0xf000) == 0x7000) return mmc6.ram_read(addr);
if(addr & 0x8000) return prgrom.read(mmc6.prg_addr(addr));
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
if((addr & 0xf000) == 0x7000) return mmc6.ram_write(addr, data);
if(addr & 0x8000) return mmc6.reg_write(addr, data);
}
uint8 chr_read(unsigned addr) {
mmc6.irq_test(addr);
if(addr & 0x2000) return ppu.ciram_read(mmc6.ciram_addr(addr));
return Board::chr_read(mmc6.chr_addr(addr));
}
void chr_write(unsigned addr, uint8 data) {
mmc6.irq_test(addr);
if(addr & 0x2000) return ppu.ciram_write(mmc6.ciram_addr(addr), data);
return Board::chr_write(mmc6.chr_addr(addr), data);
}
void power() {
mmc6.power();
}
void reset() {
mmc6.reset();
}
void serialize(serializer &s) {
Board::serialize(s);
mmc6.serialize(s);
}
NES_HKROM(XML::Document &document) : Board(document), mmc6(*this) {
}
};

View File

@@ -1,43 +0,0 @@
//NES-NROM-128
//NES-NROM-256
struct NES_NROM : Board {
struct Settings {
bool mirror; //0 = horizontal, 1 = vertical
} settings;
uint8 prg_read(unsigned addr) {
if(addr & 0x8000) return prgrom.read(addr);
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) {
if(settings.mirror == 0) addr = ((addr & 0x0800) >> 1) | (addr & 0x03ff);
return ppu.ciram_read(addr & 0x07ff);
}
if(chrram.size) return chrram.read(addr);
return chrrom.read(addr);
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) {
if(settings.mirror == 0) addr = ((addr & 0x0800) >> 1) | (addr & 0x03ff);
return ppu.ciram_write(addr & 0x07ff, data);
}
if(chrram.size) return chrram.write(addr, data);
}
void serialize(serializer &s) {
Board::serialize(s);
}
NES_NROM(XML::Document &document) : Board(document) {
settings.mirror = document["cartridge"]["mirror"]["mode"].data == "vertical" ? 1 : 0;
}
};

View File

@@ -1,97 +0,0 @@
//MMC2
struct NES_PxROM : Board {
enum Revision : unsigned {
PEEOROM,
PNROM,
} revision;
uint4 prg_bank;
uint5 chr_bank[2][2];
bool mirror;
bool latch[2];
uint8 prg_read(unsigned addr) {
if(addr < 0x6000) return cpu.mdr();
if(addr < 0x8000) return prgram.read(addr);
unsigned bank = 0;
switch((addr / 0x2000) & 3) {
case 0: bank = prg_bank; break;
case 1: bank = 0x0d; break;
case 2: bank = 0x0e; break;
case 3: bank = 0x0f; break;
}
return prgrom.read((bank * 0x2000) | (addr & 0x1fff));
}
void prg_write(unsigned addr, uint8 data) {
if(addr < 0x6000) return;
if(addr < 0x8000) return prgram.write(addr, data);
switch(addr & 0xf000) {
case 0xa000: prg_bank = data & 0x0f; break;
case 0xb000: chr_bank[0][0] = data & 0x1f; break;
case 0xc000: chr_bank[0][1] = data & 0x1f; break;
case 0xd000: chr_bank[1][0] = data & 0x1f; break;
case 0xe000: chr_bank[1][1] = data & 0x1f; break;
case 0xf000: mirror = data & 0x01; break;
}
}
unsigned ciram_addr(unsigned addr) const {
switch(mirror) {
case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical mirroring
case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal mirroring
}
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) return ppu.ciram_read(ciram_addr(addr));
bool region = addr & 0x1000;
unsigned bank = chr_bank[region][latch[region]];
if((addr & 0x0ff8) == 0x0fd8) latch[region] = 0;
if((addr & 0x0ff8) == 0x0fe8) latch[region] = 1;
return Board::chr_read((bank * 0x1000) | (addr & 0x0fff));
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) return ppu.ciram_write(ciram_addr(addr), data);
bool region = addr & 0x1000;
unsigned bank = chr_bank[region][latch[region]];
if((addr & 0x0ff8) == 0x0fd8) latch[region] = 0;
if((addr & 0x0ff8) == 0x0fe8) latch[region] = 1;
return Board::chr_write((bank * 0x1000) | (addr & 0x0fff), data);
}
void power() {
}
void reset() {
prg_bank = 0;
chr_bank[0][0] = 0;
chr_bank[0][1] = 0;
chr_bank[1][0] = 0;
chr_bank[1][1] = 0;
mirror = 0;
latch[0] = 0;
latch[1] = 0;
}
void serialize(serializer &s) {
Board::serialize(s);
s.integer(prg_bank);
s.integer(chr_bank[0][0]);
s.integer(chr_bank[0][1]);
s.integer(chr_bank[1][0]);
s.integer(chr_bank[1][1]);
s.integer(mirror);
s.array(latch);
}
NES_PxROM(XML::Document &document) : Board(document) {
revision = Revision::PNROM;
}
};

View File

@@ -1,101 +0,0 @@
struct NES_SxROM : Board {
enum class Revision : unsigned {
SAROM,
SBROM,
SCROM,
SC1ROM,
SEROM,
SFROM,
SGROM,
SHROM,
SH1ROM,
SIROM,
SJROM,
SKROM,
SLROM,
SL1ROM,
SL2ROM,
SL3ROM,
SLRROM,
SMROM,
SNROM,
SOROM,
SUROM,
SXROM,
} revision;
MMC1 mmc1;
void main() {
return mmc1.main();
}
unsigned ram_addr(unsigned addr) {
unsigned bank = 0;
if(revision == Revision::SOROM) bank = (mmc1.chr_bank[0] & 0x08) >> 3;
if(revision == Revision::SUROM) bank = (mmc1.chr_bank[0] & 0x0c) >> 2;
if(revision == Revision::SXROM) bank = (mmc1.chr_bank[0] & 0x0c) >> 2;
return (bank << 13) | (addr & 0x1fff);
}
uint8 prg_read(unsigned addr) {
if((addr & 0xe000) == 0x6000) {
if(revision == Revision::SNROM) {
if(mmc1.chr_bank[0] & 0x10) return cpu.mdr();
}
if(mmc1.ram_disable) return 0x00;
return prgram.read(ram_addr(addr));
}
if(addr & 0x8000) {
addr = mmc1.prg_addr(addr);
if(revision == Revision::SXROM) {
addr |= ((mmc1.chr_bank[0] & 0x10) >> 4) << 18;
}
return prgrom.read(addr);
}
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
if((addr & 0xe000) == 0x6000) {
if(revision == Revision::SNROM) {
if(mmc1.chr_bank[0] & 0x10) return;
}
if(mmc1.ram_disable) return;
return prgram.write(ram_addr(addr), data);
}
if(addr & 0x8000) return mmc1.mmio_write(addr, data);
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) return ppu.ciram_read(mmc1.ciram_addr(addr));
return Board::chr_read(mmc1.chr_addr(addr));
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) return ppu.ciram_write(mmc1.ciram_addr(addr), data);
return Board::chr_write(mmc1.chr_addr(addr), data);
}
void power() {
mmc1.power();
}
void reset() {
mmc1.reset();
}
void serialize(serializer &s) {
Board::serialize(s);
mmc1.serialize(s);
}
NES_SxROM(XML::Document &document) : Board(document), mmc1(*this) {
revision = Revision::SXROM;
}
};

View File

@@ -1,67 +0,0 @@
struct NES_TxROM : Board {
enum class Revision : unsigned {
TBROM,
TEROM,
TFROM,
TGROM,
TKROM,
TKSROM,
TLROM,
TL1ROM,
TL2ROM,
TLSROM,
TNROM,
TQROM,
TR1ROM,
TSROM,
TVROM,
} revision;
MMC3 mmc3;
void main() {
mmc3.main();
}
uint8 prg_read(unsigned addr) {
if((addr & 0xe000) == 0x6000) return mmc3.ram_read(addr);
if(addr & 0x8000) return prgrom.read(mmc3.prg_addr(addr));
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
if((addr & 0xe000) == 0x6000) return mmc3.ram_write(addr, data);
if(addr & 0x8000) return mmc3.reg_write(addr, data);
}
uint8 chr_read(unsigned addr) {
mmc3.irq_test(addr);
if(addr & 0x2000) return ppu.ciram_read(mmc3.ciram_addr(addr));
return Board::chr_read(mmc3.chr_addr(addr));
}
void chr_write(unsigned addr, uint8 data) {
mmc3.irq_test(addr);
if(addr & 0x2000) return ppu.ciram_write(mmc3.ciram_addr(addr), data);
return Board::chr_write(mmc3.chr_addr(addr), data);
}
void power() {
mmc3.power();
}
void reset() {
mmc3.reset();
}
void serialize(serializer &s) {
Board::serialize(s);
mmc3.serialize(s);
}
NES_TxROM(XML::Document &document) : Board(document), mmc3(*this) {
revision = Revision::TLROM;
}
};

View File

@@ -1,55 +0,0 @@
//NES-UNROM
//NES-UOROM
struct NES_UxROM : Board {
struct Settings {
bool mirror; //0 = horizontal, 1 = vertical
} settings;
uint4 prg_bank;
uint8 prg_read(unsigned addr) {
if((addr & 0xc000) == 0x8000) return prgrom.read((prg_bank << 14) | (addr & 0x3fff));
if((addr & 0xc000) == 0xc000) return prgrom.read(( 0x0f << 14) | (addr & 0x3fff));
return cpu.mdr();
}
void prg_write(unsigned addr, uint8 data) {
if(addr & 0x8000) prg_bank = data & 0x0f;
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) {
if(settings.mirror == 0) addr = ((addr & 0x0800) >> 1) | (addr & 0x03ff);
return ppu.ciram_read(addr);
}
return Board::chr_read(addr);
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) {
if(settings.mirror == 0) addr = ((addr & 0x0800) >> 1) | (addr & 0x03ff);
return ppu.ciram_write(addr, data);
}
return Board::chr_write(addr, data);
}
void power() {
}
void reset() {
prg_bank = 0;
}
void serialize(serializer &s) {
Board::serialize(s);
s.integer(prg_bank);
}
NES_UxROM(XML::Document &document) : Board(document) {
settings.mirror = document["cartridge"]["mirror"]["mode"].data == "vertical" ? 1 : 0;
}
};

View File

@@ -1,226 +0,0 @@
//SUNSOFT-5B
struct Sunsoft5B : Board {
uint4 mmu_port;
uint4 apu_port;
uint8 prg_bank[4];
uint8 chr_bank[8];
uint2 mirror;
bool irq_enable;
bool irq_counter_enable;
uint16 irq_counter;
int16 dac[16];
struct Pulse {
bool disable;
uint12 frequency;
uint4 volume;
uint16 counter; //12-bit countdown + 4-bit phase
uint1 duty;
uint4 output;
void clock() {
if(--counter == 0) {
counter = frequency << 4;
duty ^= 1;
}
output = duty ? volume : (uint4)0;
if(disable) output = 0;
}
void reset() {
disable = 1;
frequency = 1;
volume = 0;
counter = 0;
duty = 0;
output = 0;
}
void serialize(serializer &s) {
s.integer(disable);
s.integer(frequency);
s.integer(volume);
s.integer(counter);
s.integer(duty);
s.integer(output);
}
} pulse[3];
void main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(irq_counter_enable) {
if(--irq_counter == 0xffff) {
cpu.set_irq_line(irq_enable);
}
}
pulse[0].clock();
pulse[1].clock();
pulse[2].clock();
int16 output = dac[pulse[0].output] + dac[pulse[1].output] + dac[pulse[2].output];
apu.set_sample(-output);
tick();
}
}
uint8 prg_read(unsigned addr) {
if(addr < 0x6000) return cpu.mdr();
uint8 bank = 0x3f; //((addr & 0xe000) == 0xe000
if((addr & 0xe000) == 0x6000) bank = prg_bank[0];
if((addr & 0xe000) == 0x8000) bank = prg_bank[1];
if((addr & 0xe000) == 0xa000) bank = prg_bank[2];
if((addr & 0xe000) == 0xc000) bank = prg_bank[3];
bool ram_enable = bank & 0x80;
bool ram_select = bank & 0x40;
bank &= 0x3f;
if(ram_select) {
if(ram_enable == false) return cpu.mdr();
return prgram.data[addr & 0x1fff];
}
addr = (bank << 13) | (addr & 0x1fff);
return prgrom.read(addr);
}
void prg_write(unsigned addr, uint8 data) {
if((addr & 0xe000) == 0x6000) {
prgram.data[addr & 0x1fff] = data;
}
if(addr == 0x8000) {
mmu_port = data & 0x0f;
}
if(addr == 0xa000) {
switch(mmu_port) {
case 0: chr_bank[0] = data; break;
case 1: chr_bank[1] = data; break;
case 2: chr_bank[2] = data; break;
case 3: chr_bank[3] = data; break;
case 4: chr_bank[4] = data; break;
case 5: chr_bank[5] = data; break;
case 6: chr_bank[6] = data; break;
case 7: chr_bank[7] = data; break;
case 8: prg_bank[0] = data; break;
case 9: prg_bank[1] = data; break;
case 10: prg_bank[2] = data; break;
case 11: prg_bank[3] = data; break;
case 12: mirror = data & 3; break;
case 13:
irq_enable = data & 0x80;
irq_counter_enable = data & 0x01;
if(irq_enable == 0) cpu.set_irq_line(0);
break;
case 14: irq_counter = (irq_counter & 0xff00) | (data << 0); break;
case 15: irq_counter = (irq_counter & 0x00ff) | (data << 8); break;
}
}
if(addr == 0xc000) {
apu_port = data & 0x0f;
}
if(addr == 0xe000) {
switch(apu_port) {
case 0: pulse[0].frequency = (pulse[0].frequency & 0xff00) | (data << 0); break;
case 1: pulse[0].frequency = (pulse[0].frequency & 0x00ff) | (data << 8); break;
case 2: pulse[1].frequency = (pulse[1].frequency & 0xff00) | (data << 0); break;
case 3: pulse[1].frequency = (pulse[1].frequency & 0x00ff) | (data << 8); break;
case 4: pulse[2].frequency = (pulse[2].frequency & 0xff00) | (data << 0); break;
case 5: pulse[2].frequency = (pulse[2].frequency & 0x00ff) | (data << 8); break;
case 7:
pulse[0].disable = data & 0x01;
pulse[1].disable = data & 0x02;
pulse[2].disable = data & 0x04;
break;
case 8: pulse[0].volume = data & 0x0f; break;
case 9: pulse[1].volume = data & 0x0f; break;
case 10: pulse[2].volume = data & 0x0f; break;
}
}
}
unsigned chr_addr(unsigned addr) {
uint8 bank = (addr >> 10) & 7;
return (chr_bank[bank] << 10) | (addr & 0x03ff);
}
unsigned ciram_addr(unsigned addr) {
switch(mirror) {
case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical
case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal
case 2: return 0x0000 | (addr & 0x03ff); //first
case 3: return 0x0400 | (addr & 0x03ff); //second
}
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) return ppu.ciram_read(ciram_addr(addr));
return Board::chr_read(chr_addr(addr));
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) return ppu.ciram_write(ciram_addr(addr), data);
return Board::chr_write(chr_addr(addr), data);
}
void power() {
for(signed n = 0; n < 16; n++) {
double volume = 1.0 / pow(2, 1.0 / 2 * (15 - n));
dac[n] = volume * 8192.0;
}
}
void reset() {
mmu_port = 0;
apu_port = 0;
for(auto &n : prg_bank) n = 0;
for(auto &n : chr_bank) n = 0;
mirror = 0;
irq_enable = 0;
irq_counter_enable = 0;
irq_counter = 0;
pulse[0].reset();
pulse[1].reset();
pulse[2].reset();
}
void serialize(serializer &s) {
Board::serialize(s);
s.integer(mmu_port);
s.integer(apu_port);
s.array(prg_bank);
s.array(chr_bank);
s.integer(mirror);
s.integer(irq_enable);
s.integer(irq_counter_enable);
s.integer(irq_counter);
pulse[0].serialize(s);
pulse[1].serialize(s);
pulse[2].serialize(s);
}
Sunsoft5B(XML::Document &document) : Board(document) {
}
};

View File

@@ -1,82 +0,0 @@
#include <fc/fc.hpp>
namespace Famicom {
#include "chip/chip.cpp"
#include "board/board.cpp"
Cartridge cartridge;
void Cartridge::Main() {
cartridge.main();
}
void Cartridge::main() {
board->main();
}
void Cartridge::load(const string &manifest) {
information.markup = manifest;
Board::load(manifest); //this call will set Cartridge::board if successful
if(board == nullptr) return;
sha256_ctx sha;
uint8 hash[32];
sha256_init(&sha);
sha256_chunk(&sha, board->prgrom.data, board->prgrom.size);
sha256_chunk(&sha, board->chrrom.data, board->chrrom.size);
sha256_final(&sha);
sha256_hash(&sha, hash);
string result;
for(auto &byte : hash) result.append(hex<2>(byte));
sha256 = result;
system.load();
loaded = true;
}
void Cartridge::unload() {
if(loaded == false) return;
loaded = false;
memory.reset();
}
void Cartridge::power() {
board->power();
}
void Cartridge::reset() {
create(Cartridge::Main, 21477272);
board->reset();
}
Cartridge::Cartridge() {
loaded = false;
}
uint8 Cartridge::prg_read(unsigned addr) {
return board->prg_read(addr);
}
void Cartridge::prg_write(unsigned addr, uint8 data) {
return board->prg_write(addr, data);
}
uint8 Cartridge::chr_read(unsigned addr) {
return board->chr_read(addr);
}
void Cartridge::chr_write(unsigned addr, uint8 data) {
return board->chr_write(addr, data);
}
void Cartridge::scanline(unsigned y) {
return board->scanline(y);
}
void Cartridge::serialize(serializer &s) {
Thread::serialize(s);
return board->serialize(s);
}
}

View File

@@ -1,44 +0,0 @@
#include "chip/chip.hpp"
#include "board/board.hpp"
struct Cartridge : Thread, property<Cartridge> {
static void Main();
void main();
void load(const string &manifest);
void unload();
void power();
void reset();
readonly<bool> loaded;
readonly<string> sha256;
struct Information {
string markup;
} information;
struct Memory {
unsigned id;
string name;
};
vector<Memory> memory;
void serialize(serializer&);
Cartridge();
//privileged:
Board *board;
uint8 prg_read(unsigned addr);
void prg_write(unsigned addr, uint8 data);
uint8 chr_read(unsigned addr);
void chr_write(unsigned addr, uint8 data);
//scanline() is for debugging purposes only:
//boards must detect scanline edges on their own
void scanline(unsigned y);
};
extern Cartridge cartridge;

View File

@@ -1,7 +0,0 @@
struct Board;
struct Chip {
Board &board;
void tick();
Chip(Board &board);
};

View File

@@ -1,136 +0,0 @@
struct MMC1 : Chip {
enum class Revision : unsigned {
MMC1,
MMC1A,
MMC1B1,
MMC1B2,
MMC1B3,
MMC1C,
} revision;
unsigned writedelay;
unsigned shiftaddr;
unsigned shiftdata;
bool chr_mode;
bool prg_size; //0 = 32K, 1 = 16K
bool prg_mode;
uint2 mirror; //0 = first, 1 = second, 2 = vertical, 3 = horizontal
uint5 chr_bank[2];
bool ram_disable;
uint4 prg_bank;
void main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(writedelay) writedelay--;
tick();
}
}
unsigned prg_addr(unsigned addr) {
bool region = addr & 0x4000;
unsigned bank = (prg_bank & ~1) + region;
if(prg_size) {
bank = (region == 0 ? 0x0 : 0xf);
if(region != prg_mode) bank = prg_bank;
}
return (bank << 14) | (addr & 0x3fff);
}
unsigned chr_addr(unsigned addr) {
bool region = addr & 0x1000;
unsigned bank = chr_bank[region];
if(chr_mode == 0) bank = (chr_bank[0] & ~1) | region;
return (bank << 12) | (addr & 0x0fff);
}
unsigned ciram_addr(unsigned addr) {
switch(mirror) {
case 0: return 0x0000 | (addr & 0x03ff);
case 1: return 0x0400 | (addr & 0x03ff);
case 2: return ((addr & 0x0400) >> 0) | (addr & 0x03ff);
case 3: return ((addr & 0x0800) >> 1) | (addr & 0x03ff);
}
}
void mmio_write(unsigned addr, uint8 data) {
if(writedelay) return;
writedelay = 2;
if(data & 0x80) {
shiftaddr = 0;
prg_size = 1;
prg_mode = 1;
} else {
shiftdata = ((data & 1) << 4) | (shiftdata >> 1);
if(++shiftaddr == 5) {
shiftaddr = 0;
switch((addr >> 13) & 3) {
case 0:
chr_mode = (shiftdata & 0x10);
prg_size = (shiftdata & 0x08);
prg_mode = (shiftdata & 0x04);
mirror = (shiftdata & 0x03);
break;
case 1:
chr_bank[0] = (shiftdata & 0x1f);
break;
case 2:
chr_bank[1] = (shiftdata & 0x1f);
break;
case 3:
ram_disable = (shiftdata & 0x10);
prg_bank = (shiftdata & 0x0f);
break;
}
}
}
}
void power() {
}
void reset() {
writedelay = 0;
shiftaddr = 0;
shiftdata = 0;
chr_mode = 0;
prg_size = 1;
prg_mode = 1;
mirror = 0;
chr_bank[0] = 0;
chr_bank[1] = 1;
ram_disable = 0;
prg_bank = 0;
}
void serialize(serializer &s) {
s.integer(writedelay);
s.integer(shiftaddr);
s.integer(shiftdata);
s.integer(chr_mode);
s.integer(prg_size);
s.integer(prg_mode);
s.integer(mirror);
s.array(chr_bank);
s.integer(ram_disable);
s.integer(prg_bank);
}
MMC1(Board &board) : Chip(board) {
revision = Revision::MMC1B2;
}
};

View File

@@ -1,189 +0,0 @@
struct MMC3 : Chip {
bool chr_mode;
bool prg_mode;
uint3 bank_select;
uint8 prg_bank[2];
uint8 chr_bank[6];
bool mirror;
bool ram_enable;
bool ram_write_protect;
uint8 irq_latch;
uint8 irq_counter;
bool irq_enable;
unsigned irq_delay;
bool irq_line;
uint16 chr_abus;
void main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(irq_delay) irq_delay--;
cpu.set_irq_line(irq_line);
tick();
}
}
void irq_test(unsigned addr) {
if(!(chr_abus & 0x1000) && (addr & 0x1000)) {
if(irq_delay == 0) {
if(irq_counter == 0) {
irq_counter = irq_latch;
} else if(--irq_counter == 0) {
if(irq_enable) irq_line = 1;
}
}
irq_delay = 6;
}
chr_abus = addr;
}
unsigned prg_addr(unsigned addr) const {
switch((addr >> 13) & 3) {
case 0:
if(prg_mode == 1) return (0x3e << 13) | (addr & 0x1fff);
return (prg_bank[0] << 13) | (addr & 0x1fff);
case 1:
return (prg_bank[1] << 13) | (addr & 0x1fff);
case 2:
if(prg_mode == 0) return (0x3e << 13) | (addr & 0x1fff);
return (prg_bank[0] << 13) | (addr & 0x1fff);
case 3:
return (0x3f << 13) | (addr & 0x1fff);
}
}
unsigned chr_addr(unsigned addr) const {
if(chr_mode == 0) {
if(addr <= 0x07ff) return (chr_bank[0] << 10) | (addr & 0x07ff);
if(addr <= 0x0fff) return (chr_bank[1] << 10) | (addr & 0x07ff);
if(addr <= 0x13ff) return (chr_bank[2] << 10) | (addr & 0x03ff);
if(addr <= 0x17ff) return (chr_bank[3] << 10) | (addr & 0x03ff);
if(addr <= 0x1bff) return (chr_bank[4] << 10) | (addr & 0x03ff);
if(addr <= 0x1fff) return (chr_bank[5] << 10) | (addr & 0x03ff);
} else {
if(addr <= 0x03ff) return (chr_bank[2] << 10) | (addr & 0x03ff);
if(addr <= 0x07ff) return (chr_bank[3] << 10) | (addr & 0x03ff);
if(addr <= 0x0bff) return (chr_bank[4] << 10) | (addr & 0x03ff);
if(addr <= 0x0fff) return (chr_bank[5] << 10) | (addr & 0x03ff);
if(addr <= 0x17ff) return (chr_bank[0] << 10) | (addr & 0x07ff);
if(addr <= 0x1fff) return (chr_bank[1] << 10) | (addr & 0x07ff);
}
}
unsigned ciram_addr(unsigned addr) const {
if(mirror == 0) return ((addr & 0x0400) >> 0) | (addr & 0x03ff);
if(mirror == 1) return ((addr & 0x0800) >> 1) | (addr & 0x03ff);
}
uint8 ram_read(unsigned addr) {
if(ram_enable) return board.prgram.data[addr & 0x1fff];
return 0x00;
}
void ram_write(unsigned addr, uint8 data) {
if(ram_enable && !ram_write_protect) board.prgram.data[addr & 0x1fff] = data;
}
void reg_write(unsigned addr, uint8 data) {
switch(addr & 0xe001) {
case 0x8000:
chr_mode = data & 0x80;
prg_mode = data & 0x40;
bank_select = data & 0x07;
break;
case 0x8001:
switch(bank_select) {
case 0: chr_bank[0] = data & ~1; break;
case 1: chr_bank[1] = data & ~1; break;
case 2: chr_bank[2] = data; break;
case 3: chr_bank[3] = data; break;
case 4: chr_bank[4] = data; break;
case 5: chr_bank[5] = data; break;
case 6: prg_bank[0] = data & 0x3f; break;
case 7: prg_bank[1] = data & 0x3f; break;
}
break;
case 0xa000:
mirror = data & 0x01;
break;
case 0xa001:
ram_enable = data & 0x80;
ram_write_protect = data & 0x40;
break;
case 0xc000:
irq_latch = data;
break;
case 0xc001:
irq_counter = 0;
break;
case 0xe000:
irq_enable = false;
irq_line = 0;
break;
case 0xe001:
irq_enable = true;
break;
}
}
void power() {
}
void reset() {
chr_mode = 0;
prg_mode = 0;
bank_select = 0;
prg_bank[0] = 0;
prg_bank[1] = 0;
chr_bank[0] = 0;
chr_bank[1] = 0;
chr_bank[2] = 0;
chr_bank[3] = 0;
chr_bank[4] = 0;
chr_bank[5] = 0;
mirror = 0;
ram_enable = 1;
ram_write_protect = 0;
irq_latch = 0;
irq_counter = 0;
irq_enable = false;
irq_delay = 0;
irq_line = 0;
chr_abus = 0;
}
void serialize(serializer &s) {
s.integer(chr_mode);
s.integer(prg_mode);
s.integer(bank_select);
s.array(prg_bank);
s.array(chr_bank);
s.integer(mirror);
s.integer(ram_enable);
s.integer(ram_write_protect);
s.integer(irq_latch);
s.integer(irq_counter);
s.integer(irq_enable);
s.integer(irq_delay);
s.integer(irq_line);
s.integer(chr_abus);
}
MMC3(Board &board) : Chip(board) {
}
};

View File

@@ -1,497 +0,0 @@
struct MMC5 : Chip {
enum class Revision : unsigned {
MMC5,
MMC5B,
} revision;
uint8 exram[1024];
//programmable registers
uint2 prg_mode; //$5100
uint2 chr_mode; //$5101
uint2 prgram_write_protect[2]; //$5102,$5103
uint2 exram_mode; //$5104
uint2 nametable_mode[4]; //$5105
uint8 fillmode_tile; //$5106
uint8 fillmode_color; //$5107
bool ram_select; //$5113
uint2 ram_bank; //$5113
uint8 prg_bank[4]; //$5114-5117
uint10 chr_sprite_bank[8]; //$5120-5127
uint10 chr_bg_bank[4]; //$5128-512b
uint2 chr_bank_hi; //$5130
bool vs_enable; //$5200
bool vs_side; //$5200
uint5 vs_tile; //$5200
uint8 vs_scroll; //$5201
uint8 vs_bank; //$5202
uint8 irq_line; //$5203
bool irq_enable; //$5204
uint8 multiplicand; //$5205
uint8 multiplier; //$5206
//status registers
unsigned cpu_cycle_counter;
unsigned irq_counter;
bool irq_pending;
bool in_frame;
unsigned vcounter;
unsigned hcounter;
uint16 chr_access[4];
bool chr_active;
bool sprite_8x16;
uint8 exbank;
uint8 exattr;
bool vs_fetch;
uint8 vs_vpos;
uint8 vs_hpos;
void main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
//scanline() resets this; if no scanlines detected, enter video blanking period
if(++cpu_cycle_counter >= 200) blank(); //113-114 normal; ~2500 across Vblank period
cpu.set_irq_line(irq_enable && irq_pending);
tick();
}
}
void scanline(unsigned y) {
//used for testing only, to verify MMC5 scanline detection is accurate:
//if(y != vcounter && y <= 240) print(y, " vs ", vcounter, "\n");
}
uint8 prg_access(bool write, unsigned addr, uint8 data = 0x00) {
unsigned bank;
if((addr & 0xe000) == 0x6000) {
bank = (ram_select << 2) | ram_bank;
addr &= 0x1fff;
} else if(prg_mode == 0) {
bank = prg_bank[3] & ~3;
addr &= 0x7fff;
} else if(prg_mode == 1) {
if((addr & 0xc000) == 0x8000) bank = (prg_bank[1] & ~1);
if((addr & 0xe000) == 0xc000) bank = (prg_bank[3] & ~1);
addr &= 0x3fff;
} else if(prg_mode == 2) {
if((addr & 0xe000) == 0x8000) bank = (prg_bank[1] & ~1) | 0;
if((addr & 0xe000) == 0xa000) bank = (prg_bank[1] & ~1) | 1;
if((addr & 0xe000) == 0xc000) bank = (prg_bank[2]);
if((addr & 0xe000) == 0xe000) bank = (prg_bank[3]);
addr &= 0x1fff;
} else if(prg_mode == 3) {
if((addr & 0xe000) == 0x8000) bank = prg_bank[0];
if((addr & 0xe000) == 0xa000) bank = prg_bank[1];
if((addr & 0xe000) == 0xc000) bank = prg_bank[2];
if((addr & 0xe000) == 0xe000) bank = prg_bank[3];
addr &= 0x1fff;
}
bool rom = bank & 0x80;
bank &= 0x7f;
if(write == false) {
if(rom) {
return board.prgrom.read((bank << 13) | addr);
} else {
return board.prgram.read((bank << 13) | addr);
}
} else {
if(rom) {
board.prgrom.write((bank << 13) | addr, data);
} else {
if(prgram_write_protect[0] == 2 && prgram_write_protect[1] == 1) {
board.prgram.write((bank << 13) | addr, data);
}
}
return 0x00;
}
}
uint8 prg_read(unsigned addr) {
if((addr & 0xfc00) == 0x5c00) {
if(exram_mode >= 2) return exram[addr & 0x03ff];
return cpu.mdr();
}
if(addr >= 0x6000) {
return prg_access(0, addr);
}
switch(addr) {
case 0x5204: {
uint8 result = (irq_pending << 7) | (in_frame << 6);
irq_pending = false;
return result;
}
case 0x5205: return (multiplier * multiplicand) >> 0;
case 0x5206: return (multiplier * multiplicand) >> 8;
}
}
void prg_write(unsigned addr, uint8 data) {
if((addr & 0xfc00) == 0x5c00) {
//writes 0x00 *during* Vblank (not during screen rendering ...)
if(exram_mode == 0 || exram_mode == 1) exram[addr & 0x03ff] = in_frame ? data : 0x00;
if(exram_mode == 2) exram[addr & 0x03ff] = data;
return;
}
if(addr >= 0x6000) {
prg_access(1, addr, data);
return;
}
switch(addr) {
case 0x2000:
sprite_8x16 = data & 0x20;
break;
case 0x2001:
//if BG+sprites are disabled; enter video blanking period
if((data & 0x18) == 0) blank();
break;
case 0x5100: prg_mode = data & 3; break;
case 0x5101: chr_mode = data & 3; break;
case 0x5102: prgram_write_protect[0] = data & 3; break;
case 0x5103: prgram_write_protect[1] = data & 3; break;
case 0x5104:
exram_mode = data & 3;
break;
case 0x5105:
nametable_mode[0] = (data & 0x03) >> 0;
nametable_mode[1] = (data & 0x0c) >> 2;
nametable_mode[2] = (data & 0x30) >> 4;
nametable_mode[3] = (data & 0xc0) >> 6;
break;
case 0x5106:
fillmode_tile = data;
break;
case 0x5107:
fillmode_color = data & 3;
fillmode_color |= fillmode_color << 2;
fillmode_color |= fillmode_color << 4;
break;
case 0x5113:
ram_select = data & 0x04;
ram_bank = data & 0x03;
break;
case 0x5114: prg_bank[0] = data; break;
case 0x5115: prg_bank[1] = data; break;
case 0x5116: prg_bank[2] = data; break;
case 0x5117: prg_bank[3] = data | 0x80; break;
case 0x5120: chr_sprite_bank[0] = (chr_bank_hi << 8) | data; chr_active = 0; break;
case 0x5121: chr_sprite_bank[1] = (chr_bank_hi << 8) | data; chr_active = 0; break;
case 0x5122: chr_sprite_bank[2] = (chr_bank_hi << 8) | data; chr_active = 0; break;
case 0x5123: chr_sprite_bank[3] = (chr_bank_hi << 8) | data; chr_active = 0; break;
case 0x5124: chr_sprite_bank[4] = (chr_bank_hi << 8) | data; chr_active = 0; break;
case 0x5125: chr_sprite_bank[5] = (chr_bank_hi << 8) | data; chr_active = 0; break;
case 0x5126: chr_sprite_bank[6] = (chr_bank_hi << 8) | data; chr_active = 0; break;
case 0x5127: chr_sprite_bank[7] = (chr_bank_hi << 8) | data; chr_active = 0; break;
case 0x5128: chr_bg_bank[0] = (chr_bank_hi << 8) | data; chr_active = 1; break;
case 0x5129: chr_bg_bank[1] = (chr_bank_hi << 8) | data; chr_active = 1; break;
case 0x512a: chr_bg_bank[2] = (chr_bank_hi << 8) | data; chr_active = 1; break;
case 0x512b: chr_bg_bank[3] = (chr_bank_hi << 8) | data; chr_active = 1; break;
case 0x5130:
chr_bank_hi = data & 3;
break;
case 0x5200:
vs_enable = data & 0x80;
vs_side = data & 0x40;
vs_tile = data & 0x1f;
break;
case 0x5201:
vs_scroll = data;
break;
case 0x5202:
vs_bank = data;
break;
case 0x5203:
irq_line = data;
break;
case 0x5204:
irq_enable = data & 0x80;
break;
case 0x5205:
multiplicand = data;
break;
case 0x5206:
multiplier = data;
break;
}
}
unsigned chr_sprite_addr(unsigned addr) {
if(chr_mode == 0) {
auto bank = chr_sprite_bank[7];
return (bank * 0x2000) + (addr & 0x1fff);
}
if(chr_mode == 1) {
auto bank = chr_sprite_bank[(addr / 0x1000) * 4 + 3];
return (bank * 0x1000) + (addr & 0x0fff);
}
if(chr_mode == 2) {
auto bank = chr_sprite_bank[(addr / 0x0800) * 2 + 1];
return (bank * 0x0800) + (addr & 0x07ff);
}
if(chr_mode == 3) {
auto bank = chr_sprite_bank[(addr / 0x0400)];
return (bank * 0x0400) + (addr & 0x03ff);
}
}
unsigned chr_bg_addr(unsigned addr) {
addr &= 0x0fff;
if(chr_mode == 0) {
auto bank = chr_bg_bank[3];
return (bank * 0x2000) + (addr & 0x0fff);
}
if(chr_mode == 1) {
auto bank = chr_bg_bank[3];
return (bank * 0x1000) + (addr & 0x0fff);
}
if(chr_mode == 2) {
auto bank = chr_bg_bank[(addr / 0x0800) * 2 + 1];
return (bank * 0x0800) + (addr & 0x07ff);
}
if(chr_mode == 3) {
auto bank = chr_bg_bank[(addr / 0x0400)];
return (bank * 0x0400) + (addr & 0x03ff);
}
}
unsigned chr_vs_addr(unsigned addr) {
return (vs_bank * 0x1000) + (addr & 0x0ff8) + (vs_vpos & 7);
}
void blank() {
in_frame = false;
}
void scanline() {
hcounter = 0;
if(in_frame == false) {
in_frame = true;
irq_pending = false;
vcounter = 0;
} else {
if(vcounter == irq_line) irq_pending = true;
vcounter++;
}
cpu_cycle_counter = 0;
}
uint8 ciram_read(unsigned addr) {
if(vs_fetch && (hcounter & 2) == 0) return exram[vs_vpos / 8 * 32 + vs_hpos / 8];
if(vs_fetch && (hcounter & 2) != 0) return exram[vs_vpos / 32 * 8 + vs_hpos / 32 + 0x03c0];
switch(nametable_mode[(addr >> 10) & 3]) {
case 0: return ppu.ciram_read(0x0000 | (addr & 0x03ff));
case 1: return ppu.ciram_read(0x0400 | (addr & 0x03ff));
case 2: return exram_mode < 2 ? exram[addr & 0x03ff] : 0x00;
case 3: return (hcounter & 2) == 0 ? fillmode_tile : fillmode_color;
}
}
uint8 chr_read(unsigned addr) {
chr_access[0] = chr_access[1];
chr_access[1] = chr_access[2];
chr_access[2] = chr_access[3];
chr_access[3] = addr;
//detect two unused nametable fetches at end of each scanline
if((chr_access[0] & 0x2000) == 0
&& (chr_access[1] & 0x2000)
&& (chr_access[2] & 0x2000)
&& (chr_access[3] & 0x2000)) scanline();
if(in_frame == false) {
vs_fetch = false;
if(addr & 0x2000) return ciram_read(addr);
return board.chrrom.read(chr_active ? chr_bg_addr(addr) : chr_sprite_addr(addr));
}
bool bg_fetch = (hcounter < 256 || hcounter >= 320);
uint8 result = 0x00;
if((hcounter & 7) == 0) {
vs_hpos = hcounter >= 320 ? hcounter - 320 : hcounter + 16;
vs_vpos = vcounter + vs_scroll;
vs_fetch = vs_enable && bg_fetch && exram_mode < 2
&& (vs_side ? vs_hpos / 8 >= vs_tile : vs_hpos / 8 < vs_tile);
if(vs_vpos >= 240) vs_vpos -= 240;
result = ciram_read(addr);
exbank = (chr_bank_hi << 6) | (exram[addr & 0x03ff] & 0x3f);
exattr = exram[addr & 0x03ff] >> 6;
exattr |= exattr << 2;
exattr |= exattr << 4;
} else if((hcounter & 7) == 2) {
result = ciram_read(addr);
if(bg_fetch && exram_mode == 1) result = exattr;
} else {
if(vs_fetch) result = board.chrrom.read(chr_vs_addr(addr));
else if(sprite_8x16 ? bg_fetch : chr_active) result = board.chrrom.read(chr_bg_addr(addr));
else result = board.chrrom.read(chr_sprite_addr(addr));
if(bg_fetch && exram_mode == 1) result = board.chrrom.read(exbank * 0x1000 + (addr & 0x0fff));
}
hcounter += 2;
return result;
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) {
switch(nametable_mode[(addr >> 10) & 3]) {
case 0: return ppu.ciram_write(0x0000 | (addr & 0x03ff), data);
case 1: return ppu.ciram_write(0x0400 | (addr & 0x03ff), data);
case 2: exram[addr & 0x03ff] = data; break;
}
}
}
void power() {
}
void reset() {
for(auto &n : exram) n = 0xff;
prg_mode = 3;
chr_mode = 0;
for(auto &n : prgram_write_protect) n = 0;
exram_mode = 0;
for(auto &n : nametable_mode) n = 0;
fillmode_tile = 0;
fillmode_color = 0;
ram_select = 0;
ram_bank = 0;
prg_bank[0] = 0x00;
prg_bank[1] = 0x00;
prg_bank[2] = 0x00;
prg_bank[3] = 0xff;
for(auto &n : chr_sprite_bank) n = 0;
for(auto &n : chr_bg_bank) n = 0;
chr_bank_hi = 0;
vs_enable = 0;
vs_side = 0;
vs_tile = 0;
vs_scroll = 0;
vs_bank = 0;
irq_line = 0;
irq_enable = 0;
multiplicand = 0;
multiplier = 0;
cpu_cycle_counter = 0;
irq_counter = 0;
irq_pending = 0;
in_frame = 0;
vcounter = 0;
hcounter = 0;
for(auto &n : chr_access) n = 0;
chr_active = 0;
sprite_8x16 = 0;
exbank = 0;
exattr = 0;
vs_fetch = 0;
vs_vpos = 0;
vs_hpos = 0;
}
void serialize(serializer &s) {
s.array(exram);
s.integer(prg_mode);
s.integer(chr_mode);
for(auto &n : prgram_write_protect) s.integer(n);
s.integer(exram_mode);
for(auto &n : nametable_mode) s.integer(n);
s.integer(fillmode_tile);
s.integer(fillmode_color);
s.integer(ram_select);
s.integer(ram_bank);
for(auto &n : prg_bank) s.integer(n);
for(auto &n : chr_sprite_bank) s.integer(n);
for(auto &n : chr_bg_bank) s.integer(n);
s.integer(chr_bank_hi);
s.integer(vs_enable);
s.integer(vs_side);
s.integer(vs_tile);
s.integer(vs_scroll);
s.integer(vs_bank);
s.integer(irq_line);
s.integer(irq_enable);
s.integer(multiplicand);
s.integer(multiplier);
s.integer(cpu_cycle_counter);
s.integer(irq_counter);
s.integer(irq_pending);
s.integer(in_frame);
s.integer(vcounter);
s.integer(hcounter);
for(auto &n : chr_access) s.integer(n);
s.integer(chr_active);
s.integer(sprite_8x16);
s.integer(exbank);
s.integer(exattr);
s.integer(vs_fetch);
s.integer(vs_vpos);
s.integer(vs_hpos);
}
MMC5(Board &board) : Chip(board) {
revision = Revision::MMC5;
}
};

View File

@@ -1,200 +0,0 @@
struct MMC6 : Chip {
bool chr_mode;
bool prg_mode;
bool ram_enable;
uint3 bank_select;
uint8 prg_bank[2];
uint8 chr_bank[6];
bool mirror;
bool ram_readable[2];
bool ram_writable[2];
uint8 irq_latch;
uint8 irq_counter;
bool irq_enable;
unsigned irq_delay;
bool irq_line;
uint16 chr_abus;
void main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(irq_delay) irq_delay--;
cpu.set_irq_line(irq_line);
tick();
}
}
void irq_test(unsigned addr) {
if(!(chr_abus & 0x1000) && (addr & 0x1000)) {
if(irq_delay == 0) {
if(irq_counter == 0) {
irq_counter = irq_latch;
} else if(--irq_counter == 0) {
if(irq_enable) irq_line = 1;
}
}
irq_delay = 6;
}
chr_abus = addr;
}
unsigned prg_addr(unsigned addr) const {
switch((addr >> 13) & 3) {
case 0:
if(prg_mode == 1) return (0x3e << 13) | (addr & 0x1fff);
return (prg_bank[0] << 13) | (addr & 0x1fff);
case 1:
return (prg_bank[1] << 13) | (addr & 0x1fff);
case 2:
if(prg_mode == 0) return (0x3e << 13) | (addr & 0x1fff);
return (prg_bank[0] << 13) | (addr & 0x1fff);
case 3:
return (0x3f << 13) | (addr & 0x1fff);
}
}
unsigned chr_addr(unsigned addr) const {
if(chr_mode == 0) {
if(addr <= 0x07ff) return (chr_bank[0] << 10) | (addr & 0x07ff);
if(addr <= 0x0fff) return (chr_bank[1] << 10) | (addr & 0x07ff);
if(addr <= 0x13ff) return (chr_bank[2] << 10) | (addr & 0x03ff);
if(addr <= 0x17ff) return (chr_bank[3] << 10) | (addr & 0x03ff);
if(addr <= 0x1bff) return (chr_bank[4] << 10) | (addr & 0x03ff);
if(addr <= 0x1fff) return (chr_bank[5] << 10) | (addr & 0x03ff);
} else {
if(addr <= 0x03ff) return (chr_bank[2] << 10) | (addr & 0x03ff);
if(addr <= 0x07ff) return (chr_bank[3] << 10) | (addr & 0x03ff);
if(addr <= 0x0bff) return (chr_bank[4] << 10) | (addr & 0x03ff);
if(addr <= 0x0fff) return (chr_bank[5] << 10) | (addr & 0x03ff);
if(addr <= 0x17ff) return (chr_bank[0] << 10) | (addr & 0x07ff);
if(addr <= 0x1fff) return (chr_bank[1] << 10) | (addr & 0x07ff);
}
}
unsigned ciram_addr(unsigned addr) const {
if(mirror == 0) return ((addr & 0x0400) >> 0) | (addr & 0x03ff);
if(mirror == 1) return ((addr & 0x0800) >> 1) | (addr & 0x03ff);
}
uint8 ram_read(unsigned addr) {
if(ram_enable == false) return cpu.mdr();
if(ram_readable[0] == false && ram_readable[1] == false) return cpu.mdr();
bool region = addr & 0x0200;
if(ram_readable[region] == false) return 0x00;
return board.prgram.read((region * 0x0200) + (addr & 0x01ff));
}
void ram_write(unsigned addr, uint8 data) {
if(ram_enable == false) return;
bool region = addr & 0x0200;
if(ram_writable[region] == false) return;
return board.prgram.write((region * 0x0200) + (addr & 0x01ff), data);
}
void reg_write(unsigned addr, uint8 data) {
switch(addr & 0xe001) {
case 0x8000:
chr_mode = data & 0x80;
prg_mode = data & 0x40;
ram_enable = data & 0x20;
bank_select = data & 0x07;
if(ram_enable == false) {
for(auto &n : ram_readable) n = false;
for(auto &n : ram_writable) n = false;
}
break;
case 0x8001:
switch(bank_select) {
case 0: chr_bank[0] = data & ~1; break;
case 1: chr_bank[1] = data & ~1; break;
case 2: chr_bank[2] = data; break;
case 3: chr_bank[3] = data; break;
case 4: chr_bank[4] = data; break;
case 5: chr_bank[5] = data; break;
case 6: prg_bank[0] = data & 0x3f; break;
case 7: prg_bank[1] = data & 0x3f; break;
}
break;
case 0xa000:
mirror = data & 0x01;
break;
case 0xa001:
if(ram_enable == false) break;
ram_readable[1] = data & 0x80;
ram_writable[1] = data & 0x40;
ram_readable[0] = data & 0x20;
ram_writable[0] = data & 0x10;
break;
case 0xc000:
irq_latch = data;
break;
case 0xc001:
irq_counter = 0;
break;
case 0xe000:
irq_enable = false;
irq_line = 0;
break;
case 0xe001:
irq_enable = true;
break;
}
}
void power() {
}
void reset() {
chr_mode = 0;
prg_mode = 0;
ram_enable = 0;
bank_select = 0;
for(auto &n : prg_bank) n = 0;
for(auto &n : chr_bank) n = 0;
mirror = 0;
for(auto &n : ram_readable) n = 0;
for(auto &n : ram_writable) n = 0;
irq_latch = 0;
irq_counter = 0;
irq_enable = 0;
irq_delay = 0;
irq_line = 0;
chr_abus = 0;
}
void serialize(serializer &s) {
s.integer(chr_mode);
s.integer(prg_mode);
s.integer(ram_enable);
s.integer(bank_select);
for(auto &n : prg_bank) s.integer(n);
for(auto &n : chr_bank) s.integer(n);
s.integer(mirror);
for(auto &n : ram_readable) s.integer(n);
for(auto &n : ram_writable) s.integer(n);
s.integer(irq_latch);
s.integer(irq_counter);
s.integer(irq_enable);
s.integer(irq_delay);
s.integer(irq_line);
s.integer(chr_abus);
}
MMC6(Board &board) : Chip(board) {
}
};

View File

@@ -1,80 +0,0 @@
struct VRC1 : Chip {
uint4 prg_bank[3];
uint4 chr_banklo[2];
bool chr_bankhi[2];
bool mirror;
unsigned prg_addr(unsigned addr) const {
unsigned bank = 0x0f;
if((addr & 0xe000) == 0x8000) bank = prg_bank[0];
if((addr & 0xe000) == 0xa000) bank = prg_bank[1];
if((addr & 0xe000) == 0xc000) bank = prg_bank[2];
return (bank * 0x2000) + (addr & 0x1fff);
}
unsigned chr_addr(unsigned addr) const {
unsigned bank = chr_banklo[(bool)(addr & 0x1000)];
bank |= chr_bankhi[(bool)(addr & 0x1000)] << 4;
return (bank * 0x1000) + (addr & 0x0fff);
}
unsigned ciram_addr(unsigned addr) const {
switch(mirror) {
case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical mirroring
case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal mirroring
}
throw;
}
void reg_write(unsigned addr, uint8 data) {
switch(addr & 0xf000) {
case 0x8000:
prg_bank[0] = data & 0x0f;
break;
case 0x9000:
chr_bankhi[1] = data & 0x04;
chr_bankhi[0] = data & 0x02;
mirror = data & 0x01;
break;
case 0xa000:
prg_bank[1] = data & 0x0f;
break;
case 0xc000:
prg_bank[2] = data & 0x0f;
break;
case 0xe000:
chr_banklo[0] = data & 0x0f;
break;
case 0xf000:
chr_banklo[1] = data & 0x0f;
break;
}
}
void power() {
}
void reset() {
for(auto &n : prg_bank) n = 0;
for(auto &n : chr_banklo) n = 0;
for(auto &n : chr_bankhi) n = 0;
mirror = 0;
}
void serialize(serializer &s) {
for(auto &n : prg_bank) s.integer(n);
for(auto &n : chr_banklo) s.integer(n);
for(auto &n : chr_bankhi) s.integer(n);
s.integer(mirror);
}
VRC1(Board &board) : Chip(board) {
}
};

View File

@@ -1,110 +0,0 @@
struct VRC2 : Chip {
uint5 prg_bank[2];
uint8 chr_bank[8];
uint2 mirror;
bool latch;
unsigned prg_addr(unsigned addr) const {
unsigned bank;
switch(addr & 0xe000) {
case 0x8000: bank = prg_bank[0]; break;
case 0xa000: bank = prg_bank[1]; break;
case 0xc000: bank = 0x1e; break;
case 0xe000: bank = 0x1f; break;
}
return (bank * 0x2000) + (addr & 0x1fff);
}
unsigned chr_addr(unsigned addr) const {
unsigned bank = chr_bank[addr / 0x0400];
return (bank * 0x0400) + (addr & 0x03ff);
}
unsigned ciram_addr(unsigned addr) const {
switch(mirror) {
case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical mirroring
case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal mirroring
case 2: return 0x0000 | (addr & 0x03ff); //one-screen mirroring (first)
case 3: return 0x0400 | (addr & 0x03ff); //one-screen mirroring (second)
}
throw;
}
uint8 ram_read(unsigned addr) {
if(board.prgram.size == 0) {
if((addr & 0xf000) == 0x6000) return cpu.mdr() | latch;
return cpu.mdr();
}
return board.prgram.read(addr & 0x1fff);
}
void ram_write(unsigned addr, uint8 data) {
if(board.prgram.size == 0) {
if((addr & 0xf000) == 0x6000) latch = data & 0x01;
return;
}
return board.prgram.write(addr & 0x1fff, data);
}
void reg_write(unsigned addr, uint8 data) {
switch(addr) {
case 0x8000: case 0x8001: case 0x8002: case 0x8003:
prg_bank[0] = data & 0x1f;
break;
case 0x9000: case 0x9001: case 0x9002: case 0x9003:
mirror = data & 0x03;
break;
case 0xa000: case 0xa001: case 0xa002: case 0xa003:
prg_bank[1] = data & 0x1f;
break;
case 0xb000: chr_bank[0] = (chr_bank[0] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xb001: chr_bank[0] = (chr_bank[0] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xb002: chr_bank[1] = (chr_bank[1] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xb003: chr_bank[1] = (chr_bank[1] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xc000: chr_bank[2] = (chr_bank[2] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xc001: chr_bank[2] = (chr_bank[2] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xc002: chr_bank[3] = (chr_bank[3] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xc003: chr_bank[3] = (chr_bank[3] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xd000: chr_bank[4] = (chr_bank[4] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xd001: chr_bank[4] = (chr_bank[4] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xd002: chr_bank[5] = (chr_bank[5] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xd003: chr_bank[5] = (chr_bank[5] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xe000: chr_bank[6] = (chr_bank[6] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xe001: chr_bank[6] = (chr_bank[6] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xe002: chr_bank[7] = (chr_bank[7] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xe003: chr_bank[7] = (chr_bank[7] & 0x0f) | ((data & 0x0f) << 4); break;
}
}
void power() {
}
void reset() {
for(auto &n : prg_bank) n = 0;
for(auto &n : chr_bank) n = 0;
mirror = 0;
latch = 0;
}
void serialize(serializer &s) {
for(auto &n : prg_bank) s.integer(n);
for(auto &n : chr_bank) s.integer(n);
s.integer(mirror);
s.integer(latch);
}
VRC2(Board &board) : Chip(board) {
}
};

View File

@@ -1,100 +0,0 @@
struct VRC3 : Chip {
uint4 prg_bank;
bool irq_mode;
bool irq_enable;
bool irq_acknowledge;
uint16 irq_latch;
struct {
union {
uint16 w;
struct { uint8 order_lsb2(l, h); };
};
} irq_counter;
bool irq_line;
void main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(irq_enable) {
if(irq_mode == 0) { //16-bit
if(++irq_counter.w == 0) {
irq_line = 1;
irq_enable = irq_acknowledge;
irq_counter.w = irq_latch;
}
}
if(irq_mode == 1) { //8-bit
if(++irq_counter.l == 0) {
irq_line = 1;
irq_enable = irq_acknowledge;
irq_counter.l = irq_latch;
}
}
}
cpu.set_irq_line(irq_line);
tick();
}
}
unsigned prg_addr(unsigned addr) const {
unsigned bank = (addr < 0xc000 ? (unsigned)prg_bank : 0x0f);
return (bank * 0x4000) + (addr & 0x3fff);
}
void reg_write(unsigned addr, uint8 data) {
switch(addr & 0xf000) {
case 0x8000: irq_latch = (irq_latch & 0xfff0) | ((data & 0x0f) << 0); break;
case 0x9000: irq_latch = (irq_latch & 0xff0f) | ((data & 0x0f) << 4); break;
case 0xa000: irq_latch = (irq_latch & 0xf0ff) | ((data & 0x0f) << 8); break;
case 0xb000: irq_latch = (irq_latch & 0x0fff) | ((data & 0x0f) << 12); break;
case 0xc000:
irq_mode = data & 0x04;
irq_enable = data & 0x02;
irq_acknowledge = data & 0x01;
if(irq_enable) irq_counter.w = irq_latch;
break;
case 0xd000:
irq_line = 0;
irq_enable = irq_acknowledge;
break;
case 0xf000:
prg_bank = data & 0x0f;
break;
}
}
void power() {
}
void reset() {
prg_bank = 0;
irq_mode = 0;
irq_enable = 0;
irq_acknowledge = 0;
irq_latch = 0;
irq_counter.w = 0;
irq_line = 0;
}
void serialize(serializer &s) {
s.integer(prg_bank);
s.integer(irq_mode);
s.integer(irq_enable);
s.integer(irq_acknowledge);
s.integer(irq_latch);
s.integer(irq_counter.w);
s.integer(irq_line);
}
VRC3(Board &board) : Chip(board) {
}
};

View File

@@ -1,184 +0,0 @@
struct VRC4 : Chip {
bool prg_mode;
uint5 prg_bank[2];
uint2 mirror;
uint8 chr_bank[8];
uint8 irq_latch;
bool irq_mode;
bool irq_enable;
bool irq_acknowledge;
uint8 irq_counter;
signed irq_scalar;
bool irq_line;
void main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(irq_enable) {
if(irq_mode == 0) {
irq_scalar -= 3;
if(irq_scalar <= 0) {
irq_scalar += 341;
if(irq_counter == 0xff) {
irq_counter = irq_latch;
irq_line = 1;
} else {
irq_counter++;
}
}
}
if(irq_mode == 1) {
if(irq_counter == 0xff) {
irq_counter = irq_latch;
irq_line = 1;
} else {
irq_counter++;
}
}
}
cpu.set_irq_line(irq_line);
tick();
}
}
unsigned prg_addr(unsigned addr) const {
unsigned bank = 0, banks = board.prgrom.size / 0x2000;
switch(addr & 0xe000) {
case 0x8000: bank = prg_mode == 0 ? (unsigned)prg_bank[0] : banks - 2; break;
case 0xa000: bank = prg_bank[1]; break;
case 0xc000: bank = prg_mode == 0 ? banks - 2 : (unsigned)prg_bank[0]; break;
case 0xe000: bank = banks - 1; break;
}
return (bank * 0x2000) + (addr & 0x1fff);
}
unsigned chr_addr(unsigned addr) const {
unsigned bank = chr_bank[addr / 0x0400];
return (bank * 0x0400) + (addr & 0x03ff);
}
unsigned ciram_addr(unsigned addr) const {
switch(mirror) {
case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical mirroring
case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal mirroring
case 2: return 0x0000 | (addr & 0x03ff); //one-screen mirroring (first)
case 3: return 0x0400 | (addr & 0x03ff); //one-screen mirroring (second)
}
throw;
}
void reg_write(unsigned addr, uint8 data) {
switch(addr) {
case 0x8000: case 0x8001: case 0x8002: case 0x8003:
prg_bank[0] = data & 0x1f;
break;
case 0x9000: case 0x9001:
mirror = data & 0x03;
break;
case 0x9002: case 0x9003:
prg_mode = data & 0x02;
break;
case 0xa000: case 0xa001: case 0xa002: case 0xa003:
prg_bank[1] = data & 0x1f;
break;
case 0xb000: chr_bank[0] = (chr_bank[0] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xb001: chr_bank[0] = (chr_bank[0] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xb002: chr_bank[1] = (chr_bank[1] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xb003: chr_bank[1] = (chr_bank[1] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xc000: chr_bank[2] = (chr_bank[2] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xc001: chr_bank[2] = (chr_bank[2] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xc002: chr_bank[3] = (chr_bank[3] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xc003: chr_bank[3] = (chr_bank[3] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xd000: chr_bank[4] = (chr_bank[4] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xd001: chr_bank[4] = (chr_bank[4] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xd002: chr_bank[5] = (chr_bank[5] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xd003: chr_bank[5] = (chr_bank[5] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xe000: chr_bank[6] = (chr_bank[6] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xe001: chr_bank[6] = (chr_bank[6] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xe002: chr_bank[7] = (chr_bank[7] & 0xf0) | ((data & 0x0f) << 0); break;
case 0xe003: chr_bank[7] = (chr_bank[7] & 0x0f) | ((data & 0x0f) << 4); break;
case 0xf000:
irq_latch = (irq_latch & 0xf0) | ((data & 0x0f) << 0);
break;
case 0xf001:
irq_latch = (irq_latch & 0x0f) | ((data & 0x0f) << 4);
break;
case 0xf002:
irq_mode = data & 0x04;
irq_enable = data & 0x02;
irq_acknowledge = data & 0x01;
if(irq_enable) {
irq_counter = irq_latch;
irq_scalar = 341;
}
irq_line = 0;
break;
case 0xf003:
irq_enable = irq_acknowledge;
irq_line = 0;
break;
}
}
void power() {
}
void reset() {
prg_mode = 0;
for(auto &n : prg_bank) n = 0;
mirror = 0;
for(auto &n : chr_bank) n = 0;
irq_latch = 0;
irq_mode = 0;
irq_enable = 0;
irq_acknowledge = 0;
irq_counter = 0;
irq_scalar = 0;
irq_line = 0;
}
void serialize(serializer &s) {
s.integer(prg_mode);
for(auto &n : prg_bank) s.integer(n);
s.integer(mirror);
for(auto &n : chr_bank) s.integer(n);
s.integer(irq_latch);
s.integer(irq_mode);
s.integer(irq_enable);
s.integer(irq_acknowledge);
s.integer(irq_counter);
s.integer(irq_scalar);
s.integer(irq_line);
}
VRC4(Board &board) : Chip(board) {
}
};

View File

@@ -1,321 +0,0 @@
struct VRC6 : Chip {
uint8 prg_bank[2];
uint8 chr_bank[8];
uint2 mirror;
uint8 irq_latch;
bool irq_mode;
bool irq_enable;
bool irq_acknowledge;
uint8 irq_counter;
signed irq_scalar;
bool irq_line;
struct Pulse {
bool mode;
uint3 duty;
uint4 volume;
bool enable;
uint12 frequency;
uint12 divider;
uint4 cycle;
uint4 output;
void clock() {
if(--divider == 0) {
divider = frequency + 1;
cycle++;
output = (mode == 1 || cycle > duty) ? volume : (uint4)0;
}
if(enable == false) output = 0;
}
void serialize(serializer &s) {
s.integer(mode);
s.integer(duty);
s.integer(volume);
s.integer(enable);
s.integer(frequency);
s.integer(divider);
s.integer(cycle);
s.integer(output);
}
} pulse1, pulse2;
struct Sawtooth {
uint6 rate;
bool enable;
uint12 frequency;
uint12 divider;
uint1 phase;
uint3 stage;
uint8 accumulator;
uint5 output;
void clock() {
if(--divider == 0) {
divider = frequency + 1;
if(++phase == 0) {
accumulator += rate;
if(++stage == 7) {
stage = 0;
accumulator = 0;
}
}
}
output = accumulator >> 3;
if(enable == false) output = 0;
}
void serialize(serializer &s) {
s.integer(rate);
s.integer(enable);
s.integer(frequency);
s.integer(divider);
s.integer(phase);
s.integer(stage);
s.integer(accumulator);
s.integer(output);
}
} sawtooth;
void main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(irq_enable) {
if(irq_mode == 0) {
irq_scalar -= 3;
if(irq_scalar <= 0) {
irq_scalar += 341;
if(irq_counter == 0xff) {
irq_counter = irq_latch;
irq_line = 1;
} else {
irq_counter++;
}
}
}
if(irq_mode == 1) {
if(irq_counter == 0xff) {
irq_counter = irq_latch;
irq_line = 1;
} else {
irq_counter++;
}
}
}
cpu.set_irq_line(irq_line);
pulse1.clock();
pulse2.clock();
sawtooth.clock();
signed output = (pulse1.output + pulse2.output + sawtooth.output) << 7;
apu.set_sample(-output);
tick();
}
}
unsigned prg_addr(unsigned addr) const {
if((addr & 0xc000) == 0x8000) return (prg_bank[0] << 14) | (addr & 0x3fff);
if((addr & 0xe000) == 0xc000) return (prg_bank[1] << 13) | (addr & 0x1fff);
if((addr & 0xe000) == 0xe000) return ( 0xff << 13) | (addr & 0x1fff);
}
unsigned chr_addr(unsigned addr) const {
unsigned bank = chr_bank[(addr >> 10) & 7];
return (bank << 10) | (addr & 0x03ff);
}
unsigned ciram_addr(unsigned addr) const {
switch(mirror) {
case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical mirroring
case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal mirroring
case 2: return 0x0000 | (addr & 0x03ff); //one-screen mirroring (first)
case 3: return 0x0400 | (addr & 0x03ff); //one-screen mirroring (second)
}
}
uint8 ram_read(unsigned addr) {
return board.prgram.data[addr & 0x1fff];
}
void ram_write(unsigned addr, uint8 data) {
board.prgram.data[addr & 0x1fff] = data;
}
void reg_write(unsigned addr, uint8 data) {
switch(addr) {
case 0x8000: case 0x8001: case 0x8002: case 0x8003:
prg_bank[0] = data;
break;
case 0x9000:
pulse1.mode = data & 0x80;
pulse1.duty = (data & 0x70) >> 4;
pulse1.volume = data & 0x0f;
break;
case 0x9001:
pulse1.frequency = (pulse1.frequency & 0x0f00) | ((data & 0xff) << 0);
break;
case 0x9002:
pulse1.frequency = (pulse1.frequency & 0x00ff) | ((data & 0x0f) << 8);
pulse1.enable = data & 0x80;
break;
case 0xa000:
pulse2.mode = data & 0x80;
pulse2.duty = (data & 0x70) >> 4;
pulse2.volume = data & 0x0f;
break;
case 0xa001:
pulse2.frequency = (pulse2.frequency & 0x0f00) | ((data & 0xff) << 0);
break;
case 0xa002:
pulse2.frequency = (pulse2.frequency & 0x00ff) | ((data & 0x0f) << 8);
pulse2.enable = data & 0x80;
break;
case 0xb000:
sawtooth.rate = data & 0x3f;
break;
case 0xb001:
sawtooth.frequency = (sawtooth.frequency & 0x0f00) | ((data & 0xff) << 0);
break;
case 0xb002:
sawtooth.frequency = (sawtooth.frequency & 0x00ff) | ((data & 0x0f) << 8);
sawtooth.enable = data & 0x80;
break;
case 0xb003:
mirror = (data >> 2) & 3;
break;
case 0xc000: case 0xc001: case 0xc002: case 0xc003:
prg_bank[1] = data;
break;
case 0xd000: case 0xd001: case 0xd002: case 0xd003:
chr_bank[0 + (addr & 3)] = data;
break;
case 0xe000: case 0xe001: case 0xe002: case 0xe003:
chr_bank[4 + (addr & 3)] = data;
break;
case 0xf000:
irq_latch = data;
break;
case 0xf001:
irq_mode = data & 0x04;
irq_enable = data & 0x02;
irq_acknowledge = data & 0x01;
if(irq_enable) {
irq_counter = irq_latch;
irq_scalar = 341;
}
irq_line = 0;
break;
case 0xf002:
irq_enable = irq_acknowledge;
irq_line = 0;
break;
}
}
void power() {
}
void reset() {
prg_bank[0] = 0;
prg_bank[1] = 0;
chr_bank[0] = 0;
chr_bank[1] = 0;
chr_bank[2] = 0;
chr_bank[3] = 0;
chr_bank[4] = 0;
chr_bank[5] = 0;
chr_bank[6] = 0;
chr_bank[7] = 0;
mirror = 0;
irq_latch = 0;
irq_mode = 0;
irq_enable = 0;
irq_acknowledge = 0;
irq_counter = 0;
irq_scalar = 0;
irq_line = 0;
pulse1.mode = 0;
pulse1.duty = 0;
pulse1.volume = 0;
pulse1.enable = 0;
pulse1.frequency = 0;
pulse1.divider = 1;
pulse1.cycle = 0;
pulse1.output = 0;
pulse2.mode = 0;
pulse2.duty = 0;
pulse2.volume = 0;
pulse2.enable = 0;
pulse2.frequency = 0;
pulse2.divider = 1;
pulse2.cycle = 0;
pulse2.output = 0;
sawtooth.rate = 0;
sawtooth.enable = 0;
sawtooth.frequency = 0;
sawtooth.divider = 1;
sawtooth.phase = 0;
sawtooth.stage = 0;
sawtooth.accumulator = 0;
sawtooth.output = 0;
}
void serialize(serializer &s) {
pulse1.serialize(s);
pulse2.serialize(s);
sawtooth.serialize(s);
s.array(prg_bank);
s.array(chr_bank);
s.integer(mirror);
s.integer(irq_latch);
s.integer(irq_mode);
s.integer(irq_enable);
s.integer(irq_acknowledge);
s.integer(irq_counter);
s.integer(irq_scalar);
s.integer(irq_line);
}
VRC6(Board &board) : Chip(board) {
}
};

View File

@@ -1,154 +0,0 @@
//Konami VRC7
//Yamaha YM2413 OPLL audio - not emulated
struct VRC7 : Chip {
uint8 prg_bank[3];
uint8 chr_bank[8];
uint2 mirror;
uint8 irq_latch;
bool irq_mode;
bool irq_enable;
bool irq_acknowledge;
uint8 irq_counter;
signed irq_scalar;
bool irq_line;
void main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(irq_enable) {
if(irq_mode == 0) {
irq_scalar -= 3;
if(irq_scalar <= 0) {
irq_scalar += 341;
if(irq_counter == 0xff) {
irq_counter = irq_latch;
irq_line = 1;
} else {
irq_counter++;
}
}
}
if(irq_mode == 1) {
if(irq_counter == 0xff) {
irq_counter = irq_latch;
irq_line = 1;
} else {
irq_counter++;
}
}
}
cpu.set_irq_line(irq_line);
tick();
}
}
void reg_write(unsigned addr, uint8 data) {
switch(addr) {
case 0x8000: prg_bank[0] = data; break;
case 0x8010: prg_bank[1] = data; break;
case 0x9000: prg_bank[2] = data; break;
case 0x9010: break; //APU addr port
case 0x9030: break; //APU data port
case 0xa000: chr_bank[0] = data; break;
case 0xa010: chr_bank[1] = data; break;
case 0xb000: chr_bank[2] = data; break;
case 0xb010: chr_bank[3] = data; break;
case 0xc000: chr_bank[4] = data; break;
case 0xc010: chr_bank[5] = data; break;
case 0xd000: chr_bank[6] = data; break;
case 0xd010: chr_bank[7] = data; break;
case 0xe000: mirror = data & 0x03; break;
case 0xe010:
irq_latch = data;
break;
case 0xf000:
irq_mode = data & 0x04;
irq_enable = data & 0x02;
irq_acknowledge = data & 0x01;
if(irq_enable) {
irq_counter = irq_latch;
irq_scalar = 341;
}
irq_line = 0;
break;
case 0xf010:
irq_enable = irq_acknowledge;
irq_line = 0;
break;
}
}
unsigned prg_addr(unsigned addr) const {
unsigned bank = 0;
switch(addr & 0xe000) {
case 0x8000: bank = prg_bank[0]; break;
case 0xa000: bank = prg_bank[1]; break;
case 0xc000: bank = prg_bank[2]; break;
case 0xe000: bank = 0xff; break;
}
return (bank * 0x2000) + (addr & 0x1fff);
}
unsigned chr_addr(unsigned addr) const {
unsigned bank = chr_bank[addr / 0x0400];
return (bank * 0x0400) + (addr & 0x03ff);
}
unsigned ciram_addr(unsigned addr) const {
switch(mirror) {
case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical mirroring
case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal mirroring
case 2: return 0x0000 | (addr & 0x03ff); //one-screen mirroring (first)
case 3: return 0x0400 | (addr & 0x03ff); //one-screen mirroring (second)
}
}
void power() {
}
void reset() {
for(auto &n : prg_bank) n = 0;
for(auto &n : chr_bank) n = 0;
mirror = 0;
irq_latch = 0;
irq_mode = 0;
irq_enable = 0;
irq_acknowledge = 0;
irq_counter = 0;
irq_scalar = 0;
irq_line = 0;
}
void serialize(serializer &s) {
s.array(prg_bank);
s.array(chr_bank);
s.integer(mirror);
s.integer(irq_latch);
s.integer(irq_mode);
s.integer(irq_enable);
s.integer(irq_acknowledge);
s.integer(irq_counter);
s.integer(irq_scalar);
s.integer(irq_line);
}
VRC7(Board &board) : Chip(board) {
}
};

View File

@@ -1,88 +0,0 @@
#include <fc/fc.hpp>
namespace Famicom {
Cheat cheat;
bool Cheat::decode(const string &code_, unsigned &addr, unsigned &data, unsigned &comp) {
static bool initialize = false;
static uint8 mapProActionReplay[256], mapGameGenie[256];
if(initialize == false) {
initialize = true;
for(auto &n : mapProActionReplay) n = ~0;
mapProActionReplay['0'] = 0; mapProActionReplay['1'] = 1; mapProActionReplay['2'] = 2; mapProActionReplay['3'] = 3;
mapProActionReplay['4'] = 4; mapProActionReplay['5'] = 5; mapProActionReplay['6'] = 6; mapProActionReplay['7'] = 7;
mapProActionReplay['8'] = 8; mapProActionReplay['9'] = 9; mapProActionReplay['A'] = 10; mapProActionReplay['B'] = 11;
mapProActionReplay['C'] = 12; mapProActionReplay['D'] = 13; mapProActionReplay['E'] = 14; mapProActionReplay['F'] = 15;
for(auto &n : mapGameGenie) n = ~0;
mapGameGenie['A'] = 0; mapGameGenie['P'] = 1; mapGameGenie['Z'] = 2; mapGameGenie['L'] = 3;
mapGameGenie['G'] = 4; mapGameGenie['I'] = 5; mapGameGenie['T'] = 6; mapGameGenie['Y'] = 7;
mapGameGenie['E'] = 8; mapGameGenie['O'] = 9; mapGameGenie['X'] = 10; mapGameGenie['U'] = 11;
mapGameGenie['K'] = 12; mapGameGenie['S'] = 13; mapGameGenie['V'] = 14; mapGameGenie['N'] = 15;
}
string code = code_;
code.upper();
unsigned length = code.length(), bits = 0;
if(code.wildcard("????:??")) {
code = { substr(code, 0, 4), substr(code, 5, 2) };
for(unsigned n = 0; n < 6; n++) if(mapProActionReplay[code[n]] > 15) return false;
bits = hex(code);
addr = (bits >> 8) & 0xffff;
data = (bits >> 0) & 0xff;
comp = ~0;
return true;
}
if(code.wildcard("????:??:??")) {
code = { substr(code, 0, 4), substr(code, 5, 2), substr(code, 8, 2) };
for(unsigned n = 0; n < 8; n++) if(mapProActionReplay[code[n]] > 15) return false;
bits = hex(code);
addr = (bits >> 16) & 0xffff;
data = (bits >> 8) & 0xff;
comp = (bits >> 0) & 0xff;
return true;
}
if(length == 6) {
for(unsigned n = 0; n < 6; n++) if(mapGameGenie[code[n]] > 15) return false;
for(unsigned n = 0; n < 6; n++) bits |= mapGameGenie[code[n]] << (20 - n * 4);
unsigned addrTable[] = { 10, 9, 8, 7, 2, 1, 0, 19, 14, 13, 12, 11, 6, 5, 4 };
unsigned dataTable[] = { 23, 18, 17, 16, 3, 22, 21, 20 };
addr = 0x8000, data = 0x00, comp = ~0;
for(unsigned n = 0; n < 15; n++) addr |= bits & (1 << addrTable[n]) ? 0x4000 >> n : 0;
for(unsigned n = 0; n < 8; n++) data |= bits & (1 << dataTable[n]) ? 0x80 >> n : 0;
return true;
}
if(length == 8) {
for(unsigned n = 0; n < 8; n++) if(mapGameGenie[code[n]] > 15) return false;
for(unsigned n = 0; n < 8; n++) bits |= mapGameGenie[code[n]] << (28 - n * 4);
unsigned addrTable[] = { 18, 17, 16, 15, 10, 9, 8, 27, 22, 21, 20, 19, 14, 13, 12 };
unsigned dataTable[] = { 31, 26, 25, 24, 3, 30, 29, 28 };
unsigned compTable[] = { 7, 2, 1, 0, 11, 6, 5,4 };
addr = 0x8000, data = 0x00, comp = 0x00;
for(unsigned n = 0; n < 15; n++) addr |= bits & (1 << addrTable[n]) ? 0x4000 >> n : 0;
for(unsigned n = 0; n < 8; n++) data |= bits & (1 << dataTable[n]) ? 0x80 >> n : 0;
for(unsigned n = 0; n < 8; n++) comp |= bits & (1 << compTable[n]) ? 0x80 >> n : 0;
return true;
}
return false;
}
void Cheat::synchronize() {
for(auto &n : override) n = false;
for(unsigned n = 0; n < size(); n++) {
override[operator[](n).addr] = true;
}
}
}

View File

@@ -1,14 +0,0 @@
struct CheatCode {
unsigned addr;
unsigned data;
unsigned comp;
};
struct Cheat : public vector<CheatCode> {
static bool decode(const string &code, unsigned &addr, unsigned &data, unsigned &comp);
void synchronize();
bool override[65536];
};
extern Cheat cheat;

View File

@@ -1,110 +0,0 @@
#include <fc/fc.hpp>
namespace Famicom {
#include "timing.cpp"
#include "serialization.cpp"
CPU cpu;
void CPU::Enter() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
cpu.main();
}
}
void CPU::main() {
if(status.interrupt_pending) {
interrupt();
return;
}
exec();
}
void CPU::add_clocks(unsigned clocks) {
apu.clock -= clocks;
if(apu.clock < 0 && scheduler.sync != Scheduler::SynchronizeMode::All) co_switch(apu.thread);
ppu.clock -= clocks;
if(ppu.clock < 0 && scheduler.sync != Scheduler::SynchronizeMode::All) co_switch(ppu.thread);
cartridge.clock -= clocks;
if(cartridge.clock < 0 && scheduler.sync != Scheduler::SynchronizeMode::All) co_switch(cartridge.thread);
}
void CPU::power() {
R6502::power();
for(unsigned addr = 0; addr < 0x0800; addr++) ram[addr] = 0xff;
ram[0x0008] = 0xf7;
ram[0x0009] = 0xef;
ram[0x000a] = 0xdf;
ram[0x000f] = 0xbf;
}
void CPU::reset() {
R6502::reset();
create(CPU::Enter, 21477272);
regs.pc = bus.read(0xfffc) << 0;
regs.pc |= bus.read(0xfffd) << 8;
status.interrupt_pending = false;
status.nmi_pending = false;
status.nmi_line = 0;
status.irq_line = 0;
status.irq_apu_line = 0;
status.rdy_line = 1;
status.rdy_addr = { false, 0x0000 };
status.oam_dma_pending = false;
status.oam_dma_page = 0x00;
status.controller_latch = false;
status.controller_port0 = 0;
status.controller_port1 = 0;
}
uint8 CPU::debugger_read(uint16 addr) {
return bus.read(addr);
}
uint8 CPU::ram_read(uint16 addr) {
return ram[addr & 0x07ff];
}
void CPU::ram_write(uint16 addr, uint8 data) {
ram[addr & 0x07ff] = data;
}
uint8 CPU::read(uint16 addr) {
if(addr == 0x4016) {
return (mdr() & 0xc0) | input.data(0);
}
if(addr == 0x4017) {
return (mdr() & 0xc0) | input.data(1);
}
return apu.read(addr);
}
void CPU::write(uint16 addr, uint8 data) {
if(addr == 0x4014) {
status.oam_dma_page = data;
status.oam_dma_pending = true;
}
if(addr == 0x4016) {
input.latch(data & 0x01);
}
return apu.write(addr, data);
}
}

View File

@@ -1,55 +0,0 @@
struct CPU : Processor::R6502, Thread {
uint8 ram[0x0800];
struct Status {
bool interrupt_pending;
bool nmi_pending;
bool nmi_line;
bool irq_line;
bool irq_apu_line;
bool rdy_line;
optional<uint16> rdy_addr;
bool oam_dma_pending;
uint8 oam_dma_page;
bool controller_latch;
unsigned controller_port0;
unsigned controller_port1;
} status;
static void Enter();
void main();
void add_clocks(unsigned clocks);
void power();
void reset();
uint8 debugger_read(uint16 addr);
uint8 ram_read(uint16 addr);
void ram_write(uint16 addr, uint8 data);
uint8 read(uint16 addr);
void write(uint16 addr, uint8 data);
void serialize(serializer&);
//timing.cpp
uint8 op_read(uint16 addr);
void op_write(uint16 addr, uint8 data);
void last_cycle();
void nmi(uint16 &vector);
void oam_dma();
void set_nmi_line(bool);
void set_irq_line(bool);
void set_irq_apu_line(bool);
void set_rdy_line(bool);
void set_rdy_addr(optional<uint16>);
};
extern CPU cpu;

View File

@@ -1,23 +0,0 @@
void CPU::serialize(serializer &s) {
R6502::serialize(s);
Thread::serialize(s);
s.array(ram);
s.integer(status.interrupt_pending);
s.integer(status.nmi_pending);
s.integer(status.nmi_line);
s.integer(status.irq_line);
s.integer(status.irq_apu_line);
s.integer(status.rdy_line);
s.integer(status.rdy_addr.valid);
s.integer(status.rdy_addr.value);
s.integer(status.oam_dma_pending);
s.integer(status.oam_dma_page);
s.integer(status.controller_latch);
s.integer(status.controller_port0);
s.integer(status.controller_port1);
}

View File

@@ -1,63 +0,0 @@
uint8 CPU::op_read(uint16 addr) {
if(status.oam_dma_pending) {
status.oam_dma_pending = false;
op_read(addr);
oam_dma();
}
while(status.rdy_line == 0) {
regs.mdr = bus.read(status.rdy_addr ? status.rdy_addr() : addr);
add_clocks(12);
}
regs.mdr = bus.read(addr);
add_clocks(12);
return regs.mdr;
}
void CPU::op_write(uint16 addr, uint8 data) {
bus.write(addr, regs.mdr = data);
add_clocks(12);
}
void CPU::last_cycle() {
status.interrupt_pending = ((status.irq_line | status.irq_apu_line) & ~regs.p.i) | status.nmi_pending;
}
void CPU::nmi(uint16 &vector) {
if(status.nmi_pending) {
status.nmi_pending = false;
vector = 0xfffa;
}
}
void CPU::oam_dma() {
for(unsigned n = 0; n < 256; n++) {
uint8 data = op_read((status.oam_dma_page << 8) + n);
op_write(0x2004, data);
}
}
void CPU::set_nmi_line(bool line) {
//edge-sensitive (0->1)
if(!status.nmi_line && line) status.nmi_pending = true;
status.nmi_line = line;
}
void CPU::set_irq_line(bool line) {
//level-sensitive
status.irq_line = line;
}
void CPU::set_irq_apu_line(bool line) {
//level-sensitive
status.irq_apu_line = line;
}
void CPU::set_rdy_line(bool line) {
status.rdy_line = line;
}
void CPU::set_rdy_addr(optional<uint16> addr) {
status.rdy_addr = addr;
}

View File

@@ -1,62 +0,0 @@
#ifndef FC_HPP
#define FC_HPP
#include <emulator/emulator.hpp>
#include <processor/r6502/r6502.hpp>
namespace Famicom {
namespace Info {
static const char Name[] = "bnes";
static const unsigned SerializerVersion = 2;
}
}
/*
bnes - Famicom emulator
authors: byuu, Ryphecha
license: GPLv3
project started: 2011-09-05
*/
#include <libco/libco.h>
namespace Famicom {
struct Thread {
cothread_t thread;
unsigned frequency;
int64 clock;
inline void create(void (*entrypoint)(), unsigned frequency) {
if(thread) co_delete(thread);
thread = co_create(65536 * sizeof(void*), entrypoint);
this->frequency = frequency;
clock = 0;
}
inline void serialize(serializer &s) {
s.integer(frequency);
s.integer(clock);
}
inline Thread() : thread(nullptr) {
}
inline ~Thread() {
if(thread) co_delete(thread);
}
};
#include <fc/system/system.hpp>
#include <fc/scheduler/scheduler.hpp>
#include <fc/input/input.hpp>
#include <fc/memory/memory.hpp>
#include <fc/cartridge/cartridge.hpp>
#include <fc/cpu/cpu.hpp>
#include <fc/apu/apu.hpp>
#include <fc/ppu/ppu.hpp>
#include <fc/cheat/cheat.hpp>
#include <fc/video/video.hpp>
#include <fc/interface/interface.hpp>
}
#endif

View File

@@ -1,53 +0,0 @@
#include <fc/fc.hpp>
namespace Famicom {
#include "serialization.cpp"
Input input;
void Input::latch(bool data) {
latchdata = data;
if(latchdata == 1) {
counter1 = 0;
counter2 = 0;
}
}
bool Input::data(bool port) {
bool result = 0;
if(port == 0) {
if(port1 == Device::Joypad) {
if(counter1 >= 8) return 1;
result = interface->inputPoll(0, 0u, counter1);
if(latchdata == 0) counter1++;
}
}
if(port == 1) {
if(port2 == Device::Joypad) {
if(counter2 >= 8) return 1;
result = interface->inputPoll(1, 0u, counter2);
if(latchdata == 0) counter2++;
}
}
return result;
}
void Input::connect(bool port, Device device) {
if(port == 0) port1 = device, counter1 = 0;
if(port == 1) port2 = device, counter2 = 0;
}
void Input::power() {
}
void Input::reset() {
latchdata = 0;
counter1 = 0;
counter2 = 0;
}
}

View File

@@ -1,25 +0,0 @@
struct Input {
enum class Device : unsigned {
Joypad,
None,
};
void latch(bool data);
bool data(bool port);
void connect(bool port, Device device);
void power();
void reset();
void serialize(serializer &s);
private:
Device port1;
Device port2;
bool latchdata;
unsigned counter1;
unsigned counter2;
};
extern Input input;

View File

@@ -1,8 +0,0 @@
void Input::serialize(serializer &s) {
s.integer((unsigned&)port1);
s.integer((unsigned&)port2);
s.integer(latchdata);
s.integer(counter1);
s.integer(counter2);
}

View File

@@ -1,155 +0,0 @@
#include <fc/fc.hpp>
namespace Famicom {
Interface *interface = nullptr;
double Interface::videoFrequency() {
return 21477272.0 / (262.0 * 1364.0 - 4.0);
}
double Interface::audioFrequency() {
return 21477272.0 / 12.0;
}
bool Interface::loaded() {
return cartridge.loaded();
}
string Interface::sha256() {
return cartridge.sha256();
}
unsigned Interface::group(unsigned id) {
switch(id) {
case ID::ProgramROM:
case ID::ProgramRAM:
case ID::CharacterROM:
case ID::CharacterRAM:
return 1;
}
throw;
}
void Interface::load(unsigned id, const string &manifest) {
cartridge.load(manifest);
}
void Interface::save() {
for(auto &memory : cartridge.memory) {
saveRequest(memory.id, memory.name);
}
}
void Interface::load(unsigned id, const stream &stream, const string &manifest) {
if(id == ID::ProgramROM) {
stream.read(cartridge.board->prgrom.data, min(cartridge.board->prgrom.size, stream.size()));
}
if(id == ID::ProgramRAM) {
stream.read(cartridge.board->prgram.data, min(cartridge.board->prgram.size, stream.size()));
}
if(id == ID::CharacterROM) {
stream.read(cartridge.board->chrrom.data, min(cartridge.board->chrrom.size, stream.size()));
}
if(id == ID::CharacterRAM) {
stream.read(cartridge.board->chrram.data, min(cartridge.board->chrram.size, stream.size()));
}
}
void Interface::save(unsigned id, const stream &stream) {
if(id == ID::ProgramRAM) {
stream.write(cartridge.board->prgram.data, cartridge.board->prgram.size);
}
if(id == ID::CharacterRAM) {
stream.write(cartridge.board->chrram.data, cartridge.board->chrram.size);
}
}
void Interface::unload() {
save();
cartridge.unload();
}
void Interface::power() {
system.power();
}
void Interface::reset() {
system.reset();
}
void Interface::run() {
system.run();
}
serializer Interface::serialize() {
system.runtosave();
return system.serialize();
}
bool Interface::unserialize(serializer &s) {
return system.unserialize(s);
}
void Interface::cheatSet(const lstring &list) {
cheat.reset();
for(auto &code : list) {
lstring codelist = code.split("+");
for(auto &part : codelist) {
unsigned addr, data, comp;
if(Cheat::decode(part, addr, data, comp)) cheat.append({addr, data, comp});
}
}
cheat.synchronize();
}
void Interface::paletteUpdate() {
video.generate_palette();
}
Interface::Interface() {
interface = this;
information.name = "Famicom";
information.width = 256;
information.height = 240;
information.overscan = true;
information.aspectRatio = 8.0 / 7.0;
information.resettable = true;
information.capability.states = true;
information.capability.cheats = true;
media.append({ID::Famicom, "Famicom", "fc"});
{
Device device{0, ID::Port1 | ID::Port2, "Controller"};
device.input.append({0, 0, "A" });
device.input.append({1, 0, "B" });
device.input.append({2, 0, "Select"});
device.input.append({3, 0, "Start" });
device.input.append({4, 0, "Up" });
device.input.append({5, 0, "Down" });
device.input.append({6, 0, "Left" });
device.input.append({7, 0, "Right" });
device.order = {4, 5, 6, 7, 1, 0, 2, 3};
this->device.append(device);
}
port.append({0, "Port 1"});
port.append({1, "Port 2"});
for(auto &device : this->device) {
for(auto &port : this->port) {
if(device.portmask & (1 << port.id)) {
port.device.append(device);
}
}
}
}
}

View File

@@ -1,58 +0,0 @@
#ifndef FC_HPP
namespace Famicom {
#endif
struct ID {
enum : unsigned {
System,
Famicom,
};
enum : unsigned {
ProgramROM,
ProgramRAM,
CharacterROM,
CharacterRAM,
};
enum : unsigned {
Port1 = 1,
Port2 = 2,
};
};
struct Interface : Emulator::Interface {
double videoFrequency();
double audioFrequency();
bool loaded();
string sha256();
unsigned group(unsigned id);
void load(unsigned id, const string &manifest);
void save();
void load(unsigned id, const stream &stream, const string &manifest = "");
void save(unsigned id, const stream &stream);
void unload();
void power();
void reset();
void run();
serializer serialize();
bool unserialize(serializer&);
void cheatSet(const lstring&);
void paletteUpdate();
Interface();
private:
vector<Device> device;
};
extern Interface *interface;
#ifndef FC_HPP
}
#endif

View File

@@ -1,41 +0,0 @@
#include <fc/fc.hpp>
namespace Famicom {
Bus bus;
//$0000-07ff = RAM (2KB)
//$0800-1fff = RAM (mirror)
//$2000-2007 = PPU
//$2008-3fff = PPU (mirror)
//$4000-4017 = APU + I/O
//$4018-ffff = Cartridge
uint8 Bus::read(uint16 addr) {
uint8 data = cartridge.prg_read(addr);
if(addr <= 0x1fff) data = cpu.ram_read(addr);
else if(addr <= 0x3fff) data = ppu.read(addr);
else if(addr <= 0x4017) data = cpu.read(addr);
if(cheat.override[addr]) {
for(unsigned n = 0; n < cheat.size(); n++) {
if(cheat[n].addr == addr) {
if(cheat[n].comp > 255 || cheat[n].comp == data) {
data = cheat[n].data;
break;
}
}
}
}
return data;
}
void Bus::write(uint16 addr, uint8 data) {
cartridge.prg_write(addr, data);
if(addr <= 0x1fff) return cpu.ram_write(addr, data);
if(addr <= 0x3fff) return ppu.write(addr, data);
if(addr <= 0x4017) return cpu.write(addr, data);
}
}

View File

@@ -1,6 +0,0 @@
struct Bus {
uint8 read(uint16 addr);
void write(uint16 addr, uint8 data);
};
extern Bus bus;

View File

@@ -1,487 +0,0 @@
#include <fc/fc.hpp>
namespace Famicom {
#include "serialization.cpp"
PPU ppu;
void PPU::Main() {
ppu.main();
}
void PPU::main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::PPU) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
raster_scanline();
}
}
void PPU::tick() {
if(status.ly == 240 && status.lx == 340) status.nmi_hold = 1;
if(status.ly == 241 && status.lx == 0) status.nmi_flag = status.nmi_hold;
if(status.ly == 241 && status.lx == 2) cpu.set_nmi_line(status.nmi_enable && status.nmi_flag);
if(status.ly == 260 && status.lx == 340) status.sprite_zero_hit = 0, status.sprite_overflow = 0;
if(status.ly == 260 && status.lx == 340) status.nmi_hold = 0;
if(status.ly == 261 && status.lx == 0) status.nmi_flag = status.nmi_hold;
if(status.ly == 261 && status.lx == 2) cpu.set_nmi_line(status.nmi_enable && status.nmi_flag);
clock += 4;
if(clock >= 0) co_switch(cpu.thread);
status.lx++;
}
void PPU::scanline() {
status.lx = 0;
if(++status.ly == 262) {
status.ly = 0;
frame();
}
cartridge.scanline(status.ly);
}
void PPU::frame() {
status.field ^= 1;
scheduler.exit(Scheduler::ExitReason::FrameEvent);
}
void PPU::power() {
}
void PPU::reset() {
create(PPU::Main, 21477272);
status.mdr = 0x00;
status.field = 0;
status.ly = 0;
status.bus_data = 0x00;
status.address_latch = 0;
status.vaddr = 0x0000;
status.taddr = 0x0000;
status.xaddr = 0x00;
status.nmi_hold = 0;
status.nmi_flag = 0;
//$2000
status.nmi_enable = false;
status.master_select = 0;
status.sprite_size = 0;
status.bg_addr = 0x0000;
status.sprite_addr = 0x0000;
status.vram_increment = 1;
//$2001
status.emphasis = 0;
status.sprite_enable = false;
status.bg_enable = false;
status.sprite_edge_enable = false;
status.bg_edge_enable = false;
status.grayscale = false;
//$2002
status.sprite_zero_hit = false;
status.sprite_overflow = false;
//$2003
status.oam_addr = 0x00;
for(auto &n : buffer) n = 0;
for(auto &n : ciram ) n = 0;
for(auto &n : cgram ) n = 0;
for(auto &n : oam ) n = 0;
}
uint8 PPU::read(uint16 addr) {
uint8 result = 0x00;
switch(addr & 7) {
case 2: //PPUSTATUS
result |= status.nmi_flag << 7;
result |= status.sprite_zero_hit << 6;
result |= status.sprite_overflow << 5;
result |= status.mdr & 0x1f;
status.address_latch = 0;
status.nmi_hold = 0;
cpu.set_nmi_line(status.nmi_flag = 0);
break;
case 4: //OAMDATA
result = oam[status.oam_addr];
if((status.oam_addr & 3) == 3) result &= 0xe3;
break;
case 7: //PPUDATA
if(raster_enable() && (status.ly <= 240 || status.ly == 261)) return 0x00;
addr = status.vaddr & 0x3fff;
if(addr <= 0x1fff) {
result = status.bus_data;
status.bus_data = cartridge.chr_read(addr);
} else if(addr <= 0x3eff) {
result = status.bus_data;
status.bus_data = cartridge.chr_read(addr);
} else if(addr <= 0x3fff) {
result = cgram_read(addr);
status.bus_data = cartridge.chr_read(addr);
}
status.vaddr += status.vram_increment;
break;
}
return result;
}
void PPU::write(uint16 addr, uint8 data) {
status.mdr = data;
switch(addr & 7) {
case 0: //PPUCTRL
status.nmi_enable = data & 0x80;
status.master_select = data & 0x40;
status.sprite_size = data & 0x20;
status.bg_addr = (data & 0x10) ? 0x1000 : 0x0000;
status.sprite_addr = (data & 0x08) ? 0x1000 : 0x0000;
status.vram_increment = (data & 0x04) ? 32 : 1;
status.taddr = (status.taddr & 0x73ff) | ((data & 0x03) << 10);
cpu.set_nmi_line(status.nmi_enable && status.nmi_hold && status.nmi_flag);
return;
case 1: //PPUMASK
status.emphasis = data >> 5;
status.sprite_enable = data & 0x10;
status.bg_enable = data & 0x08;
status.sprite_edge_enable = data & 0x04;
status.bg_edge_enable = data & 0x02;
status.grayscale = data & 0x01;
return;
case 2: //PPUSTATUS
return;
case 3: //OAMADDR
status.oam_addr = data;
return;
case 4: //OAMDATA
oam[status.oam_addr++] = data;
return;
case 5: //PPUSCROLL
if(status.address_latch == 0) {
status.xaddr = data & 0x07;
status.taddr = (status.taddr & 0x7fe0) | (data >> 3);
} else {
status.taddr = (status.taddr & 0x0c1f) | ((data & 0x07) << 12) | ((data >> 3) << 5);
}
status.address_latch ^= 1;
return;
case 6: //PPUADDR
if(status.address_latch == 0) {
status.taddr = (status.taddr & 0x00ff) | ((data & 0x3f) << 8);
} else {
status.taddr = (status.taddr & 0x7f00) | data;
status.vaddr = status.taddr;
}
status.address_latch ^= 1;
return;
case 7: //PPUDATA
if(raster_enable() && (status.ly <= 240 || status.ly == 261)) return;
addr = status.vaddr & 0x3fff;
if(addr <= 0x1fff) {
cartridge.chr_write(addr, data);
} else if(addr <= 0x3eff) {
cartridge.chr_write(addr, data);
} else if(addr <= 0x3fff) {
cgram_write(addr, data);
}
status.vaddr += status.vram_increment;
return;
}
}
uint8 PPU::ciram_read(uint16 addr) {
return ciram[addr & 0x07ff];
}
void PPU::ciram_write(uint16 addr, uint8 data) {
ciram[addr & 0x07ff] = data;
}
uint8 PPU::cgram_read(uint16 addr) {
if((addr & 0x13) == 0x10) addr &= ~0x10;
uint8 data = cgram[addr & 0x1f];
if(status.grayscale) data &= 0x30;
return data;
}
void PPU::cgram_write(uint16 addr, uint8 data) {
if((addr & 0x13) == 0x10) addr &= ~0x10;
cgram[addr & 0x1f] = data;
}
//
//vaddr = 0yyy VHYY YYYX XXXX
//yyy = fine Yscroll (y:d0-d2)
//V = V nametable (y:d8)
//H = H nametable (x:d8)
//YYYYY = Y nametable (y:d3-d7)
//XXXXX = X nametable (x:d3-d7)
bool PPU::raster_enable() const {
return (status.bg_enable || status.sprite_enable);
}
unsigned PPU::nametable_addr() const {
return 0x2000 + (status.vaddr & 0x0c00);
}
unsigned PPU::scrollx() const {
return ((status.vaddr & 0x1f) << 3) | status.xaddr;
}
unsigned PPU::scrolly() const {
return (((status.vaddr >> 5) & 0x1f) << 3) | ((status.vaddr >> 12) & 7);
}
unsigned PPU::sprite_height() const {
return status.sprite_size == 0 ? 8 : 16;
}
//
uint8 PPU::chr_load(uint16 addr) {
if(raster_enable() == false) return 0x00;
return cartridge.chr_read(addr);
}
//
void PPU::scrollx_increment() {
if(raster_enable() == false) return;
status.vaddr = (status.vaddr & 0x7fe0) | ((status.vaddr + 0x0001) & 0x001f);
if((status.vaddr & 0x001f) == 0x0000) {
status.vaddr ^= 0x0400;
}
}
void PPU::scrolly_increment() {
if(raster_enable() == false) return;
status.vaddr = (status.vaddr & 0x0fff) | ((status.vaddr + 0x1000) & 0x7000);
if((status.vaddr & 0x7000) == 0x0000) {
status.vaddr = (status.vaddr & 0x7c1f) | ((status.vaddr + 0x0020) & 0x03e0);
if((status.vaddr & 0x03e0) == 0x03c0) { //0x03c0 == 30 << 5; 30 * 8 = 240
status.vaddr &= 0x7c1f;
status.vaddr ^= 0x0800;
}
}
}
//
void PPU::raster_pixel() {
uint32 *output = buffer + status.ly * 256;
unsigned mask = 0x8000 >> (status.xaddr + (status.lx & 7));
unsigned palette = 0, object_palette = 0;
bool object_priority = 0;
palette |= (raster.tiledatalo & mask) ? 1 : 0;
palette |= (raster.tiledatahi & mask) ? 2 : 0;
if(palette) {
unsigned attr = raster.attribute;
if(mask >= 256) attr >>= 2;
palette |= (attr & 3) << 2;
}
if(status.bg_enable == false) palette = 0;
if(status.bg_edge_enable == false && status.lx < 8) palette = 0;
if(status.sprite_enable == true)
for(signed sprite = 7; sprite >= 0; sprite--) {
if(status.sprite_edge_enable == false && status.lx < 8) continue;
if(raster.oam[sprite].id == 64) continue;
unsigned spritex = status.lx - raster.oam[sprite].x;
if(spritex >= 8) continue;
if(raster.oam[sprite].attr & 0x40) spritex ^= 7;
unsigned mask = 0x80 >> spritex;
unsigned sprite_palette = 0;
sprite_palette |= (raster.oam[sprite].tiledatalo & mask) ? 1 : 0;
sprite_palette |= (raster.oam[sprite].tiledatahi & mask) ? 2 : 0;
if(sprite_palette == 0) continue;
if(raster.oam[sprite].id == 0 && palette && status.lx != 255) status.sprite_zero_hit = 1;
sprite_palette |= (raster.oam[sprite].attr & 3) << 2;
object_priority = raster.oam[sprite].attr & 0x20;
object_palette = 16 + sprite_palette;
}
if(object_palette) {
if(palette == 0 || object_priority == 0) palette = object_palette;
}
if(raster_enable() == false) palette = 0;
output[status.lx] = video.palette[(status.emphasis << 6) | cgram_read(palette)];
}
void PPU::raster_sprite() {
if(raster_enable() == false) return;
unsigned n = raster.oam_iterator++;
signed ly = (status.ly == 261 ? -1 : status.ly);
unsigned y = ly - oam[(n * 4) + 0];
if(y >= sprite_height()) return;
if(raster.oam_counter == 8) {
status.sprite_overflow = 1;
return;
}
raster.soam[raster.oam_counter].id = n;
raster.soam[raster.oam_counter].y = oam[(n * 4) + 0];
raster.soam[raster.oam_counter].tile = oam[(n * 4) + 1];
raster.soam[raster.oam_counter].attr = oam[(n * 4) + 2];
raster.soam[raster.oam_counter].x = oam[(n * 4) + 3];
raster.oam_counter++;
}
void PPU::raster_scanline() {
if((status.ly >= 240 && status.ly <= 260)) {
for(unsigned x = 0; x < 341; x++) tick();
return scanline();
}
raster.oam_iterator = 0;
raster.oam_counter = 0;
for(unsigned n = 0; n < 8; n++) {
raster.soam[n].id = 64;
raster.soam[n].y = 0xff;
raster.soam[n].tile = 0xff;
raster.soam[n].attr = 0xff;
raster.soam[n].x = 0xff;
raster.soam[n].tiledatalo = 0;
raster.soam[n].tiledatahi = 0;
}
for(unsigned tile = 0; tile < 32; tile++) { // 0-255
unsigned nametable = chr_load(0x2000 | (status.vaddr & 0x0fff));
unsigned tileaddr = status.bg_addr + (nametable << 4) + (scrolly() & 7);
raster_pixel();
tick();
raster_pixel();
tick();
unsigned attribute = chr_load(0x23c0 | (status.vaddr & 0x0fc0) | ((scrolly() >> 5) << 3) | (scrollx() >> 5));
if(scrolly() & 16) attribute >>= 4;
if(scrollx() & 16) attribute >>= 2;
raster_pixel();
tick();
scrollx_increment();
if(tile == 31) scrolly_increment();
raster_pixel();
raster_sprite();
tick();
unsigned tiledatalo = chr_load(tileaddr + 0);
raster_pixel();
tick();
raster_pixel();
tick();
unsigned tiledatahi = chr_load(tileaddr + 8);
raster_pixel();
tick();
raster_pixel();
raster_sprite();
tick();
raster.nametable = (raster.nametable << 8) | nametable;
raster.attribute = (raster.attribute << 2) | (attribute & 3);
raster.tiledatalo = (raster.tiledatalo << 8) | tiledatalo;
raster.tiledatahi = (raster.tiledatahi << 8) | tiledatahi;
}
for(unsigned n = 0; n < 8; n++) raster.oam[n] = raster.soam[n];
for(unsigned sprite = 0; sprite < 8; sprite++) { //256-319
unsigned nametable = chr_load(0x2000 | (status.vaddr & 0x0fff));
tick();
if(raster_enable() && sprite == 0) status.vaddr = (status.vaddr & 0x7be0) | (status.taddr & 0x041f); //257
tick();
unsigned attribute = chr_load(0x23c0 | (status.vaddr & 0x0fc0) | ((scrolly() >> 5) << 3) | (scrollx() >> 5));
unsigned tileaddr = (sprite_height() == 8)
? status.sprite_addr + raster.oam[sprite].tile * 16
: ((raster.oam[sprite].tile & ~1) * 16) + ((raster.oam[sprite].tile & 1) * 0x1000);
tick();
tick();
unsigned spritey = (status.ly - raster.oam[sprite].y) & (sprite_height() - 1);
if(raster.oam[sprite].attr & 0x80) spritey ^= (sprite_height() - 1);
tileaddr += spritey + (spritey & 8);
raster.oam[sprite].tiledatalo = chr_load(tileaddr + 0);
tick();
tick();
raster.oam[sprite].tiledatahi = chr_load(tileaddr + 8);
tick();
tick();
if(raster_enable() && sprite == 6 && status.ly == 261) status.vaddr = status.taddr; //304
}
for(unsigned tile = 0; tile < 2; tile++) { //320-335
unsigned nametable = chr_load(0x2000 | (status.vaddr & 0x0fff));
unsigned tileaddr = status.bg_addr + (nametable << 4) + (scrolly() & 7);
tick();
tick();
unsigned attribute = chr_load(0x23c0 | (status.vaddr & 0x0fc0) | ((scrolly() >> 5) << 3) | (scrollx() >> 5));
if(scrolly() & 16) attribute >>= 4;
if(scrollx() & 16) attribute >>= 2;
tick();
scrollx_increment();
tick();
unsigned tiledatalo = chr_load(tileaddr + 0);
tick();
tick();
unsigned tiledatahi = chr_load(tileaddr + 8);
tick();
tick();
raster.nametable = (raster.nametable << 8) | nametable;
raster.attribute = (raster.attribute << 2) | (attribute & 3);
raster.tiledatalo = (raster.tiledatalo << 8) | tiledatalo;
raster.tiledatahi = (raster.tiledatahi << 8) | tiledatahi;
}
//336-339
chr_load(0x2000 | (status.vaddr & 0x0fff));
tick();
bool skip = (raster_enable() && status.field == 1 && status.ly == 261);
tick();
chr_load(0x2000 | (status.vaddr & 0x0fff));
tick();
tick();
//340
if(skip == false) tick();
return scanline();
}
}

View File

@@ -1,107 +0,0 @@
struct PPU : Thread {
static void Main();
void main();
void tick();
void scanline();
void frame();
void power();
void reset();
uint8 read(uint16 addr);
void write(uint16 addr, uint8 data);
uint8 ciram_read(uint16 addr);
void ciram_write(uint16 addr, uint8 data);
uint8 cgram_read(uint16 addr);
void cgram_write(uint16 addr, uint8 data);
bool raster_enable() const;
unsigned nametable_addr() const;
unsigned scrollx() const;
unsigned scrolly() const;
unsigned sprite_height() const;
uint8 chr_load(uint16 addr);
void scrollx_increment();
void scrolly_increment();
void raster_pixel();
void raster_sprite();
void raster_scanline();
void serialize(serializer&);
struct Status {
uint8 mdr;
bool field;
unsigned lx;
unsigned ly;
uint8 bus_data;
bool address_latch;
uint15 vaddr;
uint15 taddr;
uint8 xaddr;
bool nmi_hold;
bool nmi_flag;
//$2000
bool nmi_enable;
bool master_select;
bool sprite_size;
unsigned bg_addr;
unsigned sprite_addr;
unsigned vram_increment;
//$2001
uint3 emphasis;
bool sprite_enable;
bool bg_enable;
bool sprite_edge_enable;
bool bg_edge_enable;
bool grayscale;
//$2002
bool sprite_zero_hit;
bool sprite_overflow;
//$2003
uint8 oam_addr;
} status;
struct Raster {
uint16 nametable;
uint16 attribute;
uint16 tiledatalo;
uint16 tiledatahi;
unsigned oam_iterator;
unsigned oam_counter;
struct OAM {
uint8 id;
uint8 y;
uint8 tile;
uint8 attr;
uint8 x;
uint8 tiledatalo;
uint8 tiledatahi;
} oam[8], soam[8];
} raster;
uint32 buffer[256 * 262];
uint8 ciram[2048];
uint8 cgram[32];
uint8 oam[256];
};
extern PPU ppu;

View File

@@ -1,74 +0,0 @@
void PPU::serialize(serializer &s) {
Thread::serialize(s);
s.integer(status.mdr);
s.integer(status.field);
s.integer(status.lx);
s.integer(status.ly);
s.integer(status.bus_data);
s.integer(status.address_latch);
s.integer(status.vaddr);
s.integer(status.taddr);
s.integer(status.xaddr);
s.integer(status.nmi_hold);
s.integer(status.nmi_flag);
s.integer(status.nmi_enable);
s.integer(status.master_select);
s.integer(status.sprite_size);
s.integer(status.bg_addr);
s.integer(status.sprite_addr);
s.integer(status.vram_increment);
s.integer(status.emphasis);
s.integer(status.sprite_enable);
s.integer(status.bg_enable);
s.integer(status.sprite_edge_enable);
s.integer(status.bg_edge_enable);
s.integer(status.grayscale);
s.integer(status.sprite_zero_hit);
s.integer(status.sprite_overflow);
s.integer(status.oam_addr);
s.integer(raster.nametable);
s.integer(raster.attribute);
s.integer(raster.tiledatalo);
s.integer(raster.tiledatahi);
s.integer(raster.oam_iterator);
s.integer(raster.oam_counter);
for(unsigned n = 0; n < 8; n++) {
s.integer(raster.oam[n].id);
s.integer(raster.oam[n].y);
s.integer(raster.oam[n].tile);
s.integer(raster.oam[n].attr);
s.integer(raster.oam[n].x);
s.integer(raster.oam[n].tiledatalo);
s.integer(raster.oam[n].tiledatahi);
}
for(unsigned n = 0; n < 8; n++) {
s.integer(raster.soam[n].id);
s.integer(raster.soam[n].y);
s.integer(raster.soam[n].tile);
s.integer(raster.soam[n].attr);
s.integer(raster.soam[n].x);
s.integer(raster.soam[n].tiledatalo);
s.integer(raster.soam[n].tiledatahi);
}
s.array(buffer);
s.array(ciram);
s.array(cgram);
s.array(oam);
}

View File

@@ -1,28 +0,0 @@
#include <fc/fc.hpp>
namespace Famicom {
Scheduler scheduler;
void Scheduler::enter() {
host_thread = co_active();
co_switch(thread);
}
void Scheduler::exit(ExitReason reason) {
exit_reason = reason;
thread = co_active();
co_switch(host_thread);
}
void Scheduler::power() {
}
void Scheduler::reset() {
host_thread = co_active();
thread = cpu.thread;
sync = SynchronizeMode::None;
exit_reason = ExitReason::UnknownEvent;
}
}

View File

@@ -1,16 +0,0 @@
struct Scheduler : property<Scheduler> {
enum class SynchronizeMode : unsigned { None, PPU, All } sync;
enum class ExitReason : unsigned { UnknownEvent, FrameEvent, SynchronizeEvent };
readonly<ExitReason> exit_reason;
cothread_t host_thread; //program thread (used to exit emulation)
cothread_t thread; //active emulation thread (used to enter emulation)
void enter();
void exit(ExitReason);
void power();
void reset();
};
extern Scheduler scheduler;

View File

@@ -1,60 +0,0 @@
serializer System::serialize() {
serializer s(serialize_size);
unsigned signature = 0x31545342, version = Info::SerializerVersion;
char hash[64], description[512];
memcpy(&hash, (const char*)cartridge.sha256(), 64);
memset(&description, 0, sizeof description);
s.integer(signature);
s.integer(version);
s.array(hash);
s.array(description);
serialize_all(s);
return s;
}
bool System::unserialize(serializer &s) {
unsigned signature, version;
char hash[64], description[512];
s.integer(signature);
s.integer(version);
s.array(hash);
s.array(description);
if(signature != 0x31545342) return false;
if(version != Info::SerializerVersion) return false;
power();
serialize_all(s);
return true;
}
void System::serialize(serializer &s) {
}
void System::serialize_all(serializer &s) {
system.serialize(s);
input.serialize(s);
cartridge.serialize(s);
cpu.serialize(s);
apu.serialize(s);
ppu.serialize(s);
}
void System::serialize_init() {
serializer s;
unsigned signature = 0, version = 0;
char hash[64], description[512];
s.integer(signature);
s.integer(version);
s.array(hash);
s.array(description);
serialize_all(s);
serialize_size = s.size();
}

View File

@@ -1,76 +0,0 @@
#include <fc/fc.hpp>
namespace Famicom {
#include "serialization.cpp"
System system;
void System::run() {
scheduler.enter();
if(scheduler.exit_reason() == Scheduler::ExitReason::FrameEvent) {
interface->videoRefresh(ppu.buffer, 4 * 256, 256, 240);
}
}
void System::runtosave() {
scheduler.sync = Scheduler::SynchronizeMode::PPU;
runthreadtosave();
scheduler.sync = Scheduler::SynchronizeMode::All;
scheduler.thread = cpu.thread;
runthreadtosave();
scheduler.sync = Scheduler::SynchronizeMode::All;
scheduler.thread = apu.thread;
runthreadtosave();
scheduler.sync = Scheduler::SynchronizeMode::All;
scheduler.thread = cartridge.thread;
runthreadtosave();
scheduler.sync = Scheduler::SynchronizeMode::None;
}
void System::runthreadtosave() {
while(true) {
scheduler.enter();
if(scheduler.exit_reason() == Scheduler::ExitReason::SynchronizeEvent) break;
if(scheduler.exit_reason() == Scheduler::ExitReason::FrameEvent) {
interface->videoRefresh(ppu.buffer, 4 * 256, 256, 240);
}
}
}
void System::load() {
serialize_init();
}
void System::power() {
cartridge.power();
cpu.power();
apu.power();
ppu.power();
input.reset();
scheduler.power();
reset();
}
void System::reset() {
cartridge.reset();
cpu.reset();
apu.reset();
ppu.reset();
input.reset();
scheduler.reset();
}
void System::init() {
assert(interface != 0);
input.connect(0, Input::Device::Joypad);
input.connect(1, Input::Device::None);
}
void System::term() {
}
}

View File

@@ -1,22 +0,0 @@
struct System {
void run();
void runtosave();
void runthreadtosave();
void load();
void power();
void reset();
void init();
void term();
serializer serialize();
bool unserialize(serializer&);
void serialize(serializer&);
void serialize_all(serializer&);
void serialize_init();
unsigned serialize_size;
};
extern System system;

View File

@@ -1,68 +0,0 @@
#include <fc/fc.hpp>
#define VIDEO_CPP
namespace Famicom {
Video video;
void Video::generate_palette() {
for(unsigned n = 0; n < (1 << 9); n++) palette[n] = generate_color(n, 2.0, 0.0, 1.0, 1.0, 1.8);
}
Video::Video() {
palette = new unsigned[1 << 9];
}
Video::~Video() {
delete[] palette;
}
uint32_t Video::generate_color(
unsigned n, double saturation, double hue,
double contrast, double brightness, double gamma
) {
signed color = (n & 0x0f), level = color < 0xe ? (n >> 4) & 3 : 1;
static const double black = 0.518, white = 1.962, attenuation = 0.746;
static const double levels[8] = {
0.350, 0.518, 0.962, 1.550,
1.094, 1.506, 1.962, 1.962,
};
double lo_and_hi[2] = {
levels[level + 4 * (color == 0x0)],
levels[level + 4 * (color < 0xd)],
};
double y = 0.0, i = 0.0, q = 0.0;
auto wave = [](signed p, signed color) { return (color + p + 8) % 12 < 6; };
for(signed p = 0; p < 12; p++) {
double spot = lo_and_hi[wave(p, color)];
if(((n & 0x040) && wave(p, 12))
|| ((n & 0x080) && wave(p, 4))
|| ((n & 0x100) && wave(p, 8))
) spot *= attenuation;
double v = (spot - black) / (white - black);
v = (v - 0.5) * contrast + 0.5;
v *= brightness / 12.0;
y += v;
i += v * std::cos((3.141592653 / 6.0) * (p + hue));
q += v * std::sin((3.141592653 / 6.0) * (p + hue));
}
i *= saturation;
q *= saturation;
auto gammaAdjust = [=](double f) { return f < 0.0 ? 0.0 : std::pow(f, 2.2 / gamma); };
unsigned r = 65535.0 * gammaAdjust(y + 0.946882 * i + 0.623557 * q);
unsigned g = 65535.0 * gammaAdjust(y + -0.274788 * i + -0.635691 * q);
unsigned b = 65535.0 * gammaAdjust(y + -1.108545 * i + 1.709007 * q);
return interface->videoColor(n, uclamp<16>(r), uclamp<16>(g), uclamp<16>(b));
}
}

View File

@@ -1,12 +0,0 @@
struct Video {
unsigned *palette;
void generate_palette();
Video();
~Video();
private:
uint32_t generate_color(unsigned, double, double, double, double, double);
};
extern Video video;

View File

@@ -1,16 +0,0 @@
gb_objects := gb-interface gb-system gb-scheduler
gb_objects += gb-memory gb-cartridge
gb_objects += gb-cpu gb-ppu gb-apu
gb_objects += gb-cheat gb-video
objects += $(gb_objects)
obj/gb-interface.o: $(gb)/interface/interface.cpp $(call rwildcard,$(gb)/interface/)
obj/gb-system.o: $(gb)/system/system.cpp $(call rwildcard,$(gb)/system/)
obj/gb-scheduler.o: $(gb)/scheduler/scheduler.cpp $(call rwildcard,$(gb)/scheduler/)
obj/gb-cartridge.o: $(gb)/cartridge/cartridge.cpp $(call rwildcard,$(gb)/cartridge/)
obj/gb-memory.o: $(gb)/memory/memory.cpp $(call rwildcard,$(gb)/memory/)
obj/gb-cpu.o: $(gb)/cpu/cpu.cpp $(call rwildcard,$(gb)/cpu/)
obj/gb-ppu.o: $(gb)/ppu/ppu.cpp $(call rwildcard,$(gb)/ppu/)
obj/gb-apu.o: $(gb)/apu/apu.cpp $(call rwildcard,$(gb)/apu/)
obj/gb-cheat.o: $(gb)/cheat/cheat.cpp $(call rwildcard,$(gb)/cheat/)
obj/gb-video.o: $(gb)/video/video.cpp $(call rwildcard,$(gb)/video/)

View File

@@ -1,107 +0,0 @@
#include <gb/gb.hpp>
#define APU_CPP
namespace GameBoy {
#include "square1/square1.cpp"
#include "square2/square2.cpp"
#include "wave/wave.cpp"
#include "noise/noise.cpp"
#include "master/master.cpp"
#include "serialization.cpp"
APU apu;
void APU::Main() {
apu.main();
}
void APU::main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(sequencer_base == 0) { //512hz
if(sequencer_step == 0 || sequencer_step == 2 || sequencer_step == 4 || sequencer_step == 6) { //256hz
square1.clock_length();
square2.clock_length();
wave.clock_length();
noise.clock_length();
}
if(sequencer_step == 2 || sequencer_step == 6) { //128hz
square1.clock_sweep();
}
if(sequencer_step == 7) { //64hz
square1.clock_envelope();
square2.clock_envelope();
noise.clock_envelope();
}
sequencer_step++;
}
sequencer_base++;
square1.run();
square2.run();
wave.run();
noise.run();
master.run();
interface->audioSample(master.left, master.right);
clock += cpu.frequency;
if(clock >= 0 && scheduler.sync != Scheduler::SynchronizeMode::All) co_switch(scheduler.active_thread = cpu.thread);
}
}
void APU::power() {
create(Main, 4 * 1024 * 1024);
for(unsigned n = 0xff10; n <= 0xff3f; n++) bus.mmio[n] = this;
for(auto &n : mmio_data) n = 0x00;
sequencer_base = 0;
sequencer_step = 0;
square1.power();
square2.power();
wave.power();
noise.power();
master.power();
}
uint8 APU::mmio_read(uint16 addr) {
static const uint8 table[48] = {
0x80, 0x3f, 0x00, 0xff, 0xbf, //square1
0xff, 0x3f, 0x00, 0xff, 0xbf, //square2
0x7f, 0xff, 0x9f, 0xff, 0xbf, //wave
0xff, 0xff, 0x00, 0x00, 0xbf, //noise
0x00, 0x00, 0x70, //master
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, //unmapped
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //wave pattern
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //wave pattern
};
if(addr == 0xff26) {
uint8 data = master.enable << 7;
if(square1.enable) data |= 0x01;
if(square2.enable) data |= 0x02;
if( wave.enable) data |= 0x04;
if( noise.enable) data |= 0x08;
return data | table[addr - 0xff10];
}
if(addr >= 0xff10 && addr <= 0xff3f) return mmio_data[addr - 0xff10] | table[addr - 0xff10];
return 0xff;
}
void APU::mmio_write(uint16 addr, uint8 data) {
if(addr >= 0xff10 && addr <= 0xff3f) mmio_data[addr - 0xff10] = data;
if(addr >= 0xff10 && addr <= 0xff14) return square1.write (addr - 0xff10, data);
if(addr >= 0xff15 && addr <= 0xff19) return square2.write (addr - 0xff15, data);
if(addr >= 0xff1a && addr <= 0xff1e) return wave.write (addr - 0xff1a, data);
if(addr >= 0xff1f && addr <= 0xff23) return noise.write (addr - 0xff1f, data);
if(addr >= 0xff24 && addr <= 0xff26) return master.write (addr - 0xff24, data);
if(addr >= 0xff30 && addr <= 0xff3f) return wave.write_pattern(addr - 0xff30, data);
}
}

View File

@@ -1,28 +0,0 @@
struct APU : Thread, MMIO {
#include "square1/square1.hpp"
#include "square2/square2.hpp"
#include "wave/wave.hpp"
#include "noise/noise.hpp"
#include "master/master.hpp"
uint8 mmio_data[48];
uint13 sequencer_base;
uint3 sequencer_step;
Square1 square1;
Square2 square2;
Wave wave;
Noise noise;
Master master;
static void Main();
void main();
void power();
uint8 mmio_read(uint16 addr);
void mmio_write(uint16 addr, uint8 data);
void serialize(serializer&);
};
extern APU apu;

View File

@@ -1,101 +0,0 @@
#ifdef APU_CPP
void APU::Master::run() {
if(enable == false) {
center = 0;
left = 0;
right = 0;
return;
}
signed sample = 0;
sample += apu.square1.output;
sample += apu.square2.output;
sample += apu.wave.output;
sample += apu.noise.output;
center = (sample * 512) - 16384;
sample = 0;
if(channel1_left_enable) sample += apu.square1.output;
if(channel2_left_enable) sample += apu.square2.output;
if(channel3_left_enable) sample += apu.wave.output;
if(channel4_left_enable) sample += apu.noise.output;
sample = (sample * 512) - 16384;
sample = (sample * (left_volume + 1)) / 8;
left = sample;
sample = 0;
if(channel1_right_enable) sample += apu.square1.output;
if(channel2_right_enable) sample += apu.square2.output;
if(channel3_right_enable) sample += apu.wave.output;
if(channel4_right_enable) sample += apu.noise.output;
sample = (sample * 512) - 16384;
sample = (sample * (right_volume + 1)) / 8;
right = sample;
}
void APU::Master::write(unsigned r, uint8 data) {
if(r == 0) { //$ff24 NR50
left_in_enable = data & 0x80;
left_volume = (data >> 4) & 7;
right_in_enable = data & 0x08;
right_volume = (data >> 0) & 7;
}
if(r == 1) { //$ff25 NR51
channel4_left_enable = data & 0x80;
channel3_left_enable = data & 0x40;
channel2_left_enable = data & 0x20;
channel1_left_enable = data & 0x10;
channel4_right_enable = data & 0x08;
channel3_right_enable = data & 0x04;
channel2_right_enable = data & 0x02;
channel1_right_enable = data & 0x01;
}
if(r == 2) { //$ff26 NR52
enable = data & 0x80;
}
}
void APU::Master::power() {
left_in_enable = 0;
left_volume = 0;
right_in_enable = 0;
right_volume = 0;
channel4_left_enable = 0;
channel3_left_enable = 0;
channel2_left_enable = 0;
channel1_left_enable = 0;
channel4_right_enable = 0;
channel3_right_enable = 0;
channel2_right_enable = 0;
channel1_right_enable = 0;
enable = 0;
center = 0;
left = 0;
right = 0;
}
void APU::Master::serialize(serializer &s) {
s.integer(left_in_enable);
s.integer(left_volume);
s.integer(right_in_enable);
s.integer(right_volume);
s.integer(channel4_left_enable);
s.integer(channel3_left_enable);
s.integer(channel2_left_enable);
s.integer(channel1_left_enable);
s.integer(channel4_right_enable);
s.integer(channel3_right_enable);
s.integer(channel2_right_enable);
s.integer(channel1_right_enable);
s.integer(enable);
s.integer(center);
s.integer(left);
s.integer(right);
}
#endif

View File

@@ -1,24 +0,0 @@
struct Master {
bool left_in_enable;
uint3 left_volume;
bool right_in_enable;
uint3 right_volume;
bool channel4_left_enable;
bool channel3_left_enable;
bool channel2_left_enable;
bool channel1_left_enable;
bool channel4_right_enable;
bool channel3_right_enable;
bool channel2_right_enable;
bool channel1_right_enable;
bool enable;
int16 center;
int16 left;
int16 right;
void run();
void write(unsigned r, uint8 data);
void power();
void serialize(serializer&);
};

View File

@@ -1,112 +0,0 @@
#ifdef APU_CPP
bool APU::Noise::dac_enable() {
return (envelope_volume || envelope_direction);
}
void APU::Noise::run() {
if(period && --period == 0) {
period = divisor << frequency;
if(frequency < 14) {
bool bit = (lfsr ^ (lfsr >> 1)) & 1;
lfsr = (lfsr >> 1) ^ (bit << (narrow_lfsr ? 6 : 14));
}
}
uint4 sample = (lfsr & 1) ? (uint4)0 : volume;
if(enable == false) sample = 0;
output = sample;
}
void APU::Noise::clock_length() {
//if(counter && length) {
// if(--length == 0) enable = false;
//}
if(enable && counter) {
if(++length == 0) enable = false;
}
}
void APU::Noise::clock_envelope() {
if(enable && envelope_frequency && --envelope_period == 0) {
envelope_period = envelope_frequency;
if(envelope_direction == 0 && volume > 0) volume--;
if(envelope_direction == 1 && volume < 15) volume++;
}
}
void APU::Noise::write(unsigned r, uint8 data) {
if(r == 1) { //$ff20 NR41
//length = 64 - (data & 0x3f);
length = data & 0x3f;
}
if(r == 2) { //$ff21 NR42
envelope_volume = data >> 4;
envelope_direction = data & 0x08;
envelope_frequency = data & 0x07;
if(dac_enable() == false) enable = false;
}
if(r == 3) { //$ff22 NR43
frequency = data >> 4;
narrow_lfsr = data & 0x08;
divisor = (data & 0x07) << 4;
if(divisor == 0) divisor = 8;
period = divisor << frequency;
}
if(r == 4) { //$ff34 NR44
bool initialize = data & 0x80;
counter = data & 0x40;
if(initialize) {
enable = dac_enable();
lfsr = ~0U;
envelope_period = envelope_frequency;
volume = envelope_volume;
//if(length == 0) length = 64;
}
}
}
void APU::Noise::power() {
enable = 0;
envelope_volume = 0;
envelope_direction = 0;
envelope_frequency = 0;
frequency = 0;
narrow_lfsr = 0;
divisor = 0;
counter = 0;
output = 0;
length = 0;
envelope_period = 0;
volume = 0;
period = 0;
lfsr = 0;
}
void APU::Noise::serialize(serializer &s) {
s.integer(enable);
s.integer(envelope_volume);
s.integer(envelope_direction);
s.integer(envelope_frequency);
s.integer(frequency);
s.integer(narrow_lfsr);
s.integer(divisor);
s.integer(counter);
s.integer(output);
s.integer(length);
s.integer(envelope_period);
s.integer(volume);
s.integer(period);
s.integer(lfsr);
}
#endif

View File

@@ -1,27 +0,0 @@
struct Noise {
bool enable;
uint4 envelope_volume;
bool envelope_direction;
uint3 envelope_frequency;
uint4 frequency;
bool narrow_lfsr;
unsigned divisor;
bool counter;
int16 output;
uint6 length;
uint3 envelope_period;
uint4 volume;
unsigned period;
uint15 lfsr;
bool dac_enable();
void run();
void clock_length();
void clock_envelope();
void write(unsigned r, uint8 data);
void power();
void serialize(serializer&);
};

View File

@@ -1,17 +0,0 @@
#ifdef APU_CPP
void APU::serialize(serializer &s) {
Thread::serialize(s);
s.array(mmio_data);
s.integer(sequencer_base);
s.integer(sequencer_step);
square1.serialize(s);
square2.serialize(s);
wave.serialize(s);
noise.serialize(s);
master.serialize(s);
}
#endif

View File

@@ -1,164 +0,0 @@
#ifdef APU_CPP
bool APU::Square1::dac_enable() {
return (envelope_volume || envelope_direction);
}
void APU::Square1::run() {
if(period && --period == 0) {
period = 4 * (2048 - frequency);
phase++;
switch(duty) {
case 0: duty_output = (phase == 6); break; //______-_
case 1: duty_output = (phase >= 6); break; //______--
case 2: duty_output = (phase >= 4); break; //____----
case 3: duty_output = (phase <= 5); break; //------__
}
}
uint4 sample = (duty_output ? volume : (uint4)0);
if(enable == false) sample = 0;
output = sample;
}
void APU::Square1::sweep(bool update) {
if(sweep_enable == false) return;
sweep_negate = sweep_direction;
unsigned delta = frequency_shadow >> sweep_shift;
signed freq = frequency_shadow + (sweep_negate ? -delta : delta);
if(freq > 2047) {
enable = false;
} else if(sweep_shift && update) {
frequency_shadow = freq;
frequency = freq & 2047;
period = 4 * (2048 - frequency);
}
}
void APU::Square1::clock_length() {
//if(counter && length) {
// if(--length == 0) enable = false;
//}
if(counter && enable) {
if(++length == 0) enable = false;
}
}
void APU::Square1::clock_sweep() {
if(enable && sweep_frequency && --sweep_period == 0) {
sweep_period = sweep_frequency;
sweep(1);
sweep(0);
}
}
void APU::Square1::clock_envelope() {
if(enable && envelope_frequency && --envelope_period == 0) {
envelope_period = envelope_frequency;
if(envelope_direction == 0 && volume > 0) volume--;
if(envelope_direction == 1 && volume < 15) volume++;
}
}
void APU::Square1::write(unsigned r, uint8 data) {
if(r == 0) { //$ff10 NR10
if(sweep_negate && sweep_direction && !(data & 0x08)) enable = false;
sweep_frequency = (data >> 4) & 7;
sweep_direction = data & 0x08;
sweep_shift = data & 0x07;
}
if(r == 1) { //$ff11 NR11
duty = data >> 6;
//length = 64 - (data & 0x3f);
length = data & 0x3f;
}
if(r == 2) { //$ff12 NR12
envelope_volume = data >> 4;
envelope_direction = data & 0x08;
envelope_frequency = data & 0x07;
if(dac_enable() == false) enable = false;
}
if(r == 3) { //$ff13 NR13
frequency = (frequency & 0x0700) | data;
}
if(r == 4) { //$ff14 NR14
bool initialize = data & 0x80;
counter = data & 0x40;
frequency = ((data & 7) << 8) | (frequency & 0x00ff);
if(initialize) {
enable = dac_enable();
period = 4 * (2048 - frequency);
envelope_period = envelope_frequency;
volume = envelope_volume;
frequency_shadow = frequency;
sweep_period = sweep_frequency;
sweep_enable = sweep_period || sweep_shift;
sweep_negate = false;
if(sweep_shift) sweep(0);
//if(length == 0) length = 64;
}
}
}
void APU::Square1::power() {
enable = 0;
sweep_frequency = 0;
sweep_direction = 0;
sweep_shift = 0;
sweep_negate = 0;
duty = 0;
length = 0;
envelope_volume = 0;
envelope_direction = 0;
envelope_frequency = 0;
frequency = 0;
counter = 0;
output = 0;
duty_output = 0;
phase = 0;
period = 0;
envelope_period = 0;
sweep_period = 0;
frequency_shadow = 0;
sweep_enable = 0;
volume = 0;
}
void APU::Square1::serialize(serializer &s) {
s.integer(enable);
s.integer(sweep_frequency);
s.integer(sweep_direction);
s.integer(sweep_shift);
s.integer(sweep_negate);
s.integer(duty);
s.integer(length);
s.integer(envelope_volume);
s.integer(envelope_direction);
s.integer(envelope_frequency);
s.integer(frequency);
s.integer(counter);
s.integer(output);
s.integer(duty_output);
s.integer(phase);
s.integer(period);
s.integer(envelope_period);
s.integer(sweep_period);
s.integer(frequency_shadow);
s.integer(sweep_enable);
s.integer(volume);
}
#endif

Some files were not shown because too many files have changed in this diff Show More